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ABSTRACT. We investigate some key analytic properties of Fourier coefficients and Hecke eigen-

values attached to scalar-valued Siegel cusp forms F of degree 2, weight k and level N . First,

assuming that F is a Hecke eigenform that is not of Saito-Kurokawa type, we prove an im-

proved bound in the k-aspect for the smallest prime at which its Hecke eigenvalue is nega-

tive. Secondly, we show that there are infinitely many sign changes among the Hecke eigen-

values of F at primes lying in an arithmetic progression. Third, we show that there are infin-

itely many positive as well as infinitely many negative Fourier coefficients in any “radial” se-

quence comprising of prime multiples of a fixed fundamental matrix. Finally we consider the

case when F is of Saito–Kurokawa type, and in this case we prove the (essentially sharp) bound

|a(T )| �F,ε

(
detT

) k−1
2

+ε for the Fourier coefficients of F whenever gcd(4 det(T ), N) is square-

free, confirming a conjecture made (in the case N = 1) by Das and Kohnen.

1. INTRODUCTION

For positive integers n, k, and N , let Sk(Γ
(n)
0 (N)) be the space of holomorphic cusp forms of

weight k for the Siegel-type congruence subgroup Γ
(n)
0 (N) ⊆ Sp2n(Z) of level N and degree n.

Any F ∈ Sk(Γ
(n)
0 (N)) has a Fourier expansion

F (Z) =
∑
T∈Nn

a(T )e2πitr(TZ),

where

Nn :=
{
T = (tij)n×n | 2tij , tii ∈ Z, T t = T, T > 0

}
.

Here and throughout the article, the symbol T > 0 means T is positive definite. If F is a Hecke
eigenform for the Hecke operators T (m) with gcd(m,N) = 1, we denote its Hecke eigenvalues
by η(m). Both the Fourier coefficients a(T ) and Hecke eigenvalues η(m) are key objects and
they, separately and together, play an important role in understanding the Hecke eigenforms
and hence all cusp forms.

It is well-known that when n = 1, i.e., when F is an elliptic Hecke eigenform, the Fourier
coefficients and Hecke eigenvalues coincide up to a certain normalization. In this case, one can
exploit the multiplicative properties of η(m), the Ramanujan bound, and the Hecke relations to
study sign change questions for η(m). Some interesting results in this set-up can be found in
[KS06, KLSW10, Mat12, MRl15, GKP19, GMP21] and the references therein.

In the case of Siegel cusp forms of degree n = 2, Hecke eigenvalues and Fourier coeffi-
cients of a Hecke eigenform are not related in any simple way. Further, it is not clear how to
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make sense of multiplicative properties of Fourier coefficients (which are indexed by matri-
ces). Indeed, Fourier coefficients are closely related to central values of degree 8 L-functions
and are more mysterious than the Hecke eigenvalues [DPSS20, JLS21, FM21]. For example,
even though an analogue of Ramanujan’s conjecture is known for the Hecke eigenvalues cor-
responding to an eigenform of degree n = 2, the analogous conjecture for Fourier coefficients
(which is famously known as Resnikoff–Saldaña conjecture [RSn74]) is not known yet. For
recent progress towards the Resnikoff–Saldaña conjecture, see [JLS21]. In this paper we inves-
tigate the following questions for n = 2:

• Bounds for the first prime for which the Hecke eigenvalue is negative (analogue of least
quadratic non-residue).
• Sign changes of Hecke eigenvalues at primes lying in any fixed arithmetic progression.
• Behaviour of signs of Fourier coefficients of a non-zero cusp form (not necessarily a

Hecke eigenform) along a sequence of prime multiples of a fixed matrix.
• Bounds for the Fourier coefficients of a cusp form lying in the generalized Maass sub-

space.

Throughout this paper, we allow the level N to be any integer, in contrast to many previous
related works which were restricted to N = 1 or N squarefree.

1.1. Main Results on signs of Hecke eigenvalues. In the case N = 1, the space Sk(Sp4(Z)) =

Sk(Γ
(2)
0 (1)) of Siegel cusp forms of weight k and full level has a natural subspace denoted

S∗k(Sp4(Z)) and called the Maass subspace, which is the span of the Saito-Kurokawa lifts of full
level. The Saito-Kurokawa lifts of full level can be explicitly constructed from classical half-
integral weight forms via the theory of Jacobi forms [EZ85, §6]; they may also be viewed as lifts
of classical integral weight forms thanks to the Shimura correspondence between half integral
weight and integral weight forms. It is known [Bre99, GPS18] that all the Hecke eigenvalues of
a Hecke eigenform lying in the Maass subspace are positive. Indeed, for a Hecke eigenform F

lying in the Maass subspace, there exists a classical Hecke eigenform f ∈ S2k−2(SL2(Z)) such
that

(1) λF (p) = λf (p) + p1/2 + p−1/2

where λF (p) (resp. λf (p)) are the normalized Hecke eigenvalues of F (resp., f ). The relation
(1) clearly shows the positivity of the quantities λF (p) (since we know that |λf (p)| ≤ 2). A
simple argument extends this positivity result to λF (n) for all n. Therefore, the topic of signs of
Hecke eigenvalues of Hecke eigenforms in Sk(Sp4(Z)) is interesting only for forms that lie in the
orthogonal complement1 of S∗k(Sp4(Z)).

For general N , we define a natural generalization of the Maass subspace which we call the
generalized Maass subspace and denote by S∗k(Γ

(2)
0 (N)). The space S∗k(Γ

(2)
0 (N)) is defined to be the

span of certain Hecke eigenforms F that we say are of classical Saito-Kurokawa type. These eigen-
forms of classical Saito-Kurokawa type are defined by us in the language of Arthur packets (see
Section 2.3) and turn out to have the property that their Hecke eigenvalues at primes p - N are
all positive. We remark that there is also a separate explicit construction of Saito-Kurokawa

1It is easy to see that if a Hecke eigenform does not lie in S∗k(Sp4(Z)), then it must be contained in the orthogonal

complement of S∗k(Sp4(Z)).
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lifts for Γ
(2)
0 (N) for general N via the route of Jacobi forms, due to Ibukiyama [Ibu12] (see also

Agarwal–Brown [AB15]). To the best of our knowledge it is not known whether the Saito-
Kurokawa lifts of trivial character constructed by Ibukiyama are sufficient to fully capture2 our
generalized Maass space S∗k(Γ

(2)
0 (N)) as defined in Section 2.3.

As mentioned above, for eigenforms of classical Saito-Kurokawa type the Hecke eigenvalues
at primes not dividing the level are all positive. Consider an eigenform that is not of classical
Saito-Kurokawa type. Our first result provides a bound in the k-aspect for the smallest prime
at which the Hecke eigenvalue is negative.

Theorem 1.1.1. Let k and N be positive integers. Let F ∈ Sk(Γ
(2)
0 (N)) be a Hecke eigenform with

Hecke eigenvalues η(m) for all positive integers m satisfying gcd(m,N) = 1. Assume that F does not
lie in S∗k(Γ

(2)
0 (N)). If k = 2 and F is not attached to a CAP representation, then assume further that F

satisfies the Ramanujan conjecture.3 Then, for any ε > 0, there exists a prime p with gcd(p,N) = 1 and

p �N,ε k
5+ε

such that η(p) < 0. The implicit constant depends polynomially4 on N .

We also prove that for eigenforms not of classical Saito-Kurokawa type, the associated Hecke
eigenvalues η(p) have infinitely many sign changes as p traverses a typical arithmetic progres-
sion. To the best of our knowledge, this is the first result of this kind for Siegel cusp forms of
degree 2.

Theorem 1.1.2. Let F be as in Theorem 1.1.1. Then, for any positive integers a,M with gcd(aN,M) =

1, the sequence (η(p)) with p varying over primes congruent to amodM changes sign infinitely often.

Let us discuss briefly previous results related to the above theorems. The investigation of
first negative Hecke eigenvalue of Siegel cusp forms was initiated by Kohnen and Sengupta
[KS07] (for the case N = 1). Exploring relations among Hecke eigenvalues at prime power
indices they proved the existence of n� k2 log20 k such that η(n) < 0. Note that in their result
n can be any integer, in contrast to our Theorem 1.1.1 where n is a prime. The study of signs of
Hecke eigenvalues at all integers has a different flavour (and is usually easier) from studying
sign-changes over the primes. We remark here that the Hecke algebra is generated not just by
T (p) but by T (p) and T (p2), so going down from all integers to primes is non-trivial. Assum-
ing the Generalized Lindelöf hypothesis one can improve the bound obtained by Kohnen and
Sengupta to n �ε k

ε for any ε > 0. The result of Kohnen and Sengupta was generalized by
Brown [Bro10] to the case N > 1. Other results on sign changes of Hecke eigenvalues include
[Koh07, KS07, PS08, RSW16, DK18, GKP21]. The first work that showed that the sequence η(p)

for p prime has infinitely many sign changes is due to Das [Das13] (however, he only considered
the case N = 1 and did not consider primes in arithmetic progressions or bounds for the first
sign-change).

2It can be shown that if N is squarefree then the level N newforms that are of classical Saito-Kurokawa type in

our sense are exactly the same as the Saito–Kurokawa lifts of newforms of level N constructed via Jacobi forms in

works of Ibukiyama and Agarwal–Brown; so the main question is what happens for non-squarefree levels.
3The Ramanujan conjecture is known for all weight k ≥ 3. Readers unfamiliar with the definition of a CAP

representation or the Ramanujan conjecture should refer to Sections 2.2 and 2.3 .
4Our method can be used to make this polynomial explicit by carefully going through the proof of Lemma 2.4.1.
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For more general automorphic L-functions, Cho and Kim [CK21, Theorem 1.1] (building
upon work of Jin [Jin19]) proved a bound for the first negative coefficients at primes of L-
function attached to a self-dual automorphic representation under the assumption of Ramanu-
jan conjecture. As a direct consequence of [CK21, Theorem 1.1], one can find a prime p� k7+ε

such that η(p) < 0, where η(p) is as in Theorem 1.1.1. However, our result in Theorem 1.1.1
gives a stronger bound as we have more precise information about the archimedean L-factor
in our case.

