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Comparison of software tools

PODE 2007, 2009 meetings:

- PFIM (developed in INSERM, Université Paris 7, France);
- PkStaMp (GlaxoSmithKline, Collegeville, U.S.A.);

- PopDes (CAPKR, University of Manchester, UK);

- PopED (Uppsala University, Sweden) and

- WinPOPT (University of Otago, New Zealand).

Key for model-based optimal designs: Fisher information
matrix of a properly defined single observational unit

This presentation:
e Some results of comparison at PODE 2009

e Certain options of calculating/approximating FIM



PODE 2009 comparison

Goal: compare results (information matrix) for a particular
model and particular sequence of sampling times

Model: one-compartment, 1st order absorption, single
dose D =70 mgatt=20

Fam) = g =)

Response parameters v = (k,,CL,V), k.= CL/V

—kex

€ — €

Individual parameters
Yi = 706?%7 ni ~ N<07 Q)a (2>
~' = (1,0.15,8), Q = diag(0.6,0.07,0.02)



PODE 2009 comparison  (cont))

Measurements:

yij = f(vi, zi5) |1+ €] + €aij, (3)
{z;;} =x=1(0.5,1,2,6,24, 36, 72,120) hours

EA,ij NN<070124>7 € M,ij NN<07012\/[>7
04=0,09,=001; i=1,...,32 j=1,...,8

Combined parameter

_ (1.0 0 1/0. .2 2 2. 2
0= (k,, CL°, V" wi , wir, Wi 0y)



Individual information matrix p(x, )

X = (21, %9, ...,Tk) - sequence of sampling times
Y = [y(x1),...,y(z;)]! - observations

f = f( X, ) <Y> — [f<x179>7"'7f(xk79>]T (mean)
(X, ) = Varg <Y> (variance)

Key formula for Gaussian observations Y ~ N (f,S):

/L(X, 9) [,ua5<X 9)] =1 » Magnus and Neudecker (1988)

ofF . ot 1 0S8
o 9 — A - . 4
Hasl%,0) = 50- 87 5o+ 5 WIS 508 5, - W



Individual information matrix p(x,0) (cont)

Once p(x,0) is calculated (approximated) for any can-
didate sequence X, the numerical construction of locally
optimal designs is easy!

e Define normalized matrix M(&, ), w/o or with costs,
M(¢,0) = ZPz‘M(Xi,H)a pi € 10,1}, & ={pi,xi}

e Specify a criterion of optimality ¥ (D-, A-, c- etc.)

e Solve optimization problem W [M_l(f, 9)] — ming

(1st order optimization algorithm in the space of infor-
mation matrices pu(x,0), x € X - design region)



Information matrix p(x,0) (cont)

e Formula (4) is exact for normal Y only
e Need expressions (approximations?) of f and S

e First-order approximation (Taylor series):

Eg(Y) = [f(z1,7"), ... f(ze, )" = £(x,4") (5)

Varg(Y)=S(x,0) =F QF' + o3I, +
+ o3 Diag [f(x,v)f'(x,74") + FQF'], (6)

Ma
Gagnon and Leonov (2005)

F = [M} — (k xmyq)-matrix, m; = dim(y) = 3



Information matrix p(x,0) (cont)

First round of PODE 2009 comparison, expression for FIM:
very similar results for coeff. of variation (CV) except k,

(i) PFIM, PopED, WinPOPT: CV (k,) ~ 13.9%
(ii) PkStaMp, PopDes: C'V (k,) ~ 4.8%, why such discrepancy??

(iii) Simulations in NONMEM/MONOLIX: CV (k,) ~ 12 — 13%,
why closer to (a)?7



Information matrix p(x,0) (cont)

Matrix g in (4): block form, Retout and Mentré (2003)

n={ &t )

A=F'S1F+ % tr (derivatives wrt 7,)
C = % tr (mixed derivatives wrt v, and [w%, o3)
B = % tr (derivatives wrt [w%, O?W])

PkStaMp in (i): used (5), (6) and FULL matrix g in (7)

If (1) Block C “excluded” (C = 0)

(1
(2) Second term in A (trace) removed
(3) No term F ©Q F7 in square brackets in (6) =—

then exact match with (ii)

Which approximation to choose?



Types of approximation

Al. Log-normal distribution in (2)

- Ist-order approximation, En; = 0, Var(n;) =V —
E, (feh) ~ 0, Var,(fe) ~ 0*V

- Exact moments:
E,(0e") = 0e"/?, Var,(fe) = 62" (" —1).

-1f8 =1, V=20.6 (as for k,), then
Elst = 1, Eexact = 135, Varlst = 06, Varemct = 1.50

10



Types of approximation

A2. Trace (2nd) term in (4): let

- k =1 (single response) and

(cont.)

- Var(y) = S = o f? with known ¢?; cf. (3)

J
1 FTF F'F 1
h=mp i p = 3

) F'F
+2

f2

11

(8)

To examine the effect of missing 2nd term on CV, check

a 2+ 1/0?
\/M’FULL_ UTAAV v S FPC SN

Haps, 1st term 1/02

Inflation coefficient for CV: 1 + 02, o < 0.25
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Types of approximation  (cont)

A3. Second-order approximation for mean /variance:
Fedorov, Leonov (2005)

Eglf(e. )] ~ flz.7") + - u[HAOQ] . (9

2
O f(z,~)

etc —
8704 a/yﬁ ] ‘770

HOY) - |

numerically may be rather tedious
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Types of approximation  (cont)

A4. Calculation of mean/variance via Monte Carlo:

f(ajj) yzy Zyw ) (1())

S(x;) = Varg(y;) = %Z[W — flz))* =

Numerically straightforward: valid option if normal approx-
imation is “reasonable” (77)
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Comparison of approximation options

Response: at mean values and averaged over curves
85 T T T T T T

Response f(x,0)

Figure 1: Mean response curves for PODE 2009 example. Solid - 1st order approximation,
dashed - computed at mean values of log-normal distribution, dotted - Monte Carlo average
as in (10)

For a single response parameter, m = 1:

Bilf(x.6)] ~ f(z.6") + 3 "(z,6) Var(6)
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Comparison of approximation options (cont.)

Variance S(x,0)

Response f(x,0)

Response: at mean values and averaged over curves
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Variance S: 1st-order approximation vs Monte Carlo
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Figure 2: Mean response curves and variance. Legend similar to Fig. 1
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