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Introduction
Clinical Trials

I Clinical trials are experiments on humans (or living
animals) to explore a proposed treatment for a disease and
to obtain a licence for the commercial use of the treatment
on non-experimental patients.

I Phases of Clinical Trials:
I Phase I - first in human, small studies to understand PK

parameters and to find a dose for further exploration in
Phase II.

I Phase II - larger studies on patients to examine the
evidence of a drug effect, compared to placebo.

I Phase III - very large studies on patients to further refine
the dose selection.

I Phase IV - postmarketing clinical development.



Introduction
Adaptive Designs

“The goal of adaptive designs is to learn from the accumulating
data and to apply what is learnt as quickly as possible.

In such trials changes are made “by design” and not on an ad
hoc basis;

therefore adaptation is a design feature aimed to enhance the
trial, not as a remedy for inadequate planning”.
Gallo et al. (2006)

Main features of adaptive designs:
I The information is gathered sequentially.
I After each step of the trial the statistical model is updated.
I Next step of the trial depends on all the results up to date.
I The trial is stopped when the goal of the experiment is

achieved (or the resources run out).



Introduction
Phase I Study

I To establish PK parameters.
I To find a safe dose for further studies.
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Introduction
Phase I Study

I It is usually assumed that both efficacy and toxicity
increase with dose.

I Then the Maximum Tolerated Dose is used for further
studies in Phase II.

I Some Medicinal Products do not follow this pattern. For
example, when the new treatment stimulates the immune
system:

I large dose may decrease efficacy,
I dose-efficacy relationship may be unimodal.



Dose-Response Model

After Zhang et al. (2006) we consider three possible responses
to a given dose:

y0 - no efficacy and no severe toxicity (“neutral”),
y1 - efficacy and no severe toxicity (“success”),
y2 - severe toxicity (“disaster”).

We assign probabilities ψi(x, ϑ1) to each of the responses, at a
given dose x, such that
ψ0(x, ϑ1) - decreases with dose,
ψ1(x, ϑ1) - decreases or is unimodal or increases with dose,
ψ2(x, ϑ1) - increases with dose and

ψ0(x, ϑ1) + ψ1(x, ϑ1) + ψ2(x, ϑ1) = 1



Dose-Response Model

The Continuation Ratio (CR) model assures such behaviour of
the probabilities (Fan and Chaloner (2004))

log
{
ψ1(x;ϑ1)

ψ0(x;ϑ1)

}
= α1 + β1x

log
{

ψ2(x;ϑ1)

1− ψ2(x;ϑ1)

}
= α2 + β2x

where ϑ1 = (α1, β1, α2, β2) is a set of unknown parameters to be
estimated.



Dose-Response Model
Solving these two equations we obtain three nonlinear
functions:

ψ2(x;ϑ1) =
exp(α2 + β2x)

1 + exp(α2 + β2x)

ψ1(x;ϑ1) =
exp(α1 + β1x)

[1 + exp(α1 + β1x)][1 + exp(α2 + β2x)]

ψ0(x;ϑ1) =
1

[1 + exp(α1 + β1x)][1 + exp(α2 + β2x)]
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Dose-Response Model

The approach we take here is more relevant when patients
rather than healthy volunteers take part in the experiment.

Questions:
I What dose should be recommended for further studies?
I What strategy to take to apply efficacious doses as often

as possible and get good estimates of the dose-response
model parameters?

I How to incorporate the PK information obtained in the
study?



PK Model
Two compartments PK mechanistic model:

d[B]
dt = ka[A]λ1 − ke[B]λ2

d[A]
dt = −ka[A]λ1 + g(t|x)

with the initial concentrations [A] = 0 and [B] = 0.

ϑ2 = (ka, ke) is a vector of unknown rate of absorption and rate
of elimination, respectively.

(λ1, λ2) are known orders of the kinetic reaction.

Time t is scaled in hours and g(t|x) is the drug infusion rate:

g(t|x) =

{
cx t ≤ 1
0 t > 1

where c is some constant and x is a dose.

We are interested in precise estimation of ϑ2.



PK Model

Question: What dose to apply and when to measure the
concentration to optimally estimate the PK parameters?
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Optimality Criteria
Biologically Optimum Dose

Zhang et al. (2006) propose the following decision functions for
finding a BOD:

δ1(x;ϑ1) = I[ψ2(x;ϑ1)<π0],

δ2(x;ϑ1) = ψ1(x;ϑ1)− λψ2(x;ϑ1),

where I denotes an indicator function and λ ∈ [0, 1].

δ1(x;ϑ1) = 1 means that the toxicity at dose x is smaller than a
pre-specified value π0.

x? = arg max
C(x)

δ2(x;ϑ1), C(x) = {x : δ1(x;ϑ1) = 1}

is the recommended BOD for next step of the trial.



Optimality Criteria
Biologically Optimum Dose

An example of a possible Adaptive Design:
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Optimality Criteria
Biologically Optimum Dose

At step k of the Adaptive Design:
I dose x?k−1 is applied to cohort k,
I responses are observed,
I parameters of the dose-response model estimated

(Bayesian),
I x?k is calculated,
I stopping rule is checked.

Stopping rules:
I the last cohort of patients is treated, i.e., n = nmax,
I the same x? has been determined minimum m times,



Optimality Criteria
Biologically Optimum Dose

Some technicalities:
I the possible doses were x = 0.6 + 0.05i, i = 0, 1, . . . , 16,
I cohort size was q = 3 and maximum number of cohorts

was nmax = 50,
I the highest tolerable toxicity probability π0 was assumed to

be 0.33 and λ = 0,
I it was allowed to skip only one dose during the escalation,

no restrictions on de-escalations.
I uniform prior distributions for (α1, β1, α2, β1) were taken

over [−3, 3], [0, 4], [−13,−7], [3, 9], respectively.