1.2. Main Results on Fourier coefficients. For Siegel cusp forms of degree 2, the question of
sign changes for the full sequence of Fourier coefficients a(T ) (T ∈ N2) has been investigated
in [Jes08, CGK15, GS17]. However there are not many previous results for the more subtle
question of sign changes when T is restricted to some sparse subsequence of N2. A matrix
T ∈ N2 is called fundamental if −det (2T ) is a fundamental discriminant, and in this case, the
Fourier coefficient a(T ) will be called a fundamental Fourier coefficient. For a fixed T ∈ N2 and
varying m ∈ N, we call the sequence a(mT ) the radial Fourier coefficients associated to T . Very
recently, Jääsaari, Lester and Saha [JLS21, Theorem A] proved the infinitude of sign changes
for the subsequence of fundamental Fourier coefficients a(T ). Shankhadhar and Tiwari [ST21]
restricted themselves to certain other types of Fourier coefficients a(T ). In this paper, we inves-
tigate signs of the radial Fourier coefficients a(pT ) for fixed fundamental T and p varying over
primes. The properties of these coefficients a(pT ) are closely connected to those of the Hecke
eigenvalues η(p).

Our result below (Theorem 1.2.1) gives a new characterisation of the forms of classical Saito–
Kurokawa type using sign changes of Fourier coefficients. We note that our result does not
require F to be an eigenform. We refer the reader to [PSS17, Section 8] for some alternative
characterisations of Saito-Kurokawa lifts.

Theorem 1.2.1 (see Propositions 4.3.1, 4.4.1). Let k andN be positive integers. If k = 2, assume that
the Ramanujan conjecture holds for each non-zero element of S2(Γ

(2)
0 (N)) that is a Hecke eigenform at

all good primes and not attached to a CAP representation.
Let F ∈ Sk(Γ

(2)
0 (N)) be a non-zero cusp form having real Fourier coefficients a(T ) and let T0 be a

fundamental matrix such that a(T0) 6= 0 and gcd(4 det(T0), N) = 1. If F lies in S∗k(Γ
(2)
0 (N)), then

for all sufficiently large primes p the Fourier coefficients a(pT0) have the same sign. On the other hand,
if F is orthogonal to S∗k(Γ

(2)
0 (N)), then there exist infinitely many primes p such that a(pT0) > 0 and

infinitely many primes q such that a(qT0) < 0.

We remark here that given F ∈ Sk(Γ
(2)
0 (N)), the existence of (infinitely many) fundamental

T0 with a(T0) 6= 0 and gcd(4 det(T0), N) = 1 is known for N squarefree under mild conditions
on F at primes dividing N ; see Remark 4.1.3 below.

Our final theorem on Fourier coefficients is quite different in flavour from the results de-
scribed so far and concerns upper bounds on the sizes of the Fourier coefficients. Given
F ∈ Sk(Sp4(Z), the best unconditional currently known upper bound for a(T ) is due to Kohnen
[Koh92] and states that |a(T )| �F,ε (det T )

k
2
− 13

36
+ε. However, this result is rather far from the ex-

pected truth. The famous Resnikoff–Saldaña conjecture [RSn74, Conjecture IV] predicts that for
F ∈ Sk(Sp4(Z)) orthogonal to forms of classical Saito-Kurokawa type, the Fourier coefficients
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satisfy the bound |a(T )| �F,ε (det T )
k
2
− 3

4
+ε for any ε > 0. This conjecture is extremely deep and

difficult, and appears to be out of reach at present. The article [DK13] proved bounds towards
this for radial Fourier coefficients while in [JLS21], the authors considered F ∈ Sk(Γ

(2)
0 (N))

with N squarefree, and assuming the Generalized Riemann Hypothesis proved the bound

|a(T )| �F,ε
det(T )

k
2−

1
2

(log | det(T )|)
1
8−ε

for fundamental matrices T .

For F lying in the generalized Maass subspace S∗k(Γ
(2)
0 (N)), the situation is slightly different.

In this case one expects that the Resnikoff–Saldaña bound |a(T )| �F,ε (det T )
k
2
− 3

4
+ε still holds

for the fundamental Fourier coefficients a(T ) of F (this can be shown to follow from the Gener-
alized Lindelöf hypothesis; see Proposition 5.1.5); however, it is known that this bound fails to
hold for general (non-fundamental) coefficients. Indeed, Kohnen [Koh04] (see also Böcherer–
Raghavan [BR88]) observed that for a Saito-Kurokawa lift of full level, infinitely many of the
Fourier coefficients a(LT0) (L ≥ 1) do not satisfy the Resnikoff–Saldaña bound. This was re-
fined by Das and Kohnen [DK13] who showed that given a Saito-Kurokawa lift of full level,
there exists a fundamental T ∈ N2 such that |a(pT )| �F,T p

k−1 for p lying in a set of primes of
positive density. Therefore, the Resnikoff–Saldaña conjecture needs to be modified for forms
in the Maass subspace. For the case N = 1, Das and Kohnen [DK13, section 4] conjectured that
the bound

(2) |a(T )| �F,ε

(
detT

) k−1
2

+ε

holds for all Fourier coefficients a(T ) of a form lying in the Maass subspace. From the examples
above, it is clear that the exponent k−1

2 in (2) is best possible. Our next result shows that (2)
holds for a form lying in the generalized Maass subspace of level N under a mild assumption
on det(T ) which is always satisfied when N is squarefree.

Theorem 1.2.2. Let k andN be positive integers. Let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero cusp form having

Fourier coefficients a(T ). Then, for any ε > 0, the bound

|a(T )| �F,ε

(
detT

) k−1
2

+ε

holds for all T ∈ N2 which have the property that gcd(4 det(T ), N) is squarefree.

In fact, our result is sharper than stated in Theorem 1.2.2, and gives a more refined bound
on the size of the Fourier coefficient; see Theorem 5.1.6. In particular, Theorem 5.1.6 implies
that for all primitive T (i.e., there being no common factor dividing the entries of T ) we have
|a(T )| �F,ε (det T )

k
2
− 3

4
+ε under the Generalized Lindelöf hypothesis. This shows that the

counterexamples to the Resnikoff–Saldaña bound essentially arise from the matrices of the
form LT0 as in the examples of Kohnen and Das–Kohnen noted above.

After a previous version of this manuscript was made available, we became aware (thanks
to Patrick Dynes) of a recent preprint by Ikeda and Katsurada [IK22] where they prove a similar
bound for the Fourier coefficients in the overlapping context of an Ikeda lift of full level. Their
methods are quite different from ours and use the Gross–Keating invariant.

1.3. Methods. Theorems 1.1.1 and 1.1.2 rely on properties of the underlying L-functions. More
precisely, for Theorem 1.1.1, we build upon a method of Jin [Jin19, Theorem 3.1] (also see Cho
and Kim [CK21]) and for Theorem 1.1.2 we extend techniques of Kohnen–Lau–Wu [KLW13]
by adding a character twist. For both these results, it is useful to separate into cases according



6 BIPLAB PAUL AND ABHISHEK SAHA

to the various global Arthur packets that F can correspond to (see Proposition 2.3.1). If F is
attached to a CAP representation, then we are essentially reduced to properties of Dirichlet
characters, which gives us stronger versions of the desired results. On the other hand, if F is
not attached to a CAP representation, then we use the transfer to GL4 and properties of the
(twists of the) GL4 L-functions to obtain these theorems.

The proof of Theorem 1.2.1 relies on two main ingredients. The first is an identity relating
Fourier coefficients and Hecke eigenvalues (see Proposition 4.1.1). The second ingredient is a
Selberg orthogonality style relation for linear combinations of Hecke eigenvalues (Proposition
4.2.1) which exhibits a certain dichotomy due to the nature of Arthur packets on GSp4 and may
be of independent interest.

For Theorem 1.2.2 we use quite different methods from the above. In fact, we give two dif-
ferent proofs of this theorem. The first proof uses representation-theoretic methods. Precisely,
we use the spherical p-adic Bessel functions to relate the size of a(T ) to that of a(T0) where T0 is
a fundamental matrix. This reduction requires delicate estimates for the sizes of relevant values
of these p-adic Bessel functions. The desired bound for a(T0) is a consequence of the convexity
bound for certain L-functions. As noted earlier, this method gives us a sharper result than we
have stated above; see Theorem 5.1.6 and Proposition 5.1.7 for the more refined bounds.

The second proof is only valid for squarefree N and is easy to derive from recent develop-
ments in the theory of Fourier–Jacobi coefficients of a Siegel cusp form. This proof exploits
bounds relating the Petersson norm of a Jacobi form, the sizes of its Fourier coefficients, and
the index of the Jacobi form. We decided to include both proofs here as they use very different
ideas and the second proof highlights the importance (as well as the limitations) of the theory
of Jacobi forms in studying Siegel modular forms. See Section 5 for further details.

Some key preliminary facts will be listed in Section 2. In sections 3 – 6, we give proofs of
Theorems 1.1.1 – 1.2.2.

1.4. Notations. Throughout the paper, ε > 0 will denote a sufficiently small real number
whose precise value may change in each appearance. The notationA�x,y,z B orA = Ox,y,z(B)

will mean there exists a positive constant C depending at most on x, y, z such that |A| ≤ C|B|.
We say that an integer d is a fundamental discriminant if Q(

√
d) is a field of discriminant

d. For a fundamental discriminant d, we let χd be the associated quadratic Dirichlet character.
For positive integers a, b, we use the notation gcd(a, b∞) to denote the limit limN→∞ gcd(a, bN ),
which is clearly equal to gcd(a, bN ) for all sufficiently largeN . For a prime p, we let vp(a) denote
the largest non-negative integer v such that pv divides a.

We use A to denote the ring of adeles over Q. The notation L(s, π) for the L-function of
an automorphic representation π will mean the finite part of the L-function (i.e., without the
archimedean factors) and the notation Λ(s, π) will denote the completed L-function including
the archimedean factors. All L-functions will be normalized so that the functional equation
takes s 7→ 1− s. Given an L-function with an Euler factor decomposition L(s, π) =

∏
p L(s, πp),

we use the notation LN (s, π) :=
∏
p-N L(s, πp) for each integer N to denote the partial L-

function away from primes dividing N .
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By 12 we mean the identity matrix of size 2. We denote by J the 4 by 4 matrix given by
J =

(
0 12
−12 0

)
, and we define the algebraic groups GSp4 and Sp4 by

GSp4(R) = {g ∈ GL4(R) | gtJg = µ2(g)J, µ2(g) ∈ R×},

Sp4(R) = {g ∈ GSp4(R) | µ2(g) = 1},

for any commutative ring R. The Siegel upper-half space H2 of degree 2 is defined by

H2 = {Z ∈ Mat2×2(C) | Z = Zt, Im(Z) is positive definite}.

The subgroup GSp4(R)+ of GSp4(R) consists of the matrices g such that µ2(g) > 0. For
g =

(
A B
C D

)
∈ GSp4(R)+ and Z ∈ H2, we define g〈Z〉 = (AZ + B)(CZ + D)−1 and we denote

J(g, Z) = CZ + D. For a function F : H2 → C, a matrix g ∈ GSp4(R)+, and an integer k, we
define the function F |kg : H2 → C by (F |kg)(Z) = µ(g)k det(J(g, Z))−kF (g〈Z〉).

