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Outline

e Motivation: earlier study, model-based optimal population designs
e Parametric (model-based) vs empirical (nonparametric) approaches
e Types of population PK measures (metrics)

e Splitting sampling grids

e Cost-based designs

Details: Fedorov, Leonov (2007, J. Biopharm. Stat.)




Earlier StUd}(Z Gagnon, Leonov (2005)

Loading dose 0,45, repeated 0.10 mg'kg, svery 24 hours
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Sampling times from the study = 16 points:
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‘Better” sampling scheme < better precision of parameter estimates




Information matrix, alternative normalizations

(1(x, 1) - information matrix for observations Y at sequence x,

x = (t1.to, ..., 11) - sampling times, Y = [y(t1),....y(ts)]"
If n; patients on sequence x;, > .n; =N = My(9) =), n; p(x;,9).

1. Standard normalization: N - available resource, & - normalized design:

(design region)

D-criterion:  |[M™Y(¢, 9)| — méin, x; €KX

Key: derive yi(x, 49) for population compartmental models - PODE 2006-08




Information matrix, cost-based designs

2. Measurements at X; associated with cost ¢(X;)  [c(xi) = ¢ + ke

n
n;

Y nielxi) < ¢ =Mc(9) = - xi,0) =Y i pu(x;.0).

i — 1

Information matrix normalized by total cost C,

pi = nic(xi)/C; p(xi,9) = p(x3,9)/c(xi) = same framework,

standard numerical algorithms

Costs in design problems:  Elfving (1952), Cook, Fedorov (1995, general setting),
Mentre, Mallet, Baccar (1997), Fedorov, Gagnon, Leonov (2002)




Sampling schemes, earlier results

e Constructed locally D-optimal designs
e No costs: the more samples, the better

- number of samples may be reduced without significant loss of precision
e Costs introduced (cnst of analyzing sample ¢, / cost of enrolling patient cp):

- sequences with smaller number of samples may become optimal

- optimal: combination of sequences (different schemes for different cohorts )

e Software developed: (1) Matlab (PkStaMp); (2) SAS




Practical issues

e Often interested in PK measures, not parameters:

- Area under the curve (AUC)

- Maximal concentration (Cnq.)
- Time to maximal concentration (7}.0x)

Optimal design for PK measures:  Atkinson et al. (1993)

e Regulatory agencies require non-compartmental analysis

|

We compare two approaches:

- parametric (model-based, compartmental) as a benchmark

- nonparametric (non-compartmental, empirical)




General model

yii = f(z54,0;) + €5, i=1,...,k;, j=1,...,N,
;0 1-th sampling time for patient j, xj; € [a, 0],
1;;: measurement at time 2 for patient j;
f(x,0): response function which depends on time 2 and parameters 8,
6 ;: parameters of patient j, 8; ~ N(8".U) (population distribution)
N': no. of enrolled patients;  A;: no. of sampling times for patient j,

;i measurement errors ~ N(0, 7).

Simplest case: same sampling times for all patients: x;; = ;. n; = 2n.




One-compartment model  (simulations)

K,
f(TjQ) - V(Ka o K@E)

(E_ et — E_Kax) ! 0 = (Ka: KEE: V)T:

In(F,/Ka) 1 (K) Kl (oK)

1 Cmu.:..' = T
K,— K, K

1
AUC = / f(-‘f, en}dl’a Tmam =
o Vv

Mean vector 9[' = {4.—6:, 6, 01) {(mimics data from an earlier clinical study)

Variance parameters: o = 0.5, U = Var(8) = diag(s?) with s = 0.3 6,.




D-optimal designs: from earlier study to current problem

Gagnon, Leonov (2005), candidate sequences: all possible k-point sequences
from the set of 16 study sampling times X = {x1,x9,..., 216}
New example: use S-order splits of X, N = nj + n9 + ng

e 1y patients on xy: use all n sampling times

® N9 patients on Xo: times Xo; = {@y, x3, x5, ...} for ny/2 patients,

X99 = {x9, x4, g, ...} for remaining " half”

e 13 patients on x3: times x31 = {1, x4, 27, ...}, first ng/3 patients,
X390 = {9, T, T3, ...}, second subgroup (n3/3)

X33 = {r3, T, Ty, ...}, third subgroup etc.

