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D - the most popular optimality criterion

The criterion, introduced by Wald (1943), is

ΦD = det(M−1).

Properties:
I it minimises the general variance of the parameter

estimator,
I it minimises the volume of the parameter confidence

ellipsoid,
I it is invariant under linear transformations of the

parameters,
I it is equivalent to G-optimality, what is given in so called

Equivalence Theorem,
I it has at most p(p + 1)/2 + 1 points of support

(Carathéodory’s Theorem)



D - the most popular optimality criterion
Geometrical Interpretation - volume of confidence ellipsoid

Estimator of θ = (θ1  θ2)

Confidence Intervals for θ1 and θ2

Confidence ellipse for θ = (θ1  θ2)

100(1− α)% confidence region of for parameter estimates is

(θ − θ̂)TM(θ − θ̂) ≤ ps2Fp,ν,α,

where s2 is an estimate of σ2, and Fp,ν,α is 100α% point of the F
distribution on p and ν degrees of freedom.

The volume of a p-dim. ellipsoid is proportional to
[

det M−1
]1/2.



D - the most popular optimality criterion
Geometrical Interpretation - design locus

Locally optimum designs for non-linear models with p
parameters usually have p support points. Then the weights are
all equal to 1/p.

Design locus is derived on the basis that the volume of a
simplex in Rp, formed by p points xi ∈ Rp and the origin, is
proportional to the determinant of the (p× p)-dimensional
matrix formed by these points.

So, to maximise det M, we find p points in the space of
derivatives, which together with the origin, form a simplex of
largest volume.



D - the most popular optimality criterion
Geometrical Interpretation - design locus: PK model, p = 2
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D - the most popular optimality criterion
Geometrical Interpretation - design locus: PK model, p = 2
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D - the most popular optimality criterion
Geometrical Interpretation - design locus: PK model, p = 2
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D - the most popular optimality criterion
Geometrical Interpretation - parameter sensitivities
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We find t1 and t2 such that det X = f1(t1)f2(t2)− f2(t1)f1(t2) is
maximum.



D - the most popular optimality criterion
The Equivalence Theorem

Kiefer and Wolfowitz (1960)
A design ξ∗ is D-optimum if and only if it is G-optimum, that is
the following conditions are equivalent:

det(M−1(ξ∗)) = min
ξ

det(M−1(ξ))

max
x

d(x, ξ∗) = min
ξ

max
x

d(x, ξ),

where d(x, ξ) = f T(x)M−1(ξ)f (x) is the variance of prediction at
a point x.The third equivalent condition says

max
x

d(x, ξ∗) ≤ p,

where p is the number of parameters.
Equality is achieved at the support points of ξ∗.



D - the most popular optimality criterion
The Equivalence Theorem, an Illustration

Let the model response be

η(x, ϑ) = ϑ0 + ϑ1x + ϑ2x2, on [−1, 1].

Then, the D-optimum design is

ξ? =

{
−1 0 1

1
3

1
3

1
3

}
The design does not depended on N, but instead on the
weights.

The information matrix can then be written as

M(ξ?, ϑo) = XTWX =

 1 1 1
−1 0 1
1 0 1

×
 1

3 0 0
0 1

3 0
0 0 1

3

×
 1 −1 1

1 0 0
1 1 1





D - the most popular optimality criterion
The Equivalence Theorem, an Illustration

Hence,

M =
1
3

 3 0 2
0 2 0
2 0 2


and the variance function is

d(x, ξ?) = f T(x)M−1f (x)

= 3(1, x, x2)×

 1 0 −1
0 0.5 0
−1 0 1.5

×
 1

x
x2


= 3− 4.5x2 + 4.5x4.

Note, that d(x, ξ?) = 3 at x = −1, 0, 1



D - the most popular optimality criterion
The Equivalence Theorem, an Illustration

ξ? =

{
−1 0 1

1
3

1
3

1
3

}



D - the most popular optimality criterion
The Equivalence Theorem - PK model

ξ? =

{
1.23 6.86

1
2

1
2

}

0 5 10 15 20 t
0.0

0.5

1.0

1.5

2.0

d

t1 t2



Example 4
Enzyme Kinetics Model, p = 2,

In a typical enzyme kinetics reaction enzymes bind substrates
and turn them into products. The binding step is reversible
while the catalytic step irreversible:

S + E ←→ ES→ E + P,

S, E and P denote substrate, enzyme and product, respectively.