1.5. Acknowledgments. We thank Ariel Weiss and Patrick Dynes for comments. At the first
stages of this work, BP was a JSPS postdoctoral fellow at Kyushu University, Japan and was
supported by JSPS KAKENHI Grant No. 19F19318. He would like to thank his academic host
Professor Masanobu Kaneko for the support. This work is supported by the Engineering and
Physical Sciences Research Council [grant number EP/W001160/1].

2. PRELIMINARIES

2.1. Basics of Siegel cusp forms. Let k and N be positive integers. Let Sk(Γ
(2)
0 (N)) denote the

space of Siegel cusp forms of weight k and of degree 2 for the group Γ
(2)
0 (N) defined by

(3) Γ
(2)
0 (N) = Sp4(Z) ∩

( Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z

)
.

Recall that the elements of Sk(Γ
(2)
0 (N)) consist of holomorphic functions F on H2 which satisfy

the relation

(4) F |kγ = F for all γ ∈ Γ
(2)
0 (N),

and vanish at all the cusps. For a precise formulation of this cusp vanishing condition, see [Fre91,
I.4.6]; for definitions and basic properties of Siegel modular forms we refer the reader to [AZ95].
Given F1 and F2 in Sk(Γ

(2)
0 (N)), we define their Petersson inner product by

(5) 〈F1, F2〉 =
1

[Sp(4,Z) : Γ
(2)
0 (N)]

∫
Γ
(2)
0 (N)\H2

F1(Z)F2(Z)(detY )k−3 dX dY.

For any positive integer m ∈ N with gcd(m,N) = 1, the Hecke operator T (m) acting on the
space Sk(Γ

(2)
0 (N)) is defined by

T (m)F = mk−3
∑

γ∈Γ
(2)
0 (N)\O2,m(N)

F |kγ,

where

O2,m(N) :=

{
γ ∈

( Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z

)
| γtJγ = mJ

}
.

We say that F ∈ Sk(Γ
(2)
0 (N)) is a Hecke eigenform at all good primes if there exist complex numbers

η(m) such that T (m)F = η(m)F for all m ∈ N satisfying gcd(m,N) = 1. Using the self-
adjointness of the Hecke operators (see, e.g., Proposition 1.8 of Chapter 4 of [AZ95]) it follows
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that the Hecke eigenvalues η(m) associated to a Hecke eigenform are in fact all real numbers.
As in the case of elliptic modular forms, the Hecke eigenvalues η(m) are multiplicative. We
also use the normalized Hecke eigenvalues which are defined as:

(6) λ(m) :=
η(m)

mk−3/2
for m ∈ N.

2.2. Automorphic representations of GSp4(A) and L-functions. Given F ∈ Sk(Γ
(2)
0 (N)), we

let πF denote the representation of GSp4(A) generated by the adelization (in the sense of [Sah15,
§3]) of F . The representation πF is of trivial central character and can be written as a direct sum
of irreducible, cuspidal, automorphic representations of GSp4(A) of trivial central characters.
We denote by Π(F ) the set of irreducible automorphic representations of GSp4(A) that occur
in the above direct sum decomposition of πF . Clearly all elements of Π(F ) are also of trivial
central character. As a consequence of multiplicity one for GSp4 due to Arthur [Art13], it fol-
lows that if π ∈ Π(F ) then π occurs in πF with multiplicity one. We say that an element F of
Sk(Γ

(2)
0 (N)) gives rise to an irreducible representation if πF is irreducible, or equivalently, if

Π(F ) is a singleton set.
It can be seen easily [Sah15, Prop. 3.12] that if F gives rise to an irreducible representation

then F is a Hecke eigenform at all good primes. While the converse is not true (due to failure
of strong multiplicity one), we have the following lemma which clarifies the situation.

Lemma 2.2.1. Let F ∈ Sk(Γ
(2)
0 (N)). Then the following conditions are equivalent:

(1) If π1 and π2 are any two elements of Π(F ) then π1,p ' π2,p for all primes p - N .
(2) If π1 and π2 are any two elements of Π(F ) then π1,p ' π2,p for almost all primes p - N .
(3) F is a Hecke eigenform at all good primes, i.e., all primes not dividing N .
(4) F is a Hecke eigenform at almost all good primes, i.e., there exits a multiple N ′ of N such that

F is an eigenform for the Hecke operators T (m) for all m ∈ N satisfying gcd(m,N) = 1.

Proof. The equivalence of (1) and (2) follows from Lemma 3.1.2 of [Sch05], the fact that πi,p is
spherical for all p - N , and the fact that there is a unique spherical constituent in each induced
representation. The equivalence of (1) and (3), as well as of (2) and (4), follows from Proposition
3.12 of [Sah15]. �

Given F ∈ Sk(Γ
(2)
0 (N)), and π ∈ Π(F ), we can take the projection φ′F of the adelization φF of

F onto the π-isotypic subspace of πF , and then unadelize φ′F to obtain some F ′ ∈ Sk(Γ
(2)
0 (N))

that is a Hecke eigenform at all good primes and whose adelization generates the space Vπ
of π. Therefore, given an irreducible cuspidal automorphic representation π of GSp4(A), there exists
F ∈ Sk(Γ

(2)
0 (N)) such that π = πF if and only if there exists F ∈ Sk(Γ

(2)
0 (N)) such that π ∈ Π(F ).

If π has the above property, we say that π arises from Sk(Γ
(2)
0 (N)).

We say that an irreducible cuspidal automorphic representation π of GSp4(A) is CAP if it
is nearly equivalent to a constituent of a global induced representation of a proper parabolic
subgroup of GSp4(A). If F ∈ Sk(Γ

(2)
0 (N)) is a Hecke eigenform at all good primes, we say that

F is CAP (or F is attached to a CAP representation) if some (equivalently, every) π ∈ Π(F ) is
CAP.
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Given an irreducible cuspidal automorphic representation π of GSp4(A) of trivial central
character, we let

(7) L(s, π) =
∏
p<∞

L(s, πp)

denote the (finite part of the) degree 4 (spinor) L-function associated to π, where the local
factors L(s, πp) are defined using the local Langlands correspondence [GT11] for GSp4. For
each prime p - N , there are complex numbers (known as Satake parameters) αp,i, 1 ≤ i ≤ 4

satisfying αp,1αp,2 = αp,3αp,4 = 1 such that L(s, πp) =
∏4
i=1

(
1− αp,i

ps

)−1
. By the work of

Arthur [Art13] and using the accidental isomorphism PGSp4 ' SO5, we know that LN (s, π) =

LN (s,Π) where Π is an isobaric automorphic representation of GL4(A).
Given two irreducible cuspidal automorphic representation π1 and π2 of GSp4(A) of trivial

central characters, we let

(8) L(s, π1 × π2) =
∏
p<∞

L(s, π1,p × π2,p)

denote the associated degree 16 Rankin-Selberg product of the spin L-functions of π1 and π2,
where each local factor is defined using the local Langlands correspondence. For each prime
p - N , we have L(s, π1,p×π2,p) =

∏
1≤i,j≤4 (1− αp,iβp,jp−s)−1. As before, using work of Arthur,

we have that LN (s, π1 × π2) = LN (s,Π1 × Π2) where Π1 and Π2 are isobaric automorphic
representations of GL4(A). By the general theory of Rankin-Selberg L-functions on GLn, the
L-function L(s, π1 × π2) has analytic continuation to C as a meromorphic function which is
non-vanishing on Re(s) = 1.

Let F ∈ Sk(Γ
(2)
0 (N)) be a Hecke eigenform at all good primes and let π ∈ Π(F ). Then we

have the following relation between the degree 4 L-function of π and the normalized Hecke
eigenvalues of F :

(9) LN (s, π) = ζN (2s+ 1)
∞∑
m=1

(m,N)=1

λ(m)

ms
=
∏
p-N

4∏
i=1

(
1− αp,i

ps

)−1

.

2.3. Arthur packets. Cuspidal automorphic representation of GSp4 with trivial central char-
acter can be naturally viewed as representations of PGSp4 ' SO5. Arthur [Art13] has given a
classification of the discrete automorphic spectrum of SO5 into Arthur packets in terms of auto-
morphic representations of general linear groups. In the following proposition, we state this
classification for the π which arise from Sk(Γ

(2)
0 (N)) and write some key properties for each

packet.

Proposition 2.3.1. Suppose that F ∈ Sk(Γ
(2)
0 (N)) is a Hecke eigenform at all good primes. Let the

normalized Hecke eigenvalues λ(m) of F be as defined in (6). Then exactly one of the following cases
must occur.

(1) F is of general type: This case can only occur if k ≥ 2. There exists an irreducible cuspidal
automorphic representation Π of GL4(A) with trivial central character such that each π ∈ Π(F )

has a strong functorial lifting to Π. In this case, L(s, π) = L(s,Π) is entire and L(s, π × π) =

L(s,Π× Π) has a simple pole at s = 1. The representation Π is unramified at the finite primes
not dividing N .
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(2) F is of Yoshida type: This case can only occur ifN > 1 and k ≥ 2. There exists an automorphic
representation π1 of GL2(A) attached to a cuspidal newform f1 of weight 2 for Γ0(N1) and an
automorphic representation π2 of GL2(A) attached to a cuspidal newform f2 of weight 2k − 2

for Γ0(N2), with π1 and π2 non-isomorphic, such that for each π ∈ Π(F ), we have L(s, π) =

L(s, π1)L(s, π2). Thus, the functorial lift of the representation π to GL4(A) is the isobaric sum
of two distinct, unitary, cuspidal automorphic representations of GL2(A) with trivial central
characters and L(s, π) is entire. Any prime p dividing N1N2 must divide N . For each prime p
coprime to N we have λ(p) = λ1(p) + λ2(p) where λi(p) is the normalized Hecke eigenvalue of
fi at the prime p. We have the factorization

L(s, π × π) = L(s, π1 × π2)2ζ(s)2L(s, sym2π1)L(s, sym2π2)

and hence L(s, π × π) has a pole of order 2 at s = 1.
(3) F is of Saito–Kurokawa type: This case can only occur if k ≥ 2; moreover if N is squarefree,

then k must be even. There exists a representation π0 of GL2(A) of trivial central character
attached to a cuspidal holomorphic newform of weight 2k−2 and a primitive Dirichlet character
χ0 satisfying χ2

0 = 1 such that

LN (s, π) = LN (s, π0)LN (s+ 1/2, χ0)LN (s− 1/2, χ0)

for each representation π ∈ Π(F ). In particular, each such π is CAP with respect to the Siegel
parabolic. The representation π0 and the character χ0 are unramified at the finite primes not
dividing N . For each prime p coprime to N we have λ(p) = λ0(p) + p1/2χ0(p) + p−1/2χ0(p)

where λ0(p) is the normalized Hecke eigenvalue of π0 at the prime p.
If F is of Saito–Kurokawa type with χ0 trivial (which is always the case if N is squarefree),

we will say that F is of classical Saito-Kurokawa type.
(4) F is of Soudry type: This case can only occur if k ∈ {1, 2} and N > 1. There exists a uni-

tary cuspidal automorphic representation π0 of GL2(A) attached to a CM cuspidal holomorphic
newform f0 of weight 1, level N0 and character ξ0 such that

LN (s, π) = LN (s+ 1/2, π0)LN (s− 1/2, π0)

for each π ∈ Π(F ). Therefore each representation π ∈ Π(F ) is CAP with respect to the Klingen
parabolic. The character ξ0 is a non-trivial quadratic Dirichlet character of conductor dividing
N0, and any prime p dividing N0 must divide N . For each prime p coprime to N we have
λ(p) = p1/2λ0(p) + p−1/2λ0(p) where λ0(p) is the normalized Hecke eigenvalue of π0 at the
prime p.

