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Two mixing models

Y Is the binary response and

| stands treatment (dose), i — experimental unit (patient, center).

Two types of “mixing”

Type A ij =1 («’ij'}/f)ﬁ Yi ™~ (;)(-}/\9)

Type B TUij ~ W(n7}/(x]a9))




Type A: G-probit model

n (x; r"}/j)
mi=nr)= [ wlulade, v~ (1)

Probabilities 7;; are dependent for different j-s

Likelihood function:

L(O]Y) HEH F(1 = )" 6],

< | Easy to write difficult to compute!

= | Problem with building information matrix.




Type B. Beta-binomial model

Tj~ Bem(a,_b)

a;j=exp (0] fu(x;;)].  bij=exp[0} fi(xij)]

Marginal distribution of Y;;.

ni;\ B(y+aij,nij—y+bij
wyinij,a,b) = ( ’f) (Y +aij,nij —y +bij)

y B(a,b)

N K Y -+ — ) b

i=1j=1

¢ | Easy to compute MLE and information* matrices
ElYii] = “”aih = njjp
arly ab(a+b+n;;) = | No dependence between results on different doses
iz ] = ’”(a+b) @b+ 1) 5
=nijp(1=p){1+ 1 r(”'f‘ D} *Sudhir R.,etc. Biometrical Journal 47 (2005) 2, 230-236




Quasi-linear or moment based methods |

Very modest assumptions:

E[S’T,] =P and Vﬂl‘[ﬂ:;] =V

. . - Y
Estimators for elemental parameters: fii=Y;=-L
s

Their variance*: Var[;] =V, =M;'+V

i

Ja B ’ K
i = {7 and M; v =0;
! : UJl’l L) JJ Pj(l _ P\;’) _ V_jj

We are interested in estimation of p and V.

©]  Simple computing, easy to introduce correlation between results at different doses

= Potential loss of information

*Dragalin V., Fedorov V., Statist. Med. 2006; 25, 2701-2719



Quasi-linear or moment based methods Il

Previous formulae are based on the formula for marginal variance:

Var|m;| = E |Var |7; | ;|| 4+ Var |[E |7 | m;]]

Note.
For any continuous p.d.f. f(p) with the support set [0,1], mean u, and

variance q,’f, we have oﬁ < up(1—pu,). with equality only for the atomized
distribution at points 0 and 1 with weights 1 —u, and p,, respectively.
Hence, p;(1—p;)—=V;;>0.



lterated quasi-linear estimator |

Mimicking the best linear estimator leads to:

N 1y
pP= (Z Ws) ) Wi,

i=1 i=1

where W; = V;l , when M. is regular and W; = M; — M; (M, + V‘l)_lM,»

otherwise.
N —1 N 1
Var [p] = (wa) - (Z Vi ‘)
i=1 i=1

Problem: p and V are unknown ®




Iterated quasi-linear estimator |l

N N

»«(r+1) ZW(?‘ ZW 7

=1 =1

Where:

py (1 P )_“|| O
(M(r))—l niy

: = (l p ) ‘»

f O npo
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Motivation for the estimator selection

The iterative estimator for V is motivated by the fact that

(Y Y=t N o
‘ Tij ) = Eﬁj?‘
H;}; H;J;— ] '

Y Yiy.
E —— | W, Ty | = T,

;1 N

while

E(?T;J;?T;f) — V},'J;f -+ [)J;pjfﬁ
9 5,

10



Locally optimal designs

—1
}?\.T
Optimality criterion: Var[me — T Z V;l 14

=1

Two controls:
1. number of patients in each center

2. distribution of patients between treatments

—1 —1
N N
1
ar[fTH] = 7 —1 ) . —1 —1 ) — —1 /
Var[(Tp] = (T (214 ) a (Z(M +V) ) (= T(M™ V)

Thus optimal design should be balanced across all centers, i.e. n;; = n; and
straightforward optimization leads to

ij=nj~ \/G pi(L=pj)—=Vjjl 11




How to select population means and variances |

Response models with random parameters

Link function > A1) = vi t(x)) + &

Vi~ A (V.E), &~ A(0.67)

Population means:  p;~ A"~ -}/Tf(xj) — El('}’Tf(.xj))Vf.f

Var-Cov matrix of p : 'V = Var(r) ~ A (FTX F + o21) Al

Where: F={fx;)}f. A={diagA(y/f(x)))}



How to select population means and variances ||

Derivations are based on Taylor’'s expansion:

A(mij) =y f(xj) + €~ A(pj) + A(pj)(mj;—p)) + 51 (pj)(mij—p;)*

) iu

T - P —2S() —
Forlogitlink:  A(p)=Ing—=u. plu)=2"(u) =

e

Response described by autoregression model:

Amij) = [Yi(x; —x; )| A (T 1) +&;j
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