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D - the most popular optimality criterion

The criterion, introduced by Wald (1943), is

®p = det(M™1).

Properties:

>

it minimises the general variance of the parameter
estimator,

it minimises the volume of the parameter confidence
ellipsoid,

it is invariant under linear transformations of the
parameters,

it is equivalent to G-optimality, what is given in so called
Equivalence Theorem,

it has at most p(p + 1)/2 + 1 points of support
(Carathéodory’s Theorem)



D - the most popular optimality criterion

Geometrical Interpretation - volume of confidence ellipsoid
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Confidence ellipse for 8 = (8, 8,)

100(1 — «)% confidence region of for parameter estimates is
(6 —0)"™M(8 - 0) < ps*Fp 0,

where s? is an estimate of 0%, and F,, , ,, is 100a% point of the F

distribution on p and v degrees of freedom.
The volume of a p-dim. ellipsoid is proportional to [detM ] 12,



D - the most popular optimality criterion

Geometrical Interpretation - design locus

Locally optimum designs for non-linear models with p
parameters usually have p support points. Then the weights are
all equal to 1/p.

Design locus is derived on the basis that the volume of a
simplex in R?, formed by p points x; € R? and the origin, is
proportional to the determinant of the (p x p)-dimensional
matrix formed by these points.

So, to maximise det M, we find p points in the space of
derivatives, which together with the origin, form a simplex of
largest volume.



D - the most popular optimality criterion

Geometrical Interpretation - design locus: PK model, p = 2
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D - the most popular optimality criterion

Geometrical Interpretation - design locus: PK model, p = 2
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Design Locus, optimum points and the simplex



D - the most popular optimality criterion

Geometrical Interpretation - design locus: PK model, p = 2
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Design Locus, optimum and non-optimum solution



D - the most popular optimality criterion

Geometrical Interpretation - parameter sensitivities
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We find 7, and #, such that detX = f;(11)f2(%2) — f2(11)f1(22) is
maximum.



D - the most popular optimality criterion

The Equivalence Theorem
Kiefer and Wolfowitz (1960)
A design ¢* is D-optimum if and only if it is G-optimum, that is
the following conditions are equivalent:

det(M~'(£)) = min det(M~"(¢))
max d(x, &%) = mﬁinm}?Xd(X,f),

where d(x, &) = fT(x)M~1(&)f(x) is the variance of prediction at
a point x.The third equivalent condition says

where p is the number of parameters.
Equality is achieved at the support points of £*.



D - the most popular optimality criterion

The Equivalence Theorem, an lllustration

Let the model response be
n(x,9) =9 + V1x + ¥ox*, on [—1, 1].

Then, the D-optimum design is

—1 1
{7 )
3 3 3

The design does not depended on N, but instead on the
weights.
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The information matrix can then be written as

111
MESP)=X"WX=| -1 0 1 |x
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D - the most popular optimality criterion

The Equivalence Theorem, an lllustration

Hence,

and the variance function is

d(x,€*) = T ()M~ (x)

1 0 -1
=3(L,x,))x | 0 05 0 |x
-1 0 15
=3 —4.5x> +4.5x*.

Note, that d(x,&*) =3 atx = —1,0,1



D - the most popular optimality criterion

The Equivalence Theorem, an lllustration
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D - the most popular optimality criterion

The Equivalence Theorem - PK model
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Example 4

Enzyme Kinetics Model, p = 2,

In a typical enzyme kinetics reaction enzymes bind substrates
and turn them into products. The binding step is reversible
while the catalytic step irreversible:

S+E«——ES—E+P,

S, E and P denote substrate, enzyme and product, respectively.



Example 4

Enzyme Kinetics Model, p = 2,

The reaction rate is represented by the Michaelis-Menten

model
_ Vmax [S]

V= > | [o1?
Ky + [S]
where [S] is the concentration of the substrate and V. and K,
are the model parameters:
> V,..x denotes the maximum velocity of the enzyme and

» K,, is Michaelis-Menten constant, it is the value of [S] at
which half of the maximum velocity V,,.. is reached.