(5) F is of Howe–Piatetski-Shapiro type: This case can only occur if k ∈ {1, 2} and N > 1.
Each representation π ∈ Π(F ) is CAP with respect to the Borel parabolic. There exist distinct
quadratic Dirichlet characters χ1 and χ2 such that

LN (s, π) = LN (s+ 1/2, χ1)LN (s− 1/2, χ1)LN (s+ 1/2, χ2)LN (s− 1/2, χ2).

The representation χ1 and χ2 are unramified at the finite primes not dividing N . For each prime
p coprime to N we have λ(p) = p1/2χ1(p) + p−1/2χ1(p) + p1/2χ2(p) + p−1/2χ2(p).

Proof. This follows from the work of Arthur [Art13]; see also the papers of Schmidt [Sch18,
Sch20]. For the convenience of the reader, we explain some of the key points below.
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Let π ∈ Π(F ). Then, as explained in Section 1.1 of [Sch18], the global (Arthur) parameter ψ
of π in the sense of [Art13] is equal to a formal expression of the form

∑r
i=1 µi � ν(i) where µi

is a self-dual, unitary, cuspidal, automorphic representation of GLmi(A), ν(i) is the irreducible
representation of SL2(C) of dimension ni, and

∑r
i=1mini = 4. Using strong multiplicity 1 for

GLn(A), it is easy to see that the global parameter does not depend on which π ∈ Π(F ) we
choose; in particular the global parameter ψ depends only on F . The local component πv at
each place v belongs to the local packet associated to the corresponding local parameter ψv. In
particular, this means that if p - N , then each µi,p is unramified since πp is spherical.

The possibilities for the global parameter can be divided into the following types where we
use the notation in [Sch18]. We enumerate them in the same order as in the statement of this
proposition.

(1) ψ = µ � 1, where µ is a self-dual, symplectic, unitary, cuspidal, automorphic represen-
tation of GL4(A). The assertions follow by taking Π = µ. The fact that π has a strong
lifting to Π is just the equivalence of local Arthur parameters and local (Langlands) L-
parameters in this setting; see the remarks before Theorem 1.1 of [Sch18]. The other
assertions follow from standard properties of L-functions on GLn(A).

(2) ψ = µ1 � 1 � µ2 � 1 where µ1 and µ2 are distinct, unitary, cuspidal, automorphic repre-
sentation of GL2(A) of trivial central characters. We put πi = µi. From the archimedean
local parameters, we obtain the existence of newforms of weights 2 and 2k− 2 attached
to π1 and π2 as desired. Again, the equivalence of local Arthur parameters and local
(Langlands) L-parameters in this setting gives the desired expressions for L(s, π) and
L(s, π × π). The formula for the Hecke eigenvalue is immediate from this. Clearly
2k − 2 ≥ 2 and so k ≥ 2.

(3) ψ = (µ � 1) � (σ � ν(2)) where µ is a unitary, cuspidal, automorphic representation
of GL2(A) of trivial central character and σ is a quadratic Dirichlet character. We take
π0 = µ and χ0 = σ. The fact that π0 corresponds to a holomorphic form of weight
2k − 2, k ≥ 2 follows immediately by looking at the archimedean local parameters
(see the last row of Table 2 of [Sch20]). The expression for the L-functions (and the
Hecke eigenvalues) is a consequence of the corresponding identity relating the local
L-parameters at all primes not dividing N (see the first row of Table 2 of [Sch20]).

The criterion for π to occur in the discrete spectrum is expressed by the sign condition∏
v ε(πv) = ε(1/2, π0 × χ0) coming from Arthur’s multiplicity formula (see the condi-

tion above Lemma 1.2 of [Sch20]). Above, εv(πv) ∈ {±1} is a certain sign occurring in
Arthur’s work. Now assume that N is squarefree. In this case χ0 must be unramified
everywhere by a well-known result of Borel [Bor76] and hence must be trivial. This
implies that in this case

∏
v ε(πv) = ε(1/2, π0). We claim that k must be even in this case.

To show this, let N0 be the conductor of π0. Then by part (2) of Lemma 5.1.2 below, N0

divides N and for each p|N0 one of the following possibilities must hold:
• πp ' τ(T, ν−1/2) is of type VIb and π0,p = StGL(2),
• πp ' L((ν1/2ξpStGL(2), ν

−1/2) is of type Vb and π0,p = ξpStGL(2).
Using the formulas for ε(πv) in Table 2 of [Sch20] we have for all p|N0 that ε(πp) =

ε(1/2, π0,p) (more precisely, they are each equal to -1 in the first possiblity and +1 in the
second possibility). If p is a finite prime not dividing N0, we have ε(πp) = ε(1/2, π0,p) =
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1. It follows that ε(π∞) = ε(1/2, π0,∞). Since π is holomorphic of weight k, we have
ε(π∞) = −1 by Table 2 of [Sch20]; on the other hand since π0 corresponds to a holomor-
phic form of weight 2k−2 we have ε(1/2, π0,∞) = (−1)k−1. Consequently, (−1)k−1 = −1

and so k must be even whenever N is squarefree.
(4) ψ = µ � ν(2) where µ is a unitary, cuspidal, automorphic representation of GL2(A) of

non-trivial quadratic central character satisfying µ = AIE/Q(θ) where E is the quadratic
field attached to the central character ξ0 of µ and θ is a Hecke character of E. From the
computation in Table 3 of [Sch20], we see that k equals 1 or 2 and that µ is attached to a
CM cuspidal holomorphic newform of weight 1. Since the conductor N0 of a CM new-
forms is never equal to 1, and since each prime dividing N0 must divide N , it follows
that N > 1. We take π0 = µ and the expression for the L-functions is a consequence of
the corresponding identity of local L-parameters at all primes not dividingN (see Table
3 of [Sch20]).

(5) ψ = (χ1�ν(2))�(χ1�ν(2)) where χ1 and χ2 are distinct quadratic Dirichlet characters.
From the computation in Table 1 of [Sch20], we see that k equals 1 or 2 . The expression
for the L-functions (and as a consequence, the Hecke eigenvalues) follows from the
corresponding identity of local L-parameters at all primes not dividing N (see Table 1
of [Sch20]). Since at least one of the χi is non-trivial, and since each prime dividing the
conductor of χ1 or χ2 must divide N , it follows that N > 1.

Finally, we note that a result of Weissauer [Wei92] asserts that if k = 1 then F must be attached
to a CAP representation; in particular, it cannot be of Type 1. �

If F ∈ Sk(Γ
(2)
0 (N)) is a Hecke eigenform at good primes that is either of Saito–Kurokawa

type, or of Soudry type, or of Howe–Piatetski-Shapiro type in the sense defined above then
π ∈ Π(F ) is CAP and so is non-tempered everywhere.

On the other hand if F ∈ Sk(Γ
(2)
0 (N)) is a Hecke eigenform at good primes that is of general

type or Yoshida type in the sense defined above, then one expects that the following conjecture
is true.

Conjecture 2.3.2 (Ramanujan conjecture, currently known for k ≥ 3 but open for k = 2). If
F ∈ Sk(Γ

(2)
0 (N)) is a Hecke eigenform at good primes that is non-CAP (i.e., of general type or Yoshida

type), then for gcd(p,N) = 1 we have |αp,i| = 1 for 1 ≤ i ≤ 4 where αp,i are the Satake parameters
defined in (9).

A famous result of Weissauer [Wei09] implies that F satisfies the Ramanujan conjecture
whenever k ≥ 3. More precisely, for such F , each π ∈ Π(F ) is tempered at all good primes, i.e.,
for gcd(p,N) = 1 we have |αp,i| = 1 for 1 ≤ i ≤ 4 and hence for gcd(m,N) = 1, |λ(m)| ≤ d5(m),
where d5(m) is the number of ways of writing m as product of 5 positive integers. If k = 2, and
F is of Yoshida type, then we also know the Ramanujan conjecture for F from our knowledge
of the Ramanujan conjecture for classical holomorphic cusp forms on the upper-half plane.

However, if k = 2 and F ∈ S2(Γ
(2)
0 (N)) is a Hecke eigenform at good primes that is of

general type, then the Ramanujan conjecture remains open. For several of our results in this
paper, we will need to assume the Ramanujan conjecture in this outstanding case. Note that if
k = 1, then all forms in S1(Γ

(2)
0 (N)) are CAP.
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Remark 2.3.3. If F ∈ S2(Γ
(2)
0 (N)) is a Hecke eigenform at good primes that is of general type, then we

know the bound |αp,i| ≤ p9/22 for all primes pwith gcd(p,N) = 1, which follows from the corresponding
bound for GL4 representations due to Kim–Sarnak [Kim03].

From the self-adjointness of the Hecke operators, it follows that if F1 and F2 correspond
to different cases (types) in the sense of Proposition 2.3.1, then F1 and F2 are orthogonal with
respect to the Petersson norm. We let Sk(Γ

(2)
0 (N))T equal the vector space generated by the

set of Hecke eigenforms at good primes which are of general type or Yoshida type. We let
Sk(Γ

(2)
0 (N))CAP equal the vector space generated by the set of Hecke eigenforms at good primes

F which are non-tempered, i.e., are either of Saito-Kurokawa type or of Soudry type or of
Howe– Piatetski-Shapiro type. So the space Sk(Γ

(2)
0 (N)) has a natural decomposition into or-

thogonal subspaces

Sk(Γ
(2)
0 (N)) = Sk(Γ

(2)
0 (N))T ⊕ Sk(Γ

(2)
0 (N))CAP.