Example 4
Enzyme Kinetics Model, p = 2,

The reaction rate is represented by the Michaelis-Menten
model

v =
Vmax[S]

Km + [S]
,

where [S] is the concentration of the substrate and Vmax and Km

are the model parameters:
I Vmax denotes the maximum velocity of the enzyme and
I Km is Michaelis-Menten constant, it is the value of [S] at

which half of the maximum velocity Vmax is reached.



Example 4
Enzyme Kinetics Model, p = 2,

η([S],V max,Km)

[S]

Vmax

Vmax/2

Km

Michaelis-Menten Model. The response function:
η
(
[S]; Vmax,Km

)
for the point priors Vo

max = 1,Ko
m = 1.



D optimality
Enzyme Kinetics Model, p = 2, Parameter Sensitivities

f1
f2

Parmeter
Sensitivities

[S][S]1 [S]2

f1 does not have a proper maximum; the largest value is at the
border of the design region.



D optimality
Enzyme Kinetics Model, p = 2, Design Locus
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D optimality
Enzyme Kinetics Model, p = 2, Design Locus
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Design Locus: one vertex must be at the end of the locus.



D optimality
Enzyme Kinetics Model, p = 2, Design Locus
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D optimality
Enzyme Kinetics Model, p = 2, Design Locus
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D optimality
Enzyme Kinetics Model, p = 2, The Equivalence Theorem

The variance function has only one proper maximum; it also
reaches p = 2 at the border of the design region.



D optimality
Enzyme Kinetics Model, p = 2, COURSE-WORK 1

Obtain a locally D-optimum design points for the
Michaelis-Menten model for the point prior values of the
parameters equal to Vo

max = 1,Ko
m = 1.



Example 5. Two Consecutive Chemical Reactions
Model.

Atkinson and Bogacka (2002), Chemometrics

A
k1→ B

k2→ C.

The kinetic differential equations for [A], [B] and [C], the
concentrations of the chemical compounds A,B and C as
functions of time t are

d[A]

dt
= −k1[A]λ1

d[B]

dt
= k1[A]λ1 − k2[B]λ2

d[C]

dt
= k2[B]λ2 . (1)

Interest is in estimation of the orders λ1, λ2 as well as of the
rates k1, k2.



Example 5. Two Consecutive Chemical Reactions
Model

The first of the three equations can be solved analytically to
give the concentration of chemical A at time t as

[A] = {1− (1− λ1)k1t}1/(1−λ1) (λ1, k1, t ≥ 0;λ1 6= 1),

if it is assumed that the initial concentration of A is 1.

This gives the following differential equation for the
concentration of the compound B

d[B]

dt
= k1{1− (1− λ1)k1t}

λ1
1−λ1 − k2[B]λ2

which has to be solved numerically.



Example 5. Two Consecutive Chemical Reactions
Model
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Example 5. Two Consecutive Chemical Reactions
Model derivatives with respect to the parameters
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Derivatives (parameter sensitivities) as a function of time.
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Example 5. Two Consecutive Chemical Reactions
D-optimum designs

These designs were found by searching over the four
continuous values of time, but with the weights held known at
0.25. The design region is T = [0,50].

Prior orders of reaction time
(ko

1, k
o
2, λ

o
1, λ

o
2) t∗1 t∗2 t∗3 t∗4

(0.7, 0.2, 1,1) 0.80 2.85 7.05 15.90
(0.7, 0.2, 2,1) 0.51 2.36 7.30 18.26
(0.7, 0.2, 1,2) 0.83 2.91 8.05 40.39
(0.7, 0.2, 2,2) 0.57 2.65 9.68 50.00

Table 1. D-optimum designs for both rate and order. The
weights are 0.25 at each design point.



Example 5. Two Consecutive Chemical Reactions
D-optimum designs
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Example 5. Two Consecutive Chemical Reactions
D-optimum designs
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A -> B -> C: lambda = (2,2)

• • • •

Responses for various priors and the variance of prediction
d(t, ξ∗, ϑ) for prior (ko

1, k
o
2, λ

o
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o
2) = (0.7, 0.2, 2, 2).
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