Optimality Criteria
Efficiency of PK Estimation

We use the D-optimality criterion for estimating PK parameters
ϑ2 = (ka, ke):

Φ{M(ξ)} = det M(ξ)

where M(ξ) is the information matrix for θ2

and efficiency of the estimation at a given dose x0 is defined as:

ED(ξ?(t|x0)) =

{
det M(ξ?(t|x0))

maxx det M(ξ?(t|x))

}1/p

p = 2, is the number of parameters.



Approach 1
BOD Constrained by Toxicity Level and by PK Efficiency

Maximize (over x)

δ2(x;ϑ1) = ψ1(x;ϑ1)− λψ2(x;ϑ1)

subject to
ψ2(x;ϑ1) < π0

and
ED[ξ?(t|x)] ≥ η



Approach 2
PK Efficiency Constrained by Toxicity and Dose Efficacy Levels

Maximize (over ξ)
ED[ξ(t|x?)]

subject to
ψ2(x?;ϑ1) < π0

and
δ2(x;ϑ1)

maxx δ2(x;ϑ1)
≥ %

where % is the efficacy coefficient.

Such a relative efficacy can be considered as an analogy to the
efficiency coefficient ED.



Examples
Approach 1: First Order Kinetics

Probabilities of the responses y0, y1, y2 and det M[ξ(t|x)] at step k of
the Adaptive Design for the parameter estimates ϑ̂1 and ϑ̂2 obtained
in step k − 1:
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Examples
Approach 1: First Order Kinetics

D-optimum design for estimation of the kinetic parameters
ϑ1 = (ka, ke) does not depend on the dose:
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Examples
Approach 1: First Order Kinetics

Examples of the trial runs for different levels of PK efficiency.

(a) ED ≤ 40% (b)ED ≥ 80% (c)ED ≥ 90%
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Dashed lines represent the adaptive bounds stemming from the
ED constraint.

The dot-dashed line represents the adaptive upper threshold
for non-admissible toxicity.



Examples
Approach 1: First Order Kinetics

(a) ED ≤ 40% (b) ED ≥ 80% (c) ED ≥ 90%
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Final estimates of PK parameters from 100 simulations

- red square represents the values assumed for the simulations

- green circle denotes the sample mean



Examples
Approach 1: First Order Kinetics

(a) ED ≤ 40% (d) ED ≥ 80% (e) ED ≥ 90%
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Dose frequencies averaged over total number of cohorts in 100
simulations.
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Examples
Approach 1: Second Order Kinetics

Probabilities of the responses y0, y1, y2 and det M[ξ(t|x)] at step k of
the Adaptive Design for the parameter estimates ϑ̂1 and ϑ̂2 obtained
in step k − 1:
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Non-monotonous D-criterion as a function of dose restricts the
optimum doses to be in the middle of the dose range.



Examples
Approach 1: Second Order Kinetics
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Examples
Approach 1: Second Order Kinetics

Examples of the trial runs for different levels of PK efficiency.

(a) ED ≤ 75% (b)ED ≥ 90% (c) ED ≥ 98%
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Dashed lines represent the adaptive bounds stemming from the
ED constraint.

The dot-dashed line represents the adaptive upper threshold
for non-admissible toxicity.



Examples
Approach 1: Second Order Kinetics

(a) ED ≤ 75% (b) ED ≥ 90% (c) ED ≥ 98%
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Final estimates of PK parameters from 100 simulations

- red square represents the values assumed for the simulations

- green circle denotes the sample mean



Examples
Approach 1: Second Order Kinetics

(a) ED ≤ 75% (b) ED ≥ 90% (c) ED ≥ 98%
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Dose frequencies averaged over total number of cohorts in 100
simulations.
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Proportions of the final BOD frequencies in the 100 simulations.



Conclusions I
Approach 1

I Incorporating the constraint on the efficiency of PK
estimation into the dose optimization may seriously affect
the dose selection design.

I Different orders of the kinetics will differently affect the
dose selection design.

I A reasonable ED constraint may give high quality estimates
of PK parameters as well as a good dose determined as
BOD.



Conclusions II
Approach 2

I Here we maximize the efficiency of PK estimation with the
constraint on the dose efficacy.

I The PK parameters are precisely estimated.
I The selected BODs are pooled towards the optimum

region for PK estimation condition.



Conclusions III

I Both Approaches, 1 and 2, are relevant when patients
rather than healthy volunteers enter the trial.

I Patients are treated with possibly efficacious doses.
I Some information on the response to BOD is already

gathered in Phase I (prior for Phase II).

Also:
I Approach 1:

I fewer potentially toxic doses or non-efficacious doses are
applied,

I ensures good efficiency of estimation of the PK parameters,
I may be considered as a seamless phase I/II, leading to

serious saving in resources, both financial and human.
I Approach 2:

I more relevant when toxicity is a minor issue, in case of first
order kinetics,

I PK parameters are very precisely estimated.



Conclusions IV

I Defining appropriate criteria of optimality, suitable for the
purpose of an experiment is paramount.

I Model-based simulation studies may be very useful for
making decision about the criteria and foreseeing possible
problems.

I Adding PK information, which is collected at Phase I
anyway, may improve the dose optimization and lead to
serious savings.



Further work

I to consider the kinetics order as unknown parameters,
I to include safety issues into stopping rules,
I to incorporate “safety” parameters into the optimization

(time of injection, time between cohorts, toxicity
probability).
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