We let S∗k(Γ
(2)
0 (N)) ⊂ Sk(Γ

(2)
0 (N))CAP be the subspace generated by the set of Hecke eigen-

forms at good primes which are of classical Saito-Kurokawa type. We will occasionally refer to
the space S∗k(Γ

(2)
0 (N)) as the generalized Maass subspace. From Proposition 2.3.1 it is clear that if

k > 2 and N is squarefree then S∗k(Γ
(2)
0 (N)) = Sk(Γ

(2)
0 (N))CAP.

2.4. Analytic conductors and convexity bounds. Given a prime p and an irreducible admis-
sible representation πp of GSp4(Qp), we let ε(s, πp) denote the epsilon factor of πp (with re-
spect to a fixed additive character ψp of level 0), where the epsilon factor is defined using
the local Langlands correspondence (in particular, we have ε(s, πp) = ε(s,Πp) where Πp is
the representation on GL4(Qp) that is obtained by local Langlands transfer from πp). We let
ε(s, πp × πp) = ε(s,Πp × Πp) denote the epsilon factor of the Rankin-Selberg L-function with
respect to the same fixed unramified additive character ψp. We define the conductor exponents
a(πp) and a(πp × πp) via

ε(s, πp) = ε(1/2, πp)p
−a(πp)(s−1/2),

ε(s, πp × πp) = ε(1/2, πp × πp)p−a(πp×πp)(s−1/2).

Since the conductor exponents above coincide with the corresponding conductor exponents
arising from representations of GL4(Qp), the results of [BH17] and [Cor19] imply that there exist
absolute positive constants c1, c2 and d such that5 for any irreducible admissible representation
πp of GSp4(Qp) of trivial central character, we have the bound

(10) c1a(πp)− d ≤ a(πp × πp) ≤ c2a(πp)

Given an irreducible cuspidal automorphic representation π ' ⊗vπv of GSp4(A), we define
its finite conductor q(π) by

(11) q(π) =
∏
p<∞

pa(πp).

We define the finite conductor of π × π by

(12) q(π × π) =
∏
p<∞

pa(πp×πp).

5With some bookkeeping, one can show that it suffices to take c2 = 7, c1 = 2 and d = 64.
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The next lemma shows that the conductor is always bounded by a power of the level. While
this result is probably known to experts, we were unable to find a suitable reference.

Lemma 2.4.1. There exist absolute constants C and D such that given a positive integer N and an
automorphic representation π of GSp4(A) arising from Sk(Γ

(2)
0 (N)), we have q(π) � NC and q(π ×

π)� ND.

Proof. Let π be as in the Lemma. Then πp is unramified for all p - N and hence a(πp) = 0 for
such p. Consider a prime p dividing N . Then πp has a vector fixed by

(13) K0,p(N) := GSp4(Zp) ∩

( Zp Zp Zp Zp
Zp Zp Zp Zp
NZp NZp Zp Zp
NZp NZp Zp Zp

)
.

LetKp(N) ⊆ K0,p(N) be the principal congruence subgroup defined byKp(N) = {g ∈ GSp4(Zp) :

g ≡ 14 (mod N)}. It is clear that the lemma follows from (10) - (12) and the following purely
local statement: There exists an absolute constant C such that for a prime p, a positive integer np and
an irreducible admissible representation πp of GSp4(Qp) that contains a non-zero Kp(p

np)-fixed vector,
we have a(πp) ≤ Cnp.

We now give a proof of the local statement. By the well-known classification theorem of
irreducible admissible representations, we have the following two cases

• πp is obtained as a subquotient of a parabolically induced representation from one of
the parabolic subgroups of GSp4,
• πp is a supercuspidal representation.

We consider the first case. In this case, the induced representation is induced from a collection
of characters of GL1(Qp) and/or admissible representations of GL2(Qp), depending on the
parabolic subgroup (see Chapter 2 of [RS07] for more details). Since the induced representation
has a vector fixed by Kp(p

np), it follows easily using the Iwasawa decomposition that any
character occurring in the inducing data must have conductor exponent at most np and any
representation of GL2(Qp) occurring in the inducing data must have a vector fixed by {g ∈
GL2(Zp) : g ≡ 12 (mod pnp)} and hence must have conductor exponent at most 2np. Now the
local statement follows immediately from the direct expression of a(πp) as a sum of the above
conductor-exponents (Table A.9 of [RS07]).

We now move on to the second case. In this case, using the fact that πp contains a non-
zero Kp(p

np)-fixed vector, it is immediate that the formal degree deg(πp) [GI14, section 13] of
πp satisfies deg(πp) ≤ pDnp for some absolute positive constant D. On the other hand, the
formal degree conjecture (which is proved for GSp4 by the main result of [GI14] implies that
deg(πp) ≥ pEa(πp×πp) for some absolute positive constantE. This combined with (10) concludes
the proof of the local statement in this case. �

Suppose F ∈ Sk(Γ
(2)
0 (N))T is a Hecke eigenform at good primes and π ∈ Π(F ). We define

the completed spinor L-function (see Table 3 of [Sch17])

(14) Λ(s, π) := (2π)−2s−k+1Γ(s+ k − 3/2)Γ(s+ 1/2)L(s, π)

which coincides with the completed L-function of an automorphic representation of GL4(A) by
the previous subsection and can therefore be meromorphically extended to the whole complex
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plane and satisfies the functional equation

Λ(s, π) = ε(s, π)Λ(1− s, π).

Using (14), we see that the analytic conductor q(s, π) of L(s, π) (for definition see [IK04,
p.95]) is

q(s, π)� q(π)k2(|s|+ 3)4 �N k2(|s|+ 3)4.

Therefore the convexity bound for L(s, π) in the weight/t-aspect is (see [IK04, p.101])

(15) |L(1/2 + ε+ it, π)| �N,ε k
1
2

+ε(3 + |t|)1+ε for any ε > 0.

We will also need the completed L-function

Λ(s, π × π) := L∞(s, π × π)L(s, π × π)

where

L∞(s, π × π) :=
(

(ΓR(s)ΓR(s+ 1)
)2(

ΓC(s+ k − 1)ΓC(s+ k − 2)
)2

ΓC(s+ 1)ΓC(s+ 2k − 3)

(see [DKS14, p.375] or [PSS14, Section 5.2]) with ΓC(s) := 2(2π)−sΓ(s) and ΓR(s) := π−s/2Γ(s/2).
This also satisfies the usual functional equation taking s 7→ 1−s by the theory of Rankin-Selberg
convolutions on GLn. By the formula for L∞(s, π × π), we see that the analytic conductor of
L(s, π × π) is

q(s, π × π)� q(π × π)k10(|s|+ 3)16 �N k10(|s|+ 3)16.

Hence the convexity bound (see [IK04, p.101]) for L(s, π × π) in the weight/t aspect is

(16) |L(1/2 + ε+ it, π × π)| �N,ε k
5
2

+ε(3 + |t|)4+ε for any ε > 0.

3. SIGN CHANGES OF HECKE EIGENVALUES OVER PRIMES

In this section we will prove Theorems 1.1.1 and 1.1.2.

3.1. First sign change of Hecke eigenvalues of non-CAP forms. In this subsection, using a
technique of Jin [Jin19, Theorem 3.1] (also see Cho and Kim [CK21]) we prove Theorem 1.1.1
for the non-CAP forms.

Proposition 3.1.1. Let N ≥ 1 be an integer, and let F ∈ Sk(Γ
(2)
0 (N))T be a Hecke eigenform at all

good primes with normalized Hecke eigenvalues λ(m) for gcd(m,N) = 1. Assume that F satisfies the
Ramanujan conjecture.6 Then there exists a prime p with gcd(p,N) = 1 and

p�N,ε k
5+ε

such that λ(p) < 0.

Proof. Fix some π ∈ Π(F ). For Re(s) > 1, let us define

LN,b(s, π) :=
∑

m≥1,gcd(m,N)=1
m sq-free

λ(m)

ms
=

∏
(p,N)=1

(
1 +

λ(p)

ps

)

and

LN,b(s, π × π) :=
∑

m≥1,gcd(m,N)=1
m sq-free

λ(m)2

ms
=

∏
(p,N)=1

(
1 +

λ(p)2

ps

)
.

6This is automatic if k ≥ 3 or F is a Yoshida lift.
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Note that the Euler product is valid as λ(m) is multiplicative. For Re(s) > 1, using (7), (9) and
(8), we have

LN,b(s, π)

L(s, π)
=

∏
p | N

Hp(p
−s)×

∏
(p,N)=1

(1 +
λ(p)

ps

) ∏
1≤i≤4

(
1− αp,i

ps

)
:=

∏
p | N

Hp(p
−s)×

∏
(p,N)=1

(
1 +

a2

p2s
+ · · ·+ a5

p5s

)
,

where Hp(X) is a polynomial of degree ≤ 4 with absolutely bounded coefficients and

LN,b(s, π × π)

L(s, π × π)
=

∏
p | N

H(1)
p (p−s)×

∏
(p,N)=1

(
1 +

λ(p)2

ps

) ∏
1≤i,j≤4

(
1− αp,iαp,j

ps

)
(17)

:=
∏
p | N

H(1)
p (p−s)×

∏
(p,N)=1

(
1 +

b2
p2s

+ · · ·+ b17

p17s

)
,

where ai, bj for i = 2, . . . , 5; j = 2, . . . , 17 are complex numbers which are bounded by an abso-
lute constant andH(1)

p (X) is a polynomial of degree≤ 16 with absolutely bounded coefficients.
Hence the Euler products expressing LN,b(s,π)

L(s,π) and LN,b(s,π×π)
L(s,π×π) are absolutely and uniformly con-

vergent in any compact set in the region Re(s) > 1/2. Therefore, both LN,b(s,π)
L(s,π) and LN,b(s,π×π)

L(s,π×π)

define holomorphic functions in Re(s) > 1/2.
Now, we want to show |L

N,b(s,π×π)
L(s,π×π) | �N 1 at s = 1. First note that, by Weissauer’s bound,

none of the Euler factors of LN,b(s,π×π)
L(s,π×π) vanishes at s = 1 any prime p. Hence LN,b(s,π×π)

L(s,π×π) 6= 0 at
s = 1. Let C := max2≤i≤17|bi|. Then C is an absolute constant. Hence one can easily see from
(17) that ∣∣∣∣LN,b(1, π × π)

L(1, π × π)

∣∣∣∣�N 1.