Information matrix for S-order split: p(xs,8) = S.7_ pi(xsp, 8)/S




Cost function ¢(x5) = ¢, +cn/S ., ¢, =5

Response fix6)

D-optimal cost-based designs, one-compartment model

Mean response and candidate sampling times

Optimal designs
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Today: population measures, MSE as criterion, nonparametric approach
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Potential approaches

Model-based Empirical

Info used: specific f(x, @) and y; Info used: measurements y;; only

(0) Estimate individual HJ
| | (a) Compute individual PK estimates: | (a) Use sample estimates:

A’FITCj = fi flz, {jj)d:-: , A?Cj - numerical integration,
Cmaﬂ:,j — 1aXy f(I: gj)ﬂ:- Cma:{.‘J o ax; Yo Yjis o,
Tinarj = arg max, f(z,0;) Tinaz,j = s
(b) Then average across population: | (b) Do averaging:
AUC; = L37 AUC; etc. < exactly the same

(0) Estimate individual HJ

II'| (a) Average parameter values: (a) Get “population” curve
- - - N .
GZEJHJ/N! f‘lzﬁzjzl ’ng,'l-:[}?,ﬁ
(b) Then get population measures: (b) Get empirical estimates

for “population curve” {fi}
AUCY;, Ti5, Cn

AUC = [ f(z,0) dz, Cyy, T




L
Averaging methods, population PK measures

Methaod 1: start with individual functionals. Method 2: first average responses
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Model-based (compartmental) approach
All methods start with individual parameter estimates 8; (MLE, nonlinear LS)

Type |, Method M1: averaging measures

e Estimate individual measures:

2
AUC; = / f(x?éj)dm? Craz,; = max f(z, Ejj),, Tnarj = argmax f(z, HJ)

e Individual measures are averaged across population:

N
e i 1 . .
AUCy = E w; AUC,, w; = v same for Traearn and Cra .

=1

e Metrics of interest:

AUC, = E, [f;f(s-:,, Q)d:c} T, = Eylarg max, f(z,0)], C;, = Ey [max, f(z,0)].
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Model-based (compartmental) approach (cont)

Type ll, Method M2: averaging responses

e Get “average” PK curve, fN(:c) = Zj f(ﬂ:}éj)/N,

e Estimate PK measures for the “average” curve:
b
AUC)y2 = / fx(x)dz, Ty = argmax fy(z), Cyp = max fy(z),

e Metrics of interest:

b
AUC, = / flz)dz, T = arg mIm(fT(I),, 'y = max f(z), with f(z) = Ey [f(z,8)]

Note that AUC y;; = AUC 0. AUC, = AUC,, but

5M1 + éME} fMl = fMﬂ




Model-based (compartmental) approach (cont)

Type lll, Method M3: averaging parameters

e Get average parameter values, [ Zj aj/N,

e Get PK measures for @:

b
AUC 3 = f flz,8) dr, Tyz = argmax f(z,0), Cys = max f(r,8),

e Metrics of interest:

b
AUCy = / flx, E@)dx, Ty = argmax f(x, E@), C5 = max f(r, F0).




Empirical (non-compartmental) approach

Type |, Method E1: averaging measures

. ——

e For each patient, get empirical Tmm?j, Chazy and AUC; (numerical

integration),

AH{}HC; — Z/ glxz,a;)dr (g — interpolant passing through y;,; 1 and ;)

e Average individual measures as for M1:

. 1 . ~
AUCEIZEZAUQ,-, same for Thar g1 and Couar k1.
j=1

o Metrics: AUCY, Ty, C (for dense grids {z;} and large \)

e Sparse sampling: problems with method E1




Empirical (non-compartmental) approach (cont)

Type Il, Method E2:  averaging responses

e Get average curve

N
f?: Z Ji? - R

e Get empirical estimates TEE} ag;g for “population curve” {fﬁ}

use numerical integration to estimate AU

AUCEQ Z / :I.‘ 5:11 dit.‘ g — interpolant passing through f;_l and ﬁ)

i=1 i1

e Metrics: AUCy, 15, Cy

e Sparse sampling: E2 - method of choice (data combined in the "population curve” )




Parametric Nonparametric
approach approach

| l

. A Backeronnd model
n 0= e 0), 0~ N9, 1)

—— unknown f(x,8)

|’ Il
Error _® ® Error
£ E
s |’
{yii} {yii}
U Il
~ Estimates ~ Estimates
fN(‘T): ‘TE[G:E}] Ji, i=0,1,...,n
|’ U
ATCps = [P fw(z)dz AUCgas = % w@fiv — TiwFy|f(z:,0)]
— G
! |
converges as N — o converges as max; Aa; — 0

