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Background

Several software are available in the Population
Optimal Design area and they all have different
options for how to calculate the FIM and also
how to include residual variability in the model.

How can this effect the optimal design?
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 The Population Fisher Information Matrix (FIM) can be
very time consuming to optimize over => The reduced
FIM is quite often used, what consequences does that
have on the optimization?

* The residual variance of a model is often proportional +
additive (slope+const), how will different
implementations of the variance model affect the
optimal design?

 The FIM is often parameterized differently in terms of
SD or variances, consequences?!
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FIM™

Full vs. Reduced FIM - Example
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Different models investigated
with Full vs. Reduced FIM

» First order absorption model

« Bateman function

* Biorhythm model

» Derendorf surge model

« Enterohepatic recirculation model
* |V PK/Emax PD model

« Lag-time model

» Michalis-Menten elimination model
* Pool-tolerance model

* Transit compartment absorption model
* Viral load model
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HIV Viral load model
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Reduced FI
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UPPSALA HIV Viral load model

UNIVERSITET

Full FIM
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wwa  Derendorf surge model
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Typical value of Derendorf surge model
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Optimal sample times for Derendorf surge model with full (M
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Optimal sample times for Derendorf surge model with reduced IM
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Biorhythm & Transit compartment
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Biorhythm (3 cos rhythms) _
15 Transit compartment model

== Typical value 08y

14+

0.7} - Typical value

13+
0.6

12
0.5+

041

Effect

0.3r

Concentration

0.2

0.1

time time

kout-cos((t—peak)-%)+ agibs = ¢h ((n +l)-|\/|TT)—ka-Aabs

o lox (0 or o CL
kout + (perJ per ’Sln((t peak) perj % = ka : Aabs _7 Ahentral

11



UNIVERSITET

Full
OF(full FIN) of model Biological rythm
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« Singular FIM -> Hard/Impossible to optimize on!
« Similar for Transit compartment model
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Why singularity for reduced?

Biorhythm:

of (%, 0)
00

Rows of M, = are linearly dependent

Transit model:

ovec(Var(y,)) ovec(Var(y,))
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Similar optimal designs with reduced FIM

* First order absorption model

« Bateman function model

» Enterohepatic recirculation model
|V PK/Emax PD model

» Lag-time model

* Michaelis-Menten elimination model
» Pool-tolerance model
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wsus  Residual Variability models
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General model

y,=f(6.%)+h(6.%.&) &-~N(0Z) 7 ~N(0Q)

Additive + proportional residual variability model
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Additive + proportional residual variability model
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General Variance

General model -
g ~N

yi :f(é}ji)"'h(é’ii’gi)

General variance
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General Variance applied to
different residual models
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OFY{FIM) with (a2+b2*f2) parameterization of residual error

Sampling time 1 in group 1 Saripling tirme 2 in group 1

Optimal
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Different derivations of FIM,
w.r.t. variance vs. stdev
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Variance derivation

ovar(y)
ot HH s SEL=20SE,

Stdev derivation
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The difference in SE will reflect differences in |FIM| and vice versa
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Conclusions

* It is important to increase the understanding of potential differences
between software in OD.

* Different approximations and different residual models can clearly
affect the optimal design and in some cases lead to different results.

* When comparing the expected uncertainty of an estimator, the
residual variability model needs to be considered to get an accurate
comparison.

* Allowing for a general error function and linearizing around it is the
most flexible way to allow for all combinations of models and
correlations.
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Backup - Calculating FIM
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