We also have∣∣∣∣LN,b(1, π × π)

L(1, π × π)

∣∣∣∣ ≥ ∏
p | N

|H(1)
p (p−1)| ×

∏
(p,N)=1
p≤16C

(
1− 1

p

)16

×
∏

(p,N)=1
p>16C

(
1− 16C

p2

)
.

Therefore |L
N,b(1,π×π)
L(1,π×π) | �N 1.

Let w be a smooth function on [0,∞) with support in [0, 2] and w ≡ 1 on [0, 1] and 0 ≤ w ≤ 1

on [1, 2]. Also let ŵ(s) :=
∫∞

0 w(x)xs−1dx be the Mellin transform. Then, for any real number
X > 1, using Perron type formula [Jin19, Section 2.2] we have

∑
m≥1,gcd(m,N)=1

m sq-free

λ(m)w
(m
X

)
=

1

2πi

∫ 1+ε+i∞

1+ε−i∞
ŵ(s)LN,b(s, π)xsds

and ∑
m≥1,gcd(m,N)=1

m sq-free

λ(m)2w
(m
X

)
=

1

2πi

∫ 1+ε+i∞

1+ε−i∞
ŵ(s)LN,b(s, π × π)xsds.

Since both LN,b(s,π)
L(s,π) andL(s, π) are holomorphic in the region Re(s) > 1/2, the functionLN,b(s, π)

has holomorphic continuation to Re(s) > 1/2. The function ŵ(s) is of rapid decay as Im(s) →
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∞ and L(s, π) is holomorphic in Re(s) > 1/2 implies that∑
m≥1,gcd(m,N)=1

m sq-free

λ(m)w
(m
X

)
=

1

2πi

∫ 1/2+ε+i∞

1/2+ε−i∞
ŵ(s)LN,b(s, π)xsds.

The fact |L
N,b(s,π)
L(s,π) | �N,ε 1 in Re(s) ≥ 1/2 + ε along with the convexity bound (15) for L(s, π)

gives

(18)
∑

m≥1,(m,N)=1
m sq-free

λ(m)w
(m
X

)
�N,ε (Xk)

1
2

+ε.

Since the poles of L(s, π × π) are only at s = 1, using convexity bound (16) and arguing as
above, one can derive

(19)
∑

m≥1,(m,N)=1
m sq-free

λ(m)2w
(m
X

)
= Ress=1

(
LN,b(s, π × π)

)
ŵ(1)X + O

(
(Xk5)

1
2

+ε
)
.

If F is general type, L(s, π× π) has a simple pole at s = 1 and Ress=1

(
LN,b(s, π × π)

)
�N k−ε

for any ε > 0 (see [CK21, p.928]). When F is of Yoshida type then L(s, π× π) has a double pole
at s = 1 with residue

Ress=1

(
LN,b(s, π × π)

)
= 2cγ · L(1, π1 × π2)2L(1, sym2π1)L(1, sym2π2),

where γ is the Euler constant and c is a constant which depends on N but not on k. Hence,
using the results from [Li10], one can easily see Ress=1

(
LN,b(s, π × π)

)
�N k−ε for any ε > 0.

Therefore, in both the cases, Ress=1

(
LN,b(s, π × π)

)
ŵ(1)X �N (Xk5)

1
2

+ε when X �N k5+ε.
Let us assume that λ(m) ≥ 0 for all square-freem ≤ 2X with gcd(m,N) = 1. WhenX �N k5+ε,
Weissauer’s bound and estimates (18) and (19) imply

X �N

∑
m≥1

m sq-free

λ(m)2w
(m
X

)
�N Xδ

∑
m≥1

m sq-free

λ(m)w
(m
X

)
�N,ε X

δ(Xk)
1
2

+ε

for any δ > 0. This is a contradiction to the assumption X �N,ε k
5+ε. Since λ(m) is multiplica-

tive, hence there exists a prime p with gcd(p,N) = 1 and

p �N,ε k
5+ε

such that λ(p) < 0. �

3.2. Sign changes of Hecke eigenvalues of non-CAP forms over arithmetic progressions. We
begin by recalling the following well-known result, which is a known special case of the Selberg
orthogonality conjecture.

Proposition 3.2.1. Let π and π′ be irreducible unitary cuspidal automorphic representations of GLm(A)

and GLm′(A) where m and m′ are both less than or equal to 4. Assume that at least one of π and π′ is
self dual. Let N be any positive integer. Then

∑
p≤X, gcd(p,N)=1

λπ(p)λπ′(p)

p
=

log logX +Oπ,π′,N (1) if π′ ' π,

Oπ,π′,N (1) otherwise.

Proof. See Section 2 of [RS96] or [LWY05, Corollary 1.5]. Note here that since only finitely many
primes divide N , the condition gcd(p,N) = 1 does not change the asymptotic behaviour of the
sums. �
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As a corollary of the above we obtain

Corollary 3.2.2. Let π be an irreducible unitary cuspidal automorphic self-dual representation of GLm(A)

with m ≤ 4 and assume that π is not the trivial representation of GL1(A). Let a,M be positive integers
such that gcd(aq(π),M) = 1 where q(π) is the finite conductor of π. Let N be any positive integer.
Then, for sufficiently large X , we have∑

p≤X,(p,N)=1
p≡amodM

λπ(p)

p
= Oπ,M,N (1)

and ∑
p≤X,(p,N)=1
p≡amodM

λπ(p)2

p
=

1

ϕ(M)
log logX + Oπ,M,N (1)

Proof. For gcd(a,M) = 1, by orthogonality of characters, we have

∑
χmodM

χ(a)−1χ(p) =

ϕ(M) if p ≡ amodM

0 otherwise.

Therefore, we have ∑
p≤X,(p,N)=1
p≡amodM

λπ(p)

p
=

1

ϕ(M)

∑
χmodM

χ(a)−1
∑
p≤X

(p,NM)=1

λπ×χ(p)

p
.

We apply Proposition 3.2.1 to the inner sum, which gives us the first part of the proposition.
For the second part, observe that π 6' π × χ unless χ is trivial. This follows from the fact

that the conductors are different: since there exists a prime p dividing the conductor of χ but
not dividing q(π), we see that the p-part of the conductor of π is trivial but the p-part of the
conductor of π × χ is non-trivial. As∑

p≤X,(p,N)=1
p≡amodM

λπ(p)2

p
=

1

ϕ(M)

∑
χmodM

χ(a)−1
∑
p≤X

(p,NM)=1

λπ(p)λπ×χ(p)

p
,

we apply Proposition 3.2.1 to the inner sum to complete the proof. �

Lemma 3.2.3. Let F ∈ Sk(Γ
(2)
0 (N))T be a Hecke eigenform at all good primes with normalized Hecke

eigenvalues λ(m) for gcd(m,N) = 1. Also let a,M be positive integers such that gcd(aN,M) = 1.
Then, for sufficiently large X , we have ∑

p≤X,(p,N)=1
p≡amodM

λ(p)

p
= OF,M (1)

and ∑
p≤X,(p,N)=1
p≡amodM

λ(p)2

p
=

 1
ϕ(M) log logX + OF,M (1) if F is of general type;

2
ϕ(M) log logX + OF,M (1) if F is of Yoshida type.

Proof. This follows immediately from Proposition 3.2.1, Corollary 3.2.2 and the fact that

λ(p) =

λΠ(p) if F is of general type;

λπ1(p) + λπ2(p) if F is of Yoshida type.
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where Π is an irreducible unitary cuspidal automorphic self-dual representation of GL4(A) and
π1, π2 are non-isomorphic unitary cuspidal automorphic self-dual representation of GL2(A).

�

Proposition 3.2.4. Let F ∈ Sk(Γ
(2)
0 (N))T be a Hecke eigenform at all good primes with normalized

Hecke eigenvalues λ(m) for gcd(m,N) = 1. If k = 2, then assume further that F satisfies the Ra-
manujan conjecture. Also let a,M be positive integers such that gcd(aN,M) = 1. Then, the sequence
{λ(p)}p≡amodM has infinitely many positive and infinitely many negative elements.

Proof. We prove the proposition when F is of general type. The case of Yoshida type follows
same argument with obvious modifications. For 0 < δ < 1, let y = Xδ. Without loss of
generality, assume that λ(p) > 0 for any prime y ≤ p ≤ X and p ≡ amodM . By Weissuaer’s
estimate |λ(p)| ≤ 4. Therefore Lemma 3.2.3 implies

1

ϕ(M)
log

(
logX

log y

)
+ OF,M (1) =

∑
y≤p≤X,(p,N)=1
p≡amodM

λ(p)2

p
≤ 4

∑
y≤p≤X,(p,N)=1
p≡amodM

λ(p)

p
= OF,M (1).

This is impossible for sufficiently small δ > 0 which completes the proof. �

3.3. The case of CAP forms. In the case of CAP forms we can prove a stronger result.

Proposition 3.3.1. Let F ∈ Sk(Γ
(2)
0 (N))CAP be a Hecke eigenform at all good primes with normalized

Hecke eigenvalues λ(m) for gcd(m,N) = 1. Assume that F does not lie in S∗k(Γ
(2)
0 (N)). Then there

exists a prime p with gcd(p,N) = 1 and
p �N 1

such that λ(p) < 0.

Proof. We go through the various types of F using the terminology of Proposition 2.3.1. First,
let F be of Saito–Kurokawa type with χ0 6= 1. For any prime gcd(p,N) = 1, we have

λ(p) = λ0(p) +
(
p1/2 + p−1/2

)
χ0(p),

where λ0(p), χ0 are as in Proposition 2.3.1. Since |λ0(p)| ≤ 2, the sign of λ(p) is the same as
that of χ0(p). Hence the bound for first sign change does not depend on the weight k but it
depends only on χ0 and consequently only on N (since there are only finitely many quadratic
Dirichlet characters unramified away from N ). Therefore, in this case, there exists prime p with
gcd(p,N) = 1 and p�N 1 such that λ(p) < 0.

If F is of Soudry type, then, for any prime gcd(p,N) = 1,

λ(p) =
(
p1/2 + p−1/2

)
λ0(p),

where λ0(p) is as in Proposition 2.3.1. Therefore the bound for the first sign change is the same
as that of λ0(p). Recall here that the λ0(p) are the Hecke eigenvalues for a cusp form of GL2 of
weight 1 and level bounded by a constant depending only on N . So by Theorem 1.1 of [CK21]
there exists prime p with gcd(p,N) = 1 and p �N 1 such that λ0(p) < 0. This implies that
λ(p) < 0.