\ /
AUCy = [P Eg [f(x, 0)dz]




Numerical integration

ﬁl—l + fhz‘j A

Ty = Ti—Tj
2

(1) Trapezoidal rule: I; = f glx, a;)de = Ax;
Ti—1

(2) Log-trapezoidal rule: I; = Ax; fi _ fi—l
log( fi/ fi-1)

(exact for exponential)

(3) Hybrid method: use (1) before T}, and (2) - after T}qz (descending portion)

(4) Cubic splines: piecewise cubic polynomial (join in the knots {x;}, obeying

continuity conditions for f and its first two derivatives)




Comparison of population PK measures
AUC, = 1.836, T, =0.0546, Cy=T7.342.
AUC, = AUC,, Ty =0.0521, Cy=T7.210.
AUCs = 1.662, Ty =0.0509, Cj=T.367.

LF fix &%) i
— — — EJfix,8)], Cv=15%

_____ E[ftx, 6], CV=30%
E,[ftx,6)], Cy=50% |

Population curves

Type Hl curve f(z,0") and Type Il curves f(z) = Eq |flz,0)]




Sampling schemes

PK studies: dense sampling at the left end (after administering the drug), then more

sparse sampling (after "anticipated’ T,...)

Alternative schemes

e Take a uniform grid on the Y-axis with respect to values of response and

project points on the response curve to the X-axis

e Take a uniform grid on the Y-axis with respect to values of AUC

Lopez-Fidalgo and Wong (2002). “inverse linear” designs

Simulations: 16 sampling times, N'=20 (patients)




Sampling schemes

Uniform grid wrt response Uniform grid wrt AUC
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Uniform grid with respect to values of response (left panel) and AUC(right panel).
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Splitting sampling grids

o Let {;, 1=1,...,2n} be asingle grid with 2n sampling points,
e Take samples at {xg;_1, 1 =1,...,n} for N/2 subjects
e Take samples at {x9;, i = 1,...,n} for the rest half

e Empirical estimate of AUC', method E2: average responses in two series

(half-cohorts) separately, then combine two series and get AUC'ps.

Total number of samples is reduced by half




Type Il measures: AU, = 1.833
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Right pspel - split grid

Single grid
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Type Il T,,,. measure: T5=0.0521

Single grid T (2], model: bias 0.0005, std 00028 sqrtiMSE| 0.00297 Spltgrid T__ (2), model: bias 0.0009, std 0.0030 Gqrt{MSE) 0.0031
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Type Il (', measure: (%=7.210

Single gridCMtE]. model: bias 0.017, std D.51 Splitgrid GM(E], model; bias -0.004, std 0.511,
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AUCgy : closed-form solution, MSE

e Response: 2nd-order polynomial, f(z,0) =6y + 1o + Oo22,

e Population variability: intercept only, Var(6y;) = 57,

Single grid: Bias Vm‘

f” 1
MSE; =
1) ! ] * ZNH \
Split grid: Bias 1::::?“

MSE = [f”( #.6) 1] .

No costs: - single grid (2n samples/patient) will always be “better”

- how much “better”: depends on values of ", o and s*




Cost-based optimization

e ¢, - cost of analyzing a sample, ¢, - cost of patient enrollment,
o (5101 - budget (resource)
e Overall cost, single grid: 2n N ¢, + Ne¢, < Cipa,  (C1)

e Overall cost, split grid: nNc + Ney < Crora. (C2)

Thus, values of n and N are not independent! Given (1.,

e for a given NV, find maximal n = n(N, Cyq) satisfying (C1) or (C2),

e fix 1, then find maximal N = N(n, Ciyq) satisfying (C1) or (C2)




MSE as a function of /N (left) and n (right), fixed C} ;0

MSE vs patients MSE vs no. of samples
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Parameters: ¢, — 100, ¢, — 500, Cyp — 50000, s — 2.4, o — 9, f"— 100
Cp

e Single grid: N = 34, nig = 5, MSE == 00425 (2n,,=10 samples/subject)

o Split grid: N = 37, Rgy = 8, MSE,,; = 0.415




Concluding remarks

e When the model is correctly specified, the model-based approach out-

performs the nonparametric one in terms of precision of PK measures’

estimation (often not by much).

e Split grids: little effect on the precision of estimation, negligible effect

on the bias and terms associated with population variability.

e If costs of analyzing samples and costs of patient’s enrollment are taken

into account, then sampling schemes with split grids may become optimal
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