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Background
Several software are available in the Population 
Optimal Design area and they all have different 
options for how to calculate the FIM and also 
how to include residual variability in the model.

How can this effect the optimal design?
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Introduction
• The Population Fisher Information Matrix (FIM) can be 

very time consuming to optimize over => The reduced 
FIM is quite often used, what consequences does that 
have on the optimization?

• The residual variance of a model is often proportional + 
additive (slope+const), how will different 
implementations of the variance model affect the 
optimal design?

• The FIM is often parameterized differently in terms of 
SD or variances, consequences?!
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Full vs. Reduced FIM - Example
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Different models investigated 
with Full vs. Reduced FIM

• First order absorption model
• Bateman function
• Biorhythm model
• Derendorf surge model
• Enterohepatic recirculation model
• IV PK/Emax PD model
• Lag-time model
• Michalis-Menten elimination model
• Pool-tolerance model
• Transit compartment absorption model
• Viral load model
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HIV Viral load model

Reduced FIM

= optimal value
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HIV Viral load model

= optimal value

Full FIM
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Derendorf surge model
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Derendorf surge model-OD
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Biorhythm & Transit compartment
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Biorhythm results

Full Reduced

• Singular FIM -> Hard/Impossible to optimize on!
• Similar for Transit compartment model
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Why singularity for reduced?

Biorhythm:

Rows of are linearly dependent

Transit model:

Rows of are linearly 
dependent
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Similar optimal designs with reduced FIM

• First order absorption model
• Bateman function model
• Enterohepatic recirculation model
• IV PK/Emax PD model
• Lag-time model
• Michaelis-Menten elimination model
• Pool-tolerance model
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Residual Variability models
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General Variance
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General Variance applied to 
different residual models
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Implications of residual models

Optimal
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Different derivations of FIM, 
w.r.t. variance vs. stdev
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Conclusions

• It is important to increase the understanding of potential differences 
between software in OD.

• Different approximations and different residual models can clearly 
affect the optimal design and in some cases lead to different results.

• When comparing the expected uncertainty of an estimator, the 
residual variability model needs to be considered to get an accurate 
comparison.

• Allowing for a general error function and linearizing around it is the 
most flexible way to allow for all combinations of models and 
correlations.
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Backup - Calculating FIM
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