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Overview

Rationale for noninferiority trials:

The experimental regimen (E) has some advantage over the standard-of-care “control”

(C) regimen that out-weighs the disadvantage of lower effectiveness.

Examples

• If shorter time course → fewer treatment-related adverse events (AEs), greater com-

pliance and less development of treatment resistance

• If E more toxic than C with respect to reversible AEs, routine monitoring of patients

should prevent long-term harm

• if different route of administration→ less reliance on health care personnel and resources

• Suitable for people who are allergic to the control treatment

Special case: Noninferiority trials with πE = πC under HA

Questions to be addressed:

• Q: What are the fixed design parameters that must be specified?

• Q: What are their values?

• Q: What is the optimal value of the allocation ratio γ = nE/nC – that is, the value

that minimizes the overall sample size, N?
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The design parameters of two-group noninferiority trials for efficacy with

binary outcomes are

• a contrast parameter → Here, the odds ratio (ψ) or risk difference (δ)

• a response rate → Two values of interest: πC and πN

– Positive response (eg, cure): δ0 = πE − πC < 0⇒ E somewhat inferior to C

– Negative response (eg, morbidity): δ0 = πE − πC > 0⇒ E somewhat inferior to C

– The test is one-sided.

The noninferiority contrast parameter is the “noninferiority margin.”

Let the response be morbidity, so δ0 > 0.

E is noninferior to C

| | | | // |
0 πC πE πP 1

Assume C is effective (i.e., πC < πP ). Also assume E is effective (i.e., πE < πP ).
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We want to find the N = nE + nC needed to detect δA − δ0, with level α and

power 1− β.

nC =
[z1−α σ̃0(δ̂) + z1−β σA(δ̂)]2

(δA − δ0)2
and

N = (1 + γ) nC, where γ = nE/nC.

• α and β are the type-1 and type-2 error rates,

• z1−α and z1−β are critical values from the normal distribution

Q: What are the fixed design parameters that must be specified?

• Heuristic argument

• Derivation

• Comparison with findings of others (Table 1)

Q: What are their values?
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Superiority and noninferiority trials have opposite relationships to H0 and HA.

Superiority design: H0 : δ ≥ δ0 vs. HA : δ < δ0

Contrast parameter Response rate

Under H0: | δ0 = πE − πC = 0 | πS is estimated∗ (defines σ̃0)

Under HA: δA = πE − πC < 0 | πC is specified (defines σA) |

∗ p̄ ≡ π̂
S

= (nCπC + nEπE)/N , where π̂
S ∈ (πC, πE).

Noninferiority design: H0 : δ ≥ δ0 vs. HA : δ < δ0

Contrast parameter Response rate

Under H0: | δ0 = πE − πC > 0 | πC is estimated (defines σ̃0)

Under HA: δA = πE − πC = 0 | πN is specified+ (defines σA) |

+ π
N

= (1− ω)π̃C + ωπ̃E, where π
N ∈ (π̃C, π̃E) and ω ∈ (0, 1).
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Constrained MLE for risk difference, for yC ∼ Bi(nC, πC) and yE ∼ Bi(nE, πE)

Superiority: Specify πC, δ0 = 0; estimate πS

LH0(π) = [πyC(1− π)nC−yC ][πyE(1− π)nE−yE ], where π ≡ πS

MLE of πS at the point-alternative of interest, πE − πC ≡ δA, relates π̂S with πC :

π̂S = (1− ωS) πC + ωS (πC + δA),

where ωS =
γS

γS + 1
=
nE
N
.

⇒ πC and δ0 are fixed design parameters; πS is estimated (for use in σ̃0(δ̂)). Q: γS =?

Noninferiority: Specify πN , δ0; estimate πC

LH0(πC) =
[
π
yC
C (1− πC)nC−yC

] [
(πC + δ0)

yE{1− (πC + δ0)}nE−yE
]
,

MLE of πC at the point-alternative of interest, πE − πC ≡ δA = 0, relates π̃C with πN :

πN = (1− ωN)π̃C + ωN (π̃C + δ0),

where ωN =
γN

γN +R
, R =

(π̃C + δ0){1− (π̃C + δ0)}
π̃C(1− π̃C)

.

⇒ πN and δ0 are fixed design parameters; πC is estimated (for use in σ̃0(δ̂)). Q: γN =?
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Superiority and noninferiority trials have opposite relationships to H0 and HA.

Superiority design: H0 : δ ≥ δ0 vs. HA : δ < δ0
Contrast parameter Response rate SE(δ̂)

Under H0: | δ0 = πE − πC = 0 | πS is estimated∗ σ̃0 =
[
p̄(1− p̄)

(
1
nC

+ 1
nE

)]0.5

Under HA: δA = πE − πC < 0 | πC is specified |

∗ p̄ ≡ π̂
S

= (nCπC + nEπE)/N , where π̂
S ∈ (πC, πE).

