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Comparison of software tools

PODE 2007, 2009 meetings:
- PFIM (developed in INSERM, Université Paris 7, France);
- PkStaMp (GlaxoSmithKline, Collegeville, U.S.A.);
- PopDes (CAPKR, University of Manchester, UK);
- PopED (Uppsala University, Sweden) and
- WinPOPT (University of Otago, New Zealand).

Key for model-based optimal designs: Fisher information
matrix of a properly defined single observational unit

This presentation:

• Some results of comparison at PODE 2009

• Certain options of calculating/approximating FIM
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PODE 2009 comparison

Goal: compare results (information matrix) for a particular
model and particular sequence of sampling times

Model: one-compartment, 1st order absorption, single
dose D = 70 mg at t = 0

f (x,γ) =
Dka

V (ka − ke)

(
e−kex − e−kax

)
. (1)

Response parameters γ = (ka, CL, V ), ke = CL/V

Individual parameters

γi = γ0eηi, ηi ∼ N (0,Ω), (2)

γ0 = (1, 0.15, 8), Ω = diag(0.6, 0.07, 0.02)



4

PODE 2009 comparison (cont.)

Measurements:

yij = f (γi, xij) [1 + εM,ij] + εA,ij, (3)

{xij} ≡ x = (0.5, 1, 2, 6, 24, 36, 72, 120) hours

εA,ij ∼ N (0, σ2
A), εM,ij ∼ N (0, σ2

M),

σ2
A = 0, σ2

M = 0.01; i = 1, . . . , 32; j = 1, . . . , 8

Combined parameter

θ = (k0
a, CL0, V 0; ω2

ka
, ω2

CL, ω2
V ; σ2

M)
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Individual information matrix µ(x, θ)

x = (x1, x2, . . . , xk) - sequence of sampling times

Y = [y(x1), . . . , y(xk)]
T - observations

f = f(x, θ) = Eθ(Y) = [f (x1, θ), . . . , f (xk, θ)]T (mean)

S = S(x, θ) = Varθ(Y) (variance)

Key formula for Gaussian observations Y ∼ N (f ,S):

µ(x, θ) = [µαβ(x, θ)]mα,β=1 , Magnus and Neudecker (1988)

µαβ(x, θ) =
∂f

∂θα
S−1 ∂f

∂θβ
+

1

2
tr

[
S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]
. (4)
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Individual information matrix µ(x, θ) (cont.)

Once µ(x, θ) is calculated (approximated) for any can-
didate sequence x, the numerical construction of locally
optimal designs is easy!

• Define normalized matrix M(ξ, θ), w/o or with costs,

M(ξ, θ) =
∑

i

piµ(xi, θ), pi ∈ [0, 1], ξ = {pi,xi}

• Specify a criterion of optimality Ψ (D-, A-, c- etc.)

• Solve optimization problem Ψ
[
M−1(ξ, θ)

] → minξ

(1st order optimization algorithm in the space of infor-
mation matrices µ(x, θ), x ∈ X - design region)
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Information matrix µ(x, θ) (cont.)

• Formula (4) is exact for normal Y only

• Need expressions (approximations?) of f and S

• First-order approximation (Taylor series):

Eθ(Y) = [f (x1, γ
0), .., f (xk, γ

0)]T = f(x, γ0) (5)

Varθ(Y) = S(x, θ) = F Ω FT + σ2
AIk +

+ σ2
M Diag

[
f(x, γ0)fT (x, γ0) + F Ω FT

]
, (6)

F =
[

∂f(x,γ0)
∂γα

]
−(k×m1)-matrix, m1 = dim(γ) = 3

Gagnon and Leonov (2005)
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Information matrix µ(x, θ) (cont.)

First round of PODE 2009 comparison, expression for FIM:
very similar results for coeff. of variation (CV) except ka

(i) PFIM, PopED, WinPOPT: CV (ka) ' 13.9%

(ii) PkStaMp, PopDes: CV (ka) ' 4.8%, why such discrepancy??

(iii) Simulations in NONMEM/MONOLIX: CV (ka) ' 12− 13%,

why closer to (a)??
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Information matrix µ(x, θ) (cont.)

Matrix µ in (4): block form, Retout and Mentré (2003)

µ =

{
A C
CT B

}
, (7)

A = FT S−1 F + 1
2 tr (derivatives wrt γα)

C = 1
2 tr (mixed derivatives wrt γα and [ω2

β, σ
2
M ])

B = 1
2 tr (derivatives wrt [ω2

β, σ
2
M ])

PkStaMp in (i): used (5), (6) and FULL matrix µ in (7)

If (1) Block C “excluded” (C = 0)
(2) Second term in A (trace) removed
(3) No term F Ω FT in square brackets in (6) =⇒

then exact match with (ii)

Which approximation to choose?
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Types of approximation

A1. Log-normal distribution in (2)

- 1st-order approximation, Eηi = 0, Var(ηi) = V =⇒
Eη(θe

ηi) ' θ, Varη(θe
ηi) ' θ2V

- Exact moments:

Eη(θe
ηi) = θeV/2, Varη(θe

ηi) = θ2eV (eV − 1).

- If θ = 1, V = 0.6 (as for ka), then

E1st = 1, Eexact = 1.35; Var1st = 0.6,Varexact = 1.50
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Types of approximation (cont.)

A2. Trace (2nd) term in (4): let

- k = 1 (single response) and

- Var(y) = S = σ2f 2 with known σ2; cf. (3)

⇓

µ =
1

σ2

FTF

f 2
+ 2

FTF

f 2
=

(
1

σ2
+ 2

)
FTF

f 2
(8)

To examine the effect of missing 2nd term on CV, check

√
µαβ, FULL

µαβ, 1st term
=

√
2 + 1/σ2

1/σ2
=
√

1 + 2σ2 ∼ 1 + σ2 =⇒

Inflation coefficient for CV: 1 + σ2, σ2 ≤ 0.25
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Types of approximation (cont.)

A3. Second-order approximation for mean/variance:
Fedorov, Leonov (2005)

Eθ[f (x, γi)] ≈ f (x, γ0) +
1

2
tr

[
H(γ0)Ω

]
, (9)

H(γ0) =

[
∂2f (x,γ)

∂γα ∂γβ

]∣∣∣∣
γ=γ0

etc =⇒

numerically may be rather tedious
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Types of approximation (cont.)

A4. Calculation of mean/variance via Monte Carlo:

f̂ (xj) = Êθ(yij) =
1

N

N∑
i=1

yij , (10)

Ŝ(xj) = V̂arθ(yij) =
1

N

N∑
i=1

[yij − f̂ (xj)]
2 =⇒

Numerically straightforward: valid option if normal approx-
imation is “reasonable” (??)
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Comparison of approximation options
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Figure 1: Mean response curves for PODE 2009 example. Solid - 1st order approximation,
dashed - computed at mean values of log-normal distribution, dotted - Monte Carlo average
as in (10)

For a single response parameter, m = 1:

Eθ[f (x, θi)] ≈ f (x, θ0) +
1

2
f ′′(x, θ) Var(θ)
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Comparison of approximation options (cont.)
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Variance S:   1st−order approximation  vs  Monte Carlo
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Figure 2: Mean response curves and variance. Legend similar to Fig. 1
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