Example 4

Enzyme Kinetics Model, p = 2,

n(sLv max,K‘m)

Michaelis-Menten Model. The response function:
1([S]; Vinax, Km) for the point priors Vg, = 1,K = 1.



D optimality

Enzyme Kinetics Model, p = 2, Parameter Sensitivities
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/1 does not have a proper maximum; the largest value is at the
border of the design region.



D optimality

Enzyme Kinetics Model, p = 2, Design Locus
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Design Locus does not form a loop.




D optimality

Enzyme Kinetics Model, p = 2, Design Locus
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Design Locus: one vertex must be at the end of the locus.



D optimality

Enzyme Kinetics Model, p = 2, Design Locus
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Design Locus: the triangle of maximum area.



D optimality

Enzyme Kinetics Model, p = 2, Design Locus
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Design Locus: Optimum design points.



D optimality

Enzyme Kinetics Model, p = 2, The Equivalence Theorem

Plot of the derivative function to verify f the generated design is optimal
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The variance function has only one proper maximum; it also
reaches p = 2 at the border of the design region.



D optimality
Enzyme Kinetics Model, p = 2, COURSE-WORK 1

Obtain a locally D-optimum design points for the
Michaelis-Menten model for the point prior values of the
parameters equal to V9, = 1,K9 = 1.



Example 5. Two Consecutive Chemical Reactions
Model.

Atkinson and Bogacka (2002), Chemometrics

Ak gk

The kinetic differential equations for [A], [B] and [C], the
concentrations of the chemical compounds A, B and C as
functions of time r are

dlA]

= —ki[A]™
dt
=l - ks
A~ o, (1)

Interest is in estimation of the orders \;, A\, as well as of the
rates ki, k.



Example 5. Two Consecutive Chemical Reactions
Model

The first of the three equations can be solved analytically to
give the concentration of chemical A at time ¢ as

[A] = {1 — (1 — Ap)kge}/0=2) (AMyki, e > 0,0 # 1),

if it is assumed that the initial concentration of A is 1.

This gives the following differential equation for the
concentration of the compound B

dgf] = k{1 —(1 - Al)klt}l%l — ky[B]

which has to be solved numerically.



Example 5. Two Consecutive Chemical Reactions
Model

General Consecutive Reaction
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Concentration of B. Reading upward at r = 20:
(A7, A9) = (1,1),(2,1),(1,2) and (2,2), (k. k9) = (0.7,0.2).



Example 5. Two Consecutive Chemical Reactions

Model derivatives with respect to the parameters

General Consecutive Reaction
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Derivatives (parameter sensitivities) as a function of time.
Reading upward at t = 10: f», f1, f3,f4 for ko, ki, A1 and \,,
respectively. Here (A}, \9) = (1, 1), (k{,k3) = (0.7,0.2).



Example 5. Two Consecutive Chemical Reactions

D-optimum designs

These designs were found by searching over the four
continuous values of time, but with the weights held known at
0.25. The design region is 7 = [0,50].

Prior orders of reaction time
(k. K8, A9, X9) f
(0.7,0.2,1,1) 0.80 285 7.05 15.90
(0.7,0.2,2,1) 051 236 7.30 18.26
(0.7,0.2,1,2) 0.83 291 8.05 40.39
(0.7,0.2,2,2) 0.57 2.65 9.68 50.00

* *
t3 r

Table 1. D-optimum designs for both rate and order. The
weights are 0.25 at each design point.



Example 5. Two Consecutive Chemical Reactions

D-optimum designs

A ->B ->C: lambda = (1,1)

variance
2

time

The variance of prediction d(z, £*, @) for prior
(k9,k5,A7,A9) = (0.7,0.2,1,1).



Example 5. Two Consecutive Chemical Reactions

D-optimum designs

A ->B ->C: lambda = (2,2)

variance
2

time

Responses for various priors and the variance of prediction
d(t,&*,9) for prior (k{, k9, A7, A9) = (0.7,0.2,2,2).
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