Noninferiority design: H0 : δ ≥ δ0 vs. HA : δ < δ0
Contrast parameter Response rate SE(δ̂)

Under H0: | δ0 = πE − πC > 0 | πC is estimated

Under HA: δA = πE − πC = 0 | πN is specified+ | σA =
[
π

N
(1− πN

)
(

1
nC

+ 1
nE

)]0.5

+ π
N

= (1− ω)π̃C + ωπ̃E, where π
N ∈ (π̃C, π̃E) and ω ∈ (0, 1).
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When the response is a negative outcome, the hypotheses on the risk-difference

scale are:

• Superiority trial under HA: πE should be lower than πC (δA = πE − πC < 0) and δA < δ0.

← HA : E is superior to C

| | | | // |
δA δ0 πP − πC

• Noninferiority trial under H0: Allow πE to be higher than πC (δ0 = πE − πC > 0) and δA < δ0.

← HA : E noninferior to C

| | | | // |
δA δ0 πP − πC

If the response were cure (positive outcome), the alternative hypotheses would be in the opposite

direction.

At this point,

⇒ A: We know what the fixed parameters are.

⇒ A: We can specify the values of the contrast parameter under both H0 and HA.
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When the response is a negative outcome, the hypotheses on the

response-rate scale are:

• Superiority trial under HA: πE should be lower than πC + δ0 (δ0 = 0); i.e., δA < δ0.

← HA : E is superior to C

| | | | // |
πE πC πP

• Noninferiority trial under HA: πE should be lower than πC + δ0 (δ0 > 0); i.e., δA < δ0.

← HA : E noninferior to C

| | | | // |
πC πE πP

⇒ Superiority: Assuming a fixed allocation ratio, γ = nE/nC , we can calculate the value

of π̂
S

= (nCπC + nEπE)/N because it is a function of known parameters. Usually, γ = 1

(balanced design).

⇒ Noninferiority: We still don’t know the value of π
N
, except it lies between π̃C and π̃E.

Q: What allocation ratio should we use?
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Noninferiority Algorithms

Recall that

πN = π̃C + ωδ0, for δ0 = π̃E − π̃C.

• Given design parameters {πN , δ0}, there is a 1:1 correspondence between π̃C and γ.

– Loop through max(πN − δ0, .001) ≤ π̃C ≤ πN by .0001; solve for {γθ, π̃C}.
∗ Typically, γθ ∈ (.25, 4.0).

– Once {γθ, π̃C} are found, σ̃0(δ̂), σA(δ̂), and N can be calculated.

– Find “optimal” pairs {γθ, π̃C} such that N is minimized.

∗ Because N = (1 + γ) nC depends on γ both directly and through nC , N a concave

function of γ. {Small-γ,Large-nC} and {Large-γ,Small-nC} can yield the same N .

∗ Because the algorithm must specify π̃C first, γ doesn’t exactly equal nE/nC .

Preliminary Problem: πN is unknown . . . but πC is known (call this “πC0”).

• Midpoint Approach (closed form): Let πN be the midpoint between πC0 and πC0 + δ0.

• Tailored Approach (iterative search; outer loop): Find πN such that |π̃C−πC0| is negligible.

Q: Does the Approach used to select πN affect the results {N, γ}?
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Table 1. Replicate results of Farrington & Manning (1990) at {α, 1− β} = {.05, .90}.

{πN , δ0} Goal N Range(s) of {γ, ~πC}*
{.10, .20} Find min(N) 83 {1.88, .0418} − {2.09, .0394}

Find N at γ = 1.5 85 {1.43, .0480} − {2.71, .0338}
Find N at γ = 1.0 92 ({0.96, .0573} − {1.04, .0554}), ({3.38, .0295} − {3.84, .0269})
Find N at γ = .67 105 {0.66, .0656} − {0.67, .0653}

{.05, .20} Find min(N) 55 {1.77, .0184} − {3.27, .0121}
Find N at γ = 1.5 58 {1.33, .0218} − {3.84, .0107}
Find N at γ = 1.0 64 {0.94, .0260} − {1.06, .0246}
Find N at γ = .67 74 {0.65, .0304} − {0.68, .0299}

{.01, .20} Find min(N) 28 {2.16, .0028} − {3.59, .0019}
Find N at γ = 1.5 32 {1.31, .0039} − {1.87, .0031}
Find N at γ = 1.0 36 {0.99, .0046} − {1.11, .0043}
Find N at γ = .67 45 {0.66, .0056}

They fix γ at the design stage (on what basis?) and find corresponding N .

Algorithm results show:

• More than one value of γ yields the same N .

• Instead of pre-specifying γ, the values of γ associated with the smallest N can be found.

They also fix πN (on what basis?).
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Figure 1. At {α, 1− β} = {.05, .90} and δ0 = .20, N × log γ relationships when πN = .10

(green), .05 (red), and .01 (black). Vertical bars mark allocation ratios γ = 0.67, 1.0, and 1.5.

• Instead of pre-specifying γ, the values associated with the smallest N can be found.

• More than one value of γ yields the same N . We can choose among these without penalty.