Finally, we assume thatF is of Howe–Piatetski-Shapiro type. Hence for any prime gcd(p,N) =

1 we have

λ(p) =
(
p1/2 + p−1/2

)
(χ1(p) + χ2(p)) ,
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where as in Proposition 2.3.1, the Dirichlet characters χ1, χ2 are distinct. Clearly the sign of
λ(p) is the same as that of χ1(p)+χ2(p) and for eachN there are only finitely many possibilities
for χ1(p) +χ2(p). It only remains to prove that given χ1 and χ2 that χ1(p) +χ2(p) changes sign
infinitely often. Indeed, we have the following more precise information. Let K1,K2 be qua-
dratic fields associated to the quadratic Dirichlet characters χ1, χ2 respectively. The Dirichlet
characters χ1 6= χ2 implies K1 6= K2. Then, for gcd(p,N) = 1 we have

(20) χ1(p) + χ2(p) =


2 if p is split in both K1 and K2,

−2 if p is inert in K1 and K2,

0 if p is split in one field and inert in other field.

Therefore, χ1(p) + χ2(p) changes sign infinitely often as p runs over gcd(p,N) = 1. �

Proposition 3.3.2. Let F ∈ Sk(Γ
(2)
0 (N))CAP be a Hecke eigenform at all good primes with normalized

Hecke eigenvalues λ(m) for gcd(m,N) = 1. Assume that F does not lie in S∗k(Γ
(2)
0 (N)). Then, for any

positive integers a,M with gcd(aN,M) = 1, the sequence {λ(p)}p≡amodM changes sign infinitely
often.

Proof. The proof for the various cases follow a similar pattern. We shall give full details of the
proof when F is of non-classical Saito–Kurokawa type and indicate the main changes in the
proof for the Howe–Piatetski-Shapiro and Soudry types.

Assume thatF ∈ Sk(Γ
(2)
0 (N)) is of Saito–Kurokawa type but not of classical Saito–Kurokawa

type. Then, by Proposition 2.3.1, there is a primitive quadratic Dirichlet character χ0 such that

λ(p) = λ0(p) +
(
p1/2 + p−1/2

)
χ0(p)

for all primes gcd(p,N) = 1. Here λ0(p) is as in Proposition 2.3.1. We note here that sign of
λ(p) is same as that of χ0(p) when gcd(p,N) = 1. It remains to prove that χ0(p) changes sign
infinitely often when p runs over p ≡ amodM for any gcd(aN,M) = 1.

Observe that, for X sufficiently large, we have∑
p≤X,(p,N)=1
p≡amodM
χ0(p)=1

1

p
=

1

2

∑
p≤X

(p,N)=1

χ0(p) + 1

p
× 1

ϕ(M)

∑
χmodM

χ(a)−1χ(p)(21)

=
1

2ϕ(M)

∑
χmodM

χ(a)−1

 ∑
p≤X

(p,N)=1

χ0(p)χ(p)

p
+

∑
p≤X

(p,N)=1

χ(p)

p

 .

Note that χ0χ 6= 1 as gcd(N,M) = 1. Hence∑
p≤X,(p,N)=1
p≡amodM
χ0(p)=1

1

p
=

1

2ϕ(M)
log logX +OF,M (1).

Similarly, using 1− χ0(p) in (21) instead of χ0(p) + 1, one can show∑
p≤X,(p,N)=1
p≡amodM
χ0(p)=−1

1

p
=

1

2ϕ(M)
log logX +OF,M (1).

This completes the proof in the case when F is a non-classical Saito–Kurokawa lift.
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When F is of Howe–Piatetski-Shapiro type and χ1, χ2 are two distinct quadratic Dirichlet
characters as in Proposition 2.3.1. We need to show that χ1(p) + χ2(p) takes infinitely many
positive and negative values as p runs over p ≡ amodM when gcd(aN,M) = 1. From (20), it
is clear that one can use

1

8

(
χ1(p) + χ2(p) + 2

)(
χ1(p) + χ2(p)

)
=

1

4

(
1 + χ1(p)χ2(p) + χ1(p) + χ2(p)

)
and

1

8

(
χ1(p) + χ2(p)− 2

)(
χ1(p) + χ2(p)

)
=

1

4

(
1 + χ1(p)χ2(p)− χ1(p)− χ2(p)

)
as characteristic functions for {(p,N) = 1 | χ1(p) +χ2(p) > 0} and {(p,N) = 1 | χ1(p) +χ2(p) <

0} respectively and argue as above to complete the proof.
Finally, we consider the case when F is of Soudry type. By Proposition 2.3.1, there is a

unitary cuspidal automorphic representation π0 of GL2(A) such that

λ(p) =
(
p1/2 + p−1/2

)
λ0(p)

for any prime gcd(p,N) = 1. Here λ0(p) is the normalized Hecke eigenvalue of π0 at p. Clearly,
it is enough to prove the statement of the proposition for λ0(p) which can be done in a similar
manner to the proof of Proposition 3.2.4. We leave the details for the reader. �

Proofs of main results. Theorem 1.1.1 follows from Propositions 3.1.1 and 3.3.1. Theorem 1.1.2
follows from Propositions 3.2.4 and 3.3.2. �

3.4. Odds and ends. We explain some of the issues that can occur with Theorem 1.1.2 when
gcd(N,M) > 1. If the level N is square free, then Theorem 1.1.2 can be shown to hold for any
positive integers a and M such that gcd(a,M) = 1. In this case there is no need to assume
gcd(N,M) = 1. However for non-squarefree levels N there are some subtle issues.

For an immediate example of the kind of issues that can occur, consider the case when
F is of Yoshida type which is coming from two CM forms f1 of weight 2 and f2 of weight
2k − 2 and assume that they both have CM by the same imaginary quadratic field K. Then
λ(p) = λ1(p) + λ2(p) = 0 for all primes p which are inert in K. Hence there is an arithmetic
progression amodM where gcd(M,N) > 1 such that λ(p) = 0 for all p ≡ amodM .

Furthermore, for the CAP forms of Saito-Kurokawa or Howe–Piatetski-Shapiro type, one
can construct arithmetic progressions (with the modulus M only divisible by primes dividing
the level) such that all Hecke eigenvalues at primes in the progression are positive.

Lemma 3.4.1. Let F ∈ Sk(Γ
(2)
0 (N)) be a Hecke eigenform with normalized eigenvalues λ(m). Also

assume that F is either of Saito–Kurokawa type or of Howe–Piatetski-Shapiro type. Then there exists a
positive integerM which is only divisible by primes dividngN such that λ(p) > 0 for all p ≡ 1 modM .

Proof. Let us first assume that F ∈ Sk(Γ
(2)
0 (N)) is of Saito–Kurokawa type. Then, by Proposi-

tion 2.3.1, there is a primitive Dirichlet character χ0 modM with χ2 = 1 and a representation
π0 of GL2(A) with normalized Hecke eigenvalues λ0(p) at primes such that

λ(p) = λ0(p) + p1/2χ0(p) + p−1/2χ0(p)

for all primes gcd(p,N) = 1. Note that if p ≡ 1 modM then χ0(p) = 1 and hence λ(p) =

λ0(p) + p1/2 + p−1/2 > 0 for all p ≡ 1 modMN .
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Let F be of Howe–Piatetski-Shapiro type. Proposition 2.3.1 implies that there are two dis-
tinct quadratic Dirichlet characters χ1, χ2 with conductors M1,M2 respectively such that

λ(p) =
(
p1/2 + p−1/2

)
χ1(p) +

(
p1/2 + p−1/2

)
χ2(p)

for all gcd(p,N) = 1. Note that if p ≡ 1 modM1M2 then χ1(p) = 1 = χ2(p). Hence λ(p) =

2(p1/2 + p−1/2) > 0 for all p ≡ 1 modM1M2N . �

4. SIGN CHANGES OF RADIAL FOURIER COEFFICIENTS OF CUSP FORMS

The main aim of this section is to prove Theorem 1.2.1. We divide the proof into a few parts.

4.1. Relations between Fourier coefficients. We will need the following proposition.

Proposition 4.1.1. Let F ∈ Sk(Γ
(2)
0 (N)) be a Hecke eigenform at all good primes having Fourier

coefficients a(T ) (T ∈ N2). Then, for a fundamental matrix T0 ∈ N2 and a prime p with gcd(p,N) = 1

such that p is inert in K = Q(
√
−4 det T0), we have

a(pT0) = a(T0)η(p)

where η(p) is the p-th Hecke eigenvalue of F .

Proof. This can be derived from a fundamental identity of Andrianov [And09, Theorem 5.28].
However we give here another proof relying on Bessel models. Let d := −4 det T0, and Λ be a
character of the class group Cld of K := Q(

√
d). It is well-known that (see, e.g., [And74, p.84]

or [PSS17, Prop 5.3]) that Cld can be identified with the set of SL2(Z)-equivalence classes of
matrices S ∈ N2 with −4 det S = d. Let {Ni}hi=1 be a complete set of representatives of Cld

with N1 = T0. By a special case of Corollary 2 of [Mar21] (which generalizes Theorem 2.10 of
[KST12]) we obtain for each gcd(p,N) = 1 the relation

(22)
h∑
i=1

Λ(Ni)a(pNi) = pk−
3
2U1,0

p (αp,1, αp,3;K,Λ)
h∑
i=1

Λ(Ni)a(Ni),

where αp,i are the Satake parameters and U `,mp (−,−;K,Λ) is the (normalized) Bessel function
attached to a spherical representation, as defined in [KST12, Theorem 2.5]. Using Sugano’s
formula for U1,0

p as given in [KST12, (2.3.6)], we have that

(23) U1,0
p (a, b;K,Λ) = a+ b+ a−1 + b−1 − p−1/2γ,

where for each p coprime to N we have

(24) γ =


0 if p is inert in K,

Λp($K,p) if p is ramified in K,

Λp($K,p) + Λp($K,p) if p is split in K.

By our assumption p is inert in K, so we have γ = 0 and thus obtain pk−
3
2 (U1,0

p (αp,1, αp,3)) =

pk−
3
2 (αp,1 + αp,3 + α−1

p,1 + α−1
p,3) = η(p) and so (22) reduces to

h∑
i=1

Λ(Ni)a(pNi) = η(p)

h∑
i=1

Λ(Ni)a(Ni).

Since this is true for any character Λ of Cld, we use orthogonality of characters to deduce that
a(pNi) = η(p)a(Ni) for each i. �
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Applying Theorem 1.1.2 and Proposition 4.1.1, it is easy to obtain the following weaker form
of Theorem 1.2.1.

Corollary 4.1.2. Let F ∈ Sk(Γ
(2)
0 (N)) be a Hecke eigenform at all good primes having Fourier coef-

ficients a(T ). Assume that F does not lie in S∗k(Γ
(2)
0 (N)). If k = 2 and F is not attached to a CAP

representation, then assume further that F satisfies the Ramanujan conjecture. Then for any fundamen-
tal T0 ∈ N2 such that gcd(4 det(T0), N) = 1 and a(T0) 6= 0, there are infinitely many primes p with
a(pT0) > 0 and there are infinitely many primes p such that a(pT0) < 0.