• We can understand trade-off between non-optimal γ and N (e.g., choose balanced design).
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Figure 2. At {α, 1−β} = {.025, .80},N×log γ relationships for designs {πN , δ} = {.20, .06}
when the noninferiority margin is parameterized on the log-odds scale, θ = logψ (left), and on

the risk-difference scale, θ = δ (right). Vertical bars mark the corresponding minimum Ns.

θ = logψ θ = δ

N {γ, ~πC}∗ {πN , δ(~πC)} N {γ, ~πC}∗ {πN , ψ(~πC)}
{πC = .20, ψ = 1.405}:
− Midpoint Approach 1, 538 (.874, .202) {.230, .0604} 1, 541 (1.13, .201) .{230, 1.404}
− Tailored Approach 1, 548 (.881, .200) {.228, .0600} 1, 536 (1.14, .200) .{229, 1.406}

{πN = .20, ψ = 1.456}: 1, 399 (.844, .172) {.200, .0603} 1, 393 (1.17, .171) {.200, 1.456}

• Improperly specifying πN ≡ πC substantially underestimates the sample size.

• When allocation ratios for θ = δ are above 1.0, those for θ = logψ are below 1.0.

• Approach to specifying πN affects N and should be reported in Methods.
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Table 2. For {α, 1− β} = {.025, .80}, (a) provides Nδ (upper) and (γδ; ~πC) (lower),

and (b) provides ψ(~πC) (upper) and ‘power of the analysis based on logψ, given a design

based on δ’; E[yC ] (lower).

πN δ

(a) .01 .05 .10 .20

.01 3,266 217 80 29

(1.95; .0058) (3.52; .0025) (3.99; .0020) (3.50; .0020)

.05 14,936 619 170 51

(1.16; .0451) (1.83; .0292) (2.66; .0184) (3.08; .0126)

.10 28,264 1,136 288 75

(1.05; .0951) (1.35; .0768) (1.74; .0582) (2.50; .0355)

.20 50,232 2,007 500 123

(1.04; .1950) (1.10; .1762) (1.28; .1532) (1.67; .1125)

(b) .01 .05 .10 .20

.01 2.752 22.11 56.68 129.5

(.672; 6) (.056; 0) (.007; 0) (.002; 0)

.05 1.237 2.860 7.148 21.08

(.795; 312) (.683; 6) (.382; 1) (.093; 0)

.10 1.118 1.746 3.041 8.369

(.799; 1,311) (.774; 37) (.691; 6) (.384; 1)

.20 1.064 1.367 1.874 3.586

(.800; 4,806) (.795; 169) (.778; 34) (.699; 5)14



Table 3. For the πN × ψ combinations of Table 1(b), (a) provides Nψ (upper)

and (γψ; ~πC) (lower) and (b) provides δ(~πC) (upper) and ‘power of the analysis

based on θ = δ, given a design based on θ = logψ’; E[yC ] (lower).

πN δ

(a) .01 .05 .10 .20

.01 3,265 600 − −
(.50; .0064) (.27; .0019)

.05 14,909 632 206 115

(.88; .0453) (.53; .0315) (.30; .0226) (.25; .0118)

.10 28,283 1,141 299 94

(.92; .0952) (.74; .0784) (.54; .0627) (.33; .0429)

.20 50,229 2,019 506 129

(.96; .1951) (.87; .1767) (.77; .1559) (.59; .1217)

(b) .01 .05 .10 .20

.01 .0109 .0385 .0426 .0371

(.752; 14) (.653; 1) (.808; 0) (.973; 0)

.05 .0100 .0536 .1195 .1893

(.798; 359) (.761; 13) (.683; 4) (.687; 1)

.10 .0100 .0509 .1063 .2299

(.800; 1,401) (.792; 51) (.771; 12) (.727; 3)

.20 .0100 .0501 .1012 .2102

(.800; 5,000) (.799; 191) (.797; 45) (.792; 10)15



Summary of designs for noninferiority trials with πE = πC under HA

Q: What are the fixed design parameters that must be specified?

• The contrast parameter under H0 (i.e., the noninferiority margin).

• The common response rate, πN .

Q: What are their values?

• The contrast parameter: should reflect subject matter knowledge and not be too large (can

check on another scale, e.g., δ vs. ψ).

– ensure that πE still reflects efficacy (with respect to πP )!!

– avoid πC too close to boundary

• The common response rate: If unknown then a suitable value can be found starting from

the control-group response rate, πC :

– Can be found via different approaches; the Tailored Approach is recommended.

– The approach used affects N and should be reported.

• For response reflecting negative outcome, δ ≤ πN seems to be a helpful rule of thumb.
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Q: What is the optimal value of the allocation ratio – i.e., the value that minimizes N?

• As πN → 0.5, γ → 1.0.

• As πN → 0 (or 1) and/or δ0 (or ψ0) increases,

– γδ increases

– γψ decreases

Extreme values of γ have very low power because E[yC ]→ 0 (or 1).

• The overall sample size, N , can be substantially smaller at the optimal value of γ than at

an arbitrary value.

• The optimal γ and corresponding N must be found iteratively via an algorithm:

http://www.epibiostat.ucsf.edu/biostat/joan/
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