Proof. Let η(p) be the p-th Hecke eigenvalue of F . Then for any fundamental T0 with a(T0) 6= 0,
Proposition 4.1.1 implies

a(pT0) = a(T0)η(p)

for any prime p which is coprime to N and inert in K = Q(
√
−4det T0). Since the latter set

contains an arithmetic progression moduloM = 4 det(T0), we apply Theorem 1.1.2 to complete
the proof. �

While Corollary 4.1.2 is an easy consequence of Theorem 1.1.2 and Proposition 4.1.1, we will
prove below in Proposition 4.3.1 that one can extend Corollary 4.1.2 to an arbitrary cusp form
F ∈ S∗k(Γ

(2)
0 (N))⊥. Note here that if F ∈ Sk(Γ

(2)
0 (N)) is a Hecke eigenform at all good primes

that does not lie in S∗k(Γ
(2)
0 (N)) then F lies in S∗k(Γ

(2)
0 (N))⊥.

The next remark clarifies what is known about the existence of fundamental matrices T0 as
above. In particular, if N = 1 (or if one makes some mild assumptions on F at the primes
dividing odd and squarefree N ) then there are lots of T0 ∈ N2 such that gcd(4 det(T0), N) = 1

and a(T0) 6= 0.

Remark 4.1.3. Suppose that N is odd and squarefree and F ∈ Sk(Γ
(2)
0 (N)) is non-zero with Fourier

coefficients a(T ). If N > 1, assume that F is an eigenform for the U(p) Hecke operator for the finitely
many primes p|N ; we make no assumptions concerning whether F is a Hecke eigenform at primes not
dividing the level N . Then by the results of [JLS21], one knows that given ε > 0, for all sufficiently
large X there are ≥ X1−ε distinct odd squarefree integers ni ∈ [X, 2X] satisfying gcd(ni, N) = 1 and
−ni ≡ 1 mod 4 (in particular −ni is a fundamental discriminant) such that for each ni as above there
is a fundamental matrix Ti with 4det Ti = ni and a(Ti) 6= 0.

We will also need another relation which is specific to the classical Saito–Kurokawa lifts.

Lemma 4.1.4. Let F ∈ S∗k(Γ
(2)
0 (N)) be a Hecke eigenform at all good primes with normalized Hecke

eigenvalues λ(m) for gcd(m,N) = 1. Let π0 be the representation of GL2(A) associated to F (see
case 3 of Proposition 2.3.1) and let λ0(n) denote the normalized Hecke eigenvalue of π0 at n. Let
a(T ) (T ∈ N2) be the Fourier coefficients of F and let T0 be a fundamental matrix with the funda-
mental discriminant d := −4det T0. Then

a(pT0) = a(T0)pk−1

[
1−

(
d

p

)
1

p
+

λ0(p)

p1/2

]
for any prime p.

Proof. Let {Ni}hi=1 be as in the proof of Proposition 4.1.1. By a special case of Lemma 9 of
[Mar21] (see also Theorem 5.1 of [PSS17]) a(Ni) = a(Nj) and a(pNi) = a(pNj) for 1 ≤ i, j ≤ h.
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So applying (22) with Λ = 1, we obtain

ha(pT0) = ha(T0)

(
pk−

3
2λ(p)− pk−2(1 +

(
d

p

)
)

)
.

Since λ(p) = λ0(p)+p1/2 +p−1/2 by case 3 of Proposition 2.3.1, we obtain the desired result. �

4.2. A Selberg orthogonality relation for linear combinations of Hecke eigenforms. The ob-
ject of this subsection is to prove the following proposition which may be viewed as an exten-
sion of Lemma 3.2.3 to the case of linear combinations of eigenforms in S∗k(Γ

(2)
0 (N))⊥ (including

combinations from different types of Arthur packets).

Proposition 4.2.1. Let k and N be positive integers. Let F1, F2, . . . , Fm be elements of S∗k(Γ
(2)
0 (N))⊥

such that each Fi is a Hecke eigenform at all good primes with normalized Hecke eigenvalues λi(n) for
gcd(n,N) = 1. Let r1, r2, . . . , rm be complex numbers such that

∑m
i=1 ri 6= 0. Denote

R = (r1, r2, . . . , rm;F1, F2, . . . , Fm).

For each prime p coprime to N , define

aR(p) =

m∑
i=1

riλi(p).

Then exactly one of the following two cases must occur (depending on R).

(1) Case 1. For a,M positive integers with gcd(aN,M) = 1 and for all sufficiently large X , we
have ∑

p≤X,(p,N)=1
p≡amodM

aR(p)

p
= OR,M (1)

and ∑
p≤X,(p,N)=1
p≡amodM

|aR(p)|2

p
= CR,M log logX + OR,M (1)

for some positive real CR,M depending on R and M .
Moreover, in this case, under the additional assumption (needed only for k = 2) that each Fi

above that is of general type satisfies the Ramanujan conjecture, we have |aR(p)| �R 1 for all
primes p.

(2) Case 2. For a,M positive integers with gcd(aN,M) = 1 and for all sufficiently large X , we
have ∑

p≤X,(p,N)=1
p≡amodM

aR(p)

p3/2
= OR,M (1)

and ∑
p≤X,(p,N)=1
p≡amodM

|aR(p)|2

p2
= CR,M log logX + OR,M (1)

for some positive real CR,M depending on R and M .
Moreover, in this case, |aR(p)| �R p

1/2 for all primes p.

Proof. According to Proposition 2.3.1, a Hecke eigenform F ∈ S∗k(Γ
(2)
0 (N))⊥ at all good primes

gives rise to a certain finite set Σ(F ) of unitary cuspidal automorphic self-dual irreducible
representations of GL1, GL2 or GL4 such that the Hecke eigenvalues of F are related to those
of the representations in Σ(F ) as follows:



FOURIER COEFFICIENTS AND HECKE EIGENVALUES 25

• If F is of general type, then we take Σ(F ) = {Π} where Π is as in Case 1 of Proposition
2.3.1. In this case we trivially have λF (p) = λΠ(p).
• If F is of Yoshida type, then we take Σ(F ) = {π1, π2} where π1, π2 are as in Case 2 of

Proposition 2.3.1. In this case we have λF (p) = λπ1(p) + λπ2(p).
• If F is of Saito-Kurokawa type, then we take Σ(F ) = {π0, χ0} where π0, χ0 are as in

Case 3 of Proposition 2.3.1. In this case we have λF (p) = λπ0(p) + (p1/2 + p−1/2)λχ0(p).
• If F is of Soudry type, then we take Σ(F ) = {π0}where π0 is as in Case 4 of Proposition

2.3.1. In this case we have λF (p) = (p1/2 + p−1/2)λπ0(p).
• If F is of Howe–Piatetski-Shapiro type, then we take Σ(F ) = {χ1, χ2} where χ1, χ2 are

as in Case 5 of Proposition 2.3.1. In this case we have λF (p) = (p1/2+p−1/2) (λχ1(p) + λχ2(p)).

Let {πj}1≤j≤n denote the set of all unitary cuspidal automorphic self-dual irreducible rep-
resentations of GL1, GL2 or GL4 that occur among the elements of Σ(F ) as F ∈ S∗k(Γ

(2)
0 (N))⊥

varies over Hecke eigenforms at all good primes. Note that none of the πj equals the triv-
ial representation. Let µj(p) denote the normalized Hecke eigenvalue of πj at a prime p. For
1 ≤ i ≤ m, 1 ≤ j ≤ n and primes p - N we set c(j)

i (p) = 0 if πj /∈ Σ(Fi) and when πj ∈ Σ(Fi)

we set c(j)
i (p) equal to either 1 or (p1/2 + p−1/2) (depending on the coefficient of the Hecke

eigenvalue as explicated above) so that for all 1 ≤ i ≤ m and all p - N we have

(25) λi(p) =
n∑
j=1

c
(j)
i (p)µj(p).

For 1 ≤ j ≤ n, set

(26) R(j)(p) =
m∑
i=1

ric
(j)
i (p).

This shows that

(27) R(j)(p) = Dj + Ej(p
1/2 + p−1/2),

where Dj , Ej are complex numbers and independent of p.
Using (25), (26) and the definition of aR(p), we see that

(28) aR(p) =
n∑
j=1

R(j)(p)µj(p)

(29) |aR(p)|2 =
n∑
j=1

|R(j)(p)|2µj(p)2 +
∑

1≤j1 6=j2≤n
R(j1)(p)R(j2)(p)µj1(p)µj2(p).

We now claim that the function p 7→ R(j)(p) cannot be identically 0 for all j. Indeed, set C to
equal the m× n matrix (c

(j)
i (p))i,j and let V = (vj)1≤j≤n equal the column matrix defined by

vj =



1 if πj is a GL4 representation

1/2 if πj is a GL2 representation of weight ≥ 2
1

p1/2+p−1/2 if πj is a GL2 representation of weight 1
1

2(p1/2+p−1/2)
if πj is a GL1 character.
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Then it is easy to check that

CV = (1, 1, . . . , 1)t.

Consequently, we have

(R(1)(p), R(2)(p), . . . , R(n)(p)) V = (r1, r2, . . . , rm)CV

= r1 + r2 + . . . rm

6= 0

thus showing that the claim is true. Now that we have proved thatR(j)(p) cannot be identically
0, using the definition of R(j)(p) we see that there are two cases.

In the first case (which corresponds to Case 1 of the statement of the proposition) none of the
R(j)(p) actually depend on p; i.e, in the notation of (27), each Ej = 0. In this case, R(j)(p)�R 1

for all 1 ≤ j ≤ n and p, and furthermore there exists some j0 such that R(j0)(p) 6= 0. Therefore
using (28), (29) and Corollary 3.2.2, we conclude the proof. Note that if each πj satisfies the
Ramanujan conjecture, then we have |µj(p)| � 1 which gives the required bound on aR(p)

from (29).
In the second case (which corresponds to Case 2 of the statement of the proposition) at least

one of the R(j)(p) depends on p. In this case, using (27), we see that R(j)(p) �R p1/2 for all
1 ≤ j ≤ n, and furthermore there exists some j0 such that R(j0)(p) �R p1/2. Again using (28),
(29) and Corollary 3.2.2, we conclude the proof. �

4.3. Sign changes for forms orthogonal to classical Saito-Kurokawa lifts.

Proposition 4.3.1. Let k and N be positive integers. Let F ∈ S∗k(Γ
(2)
0 (N))⊥ be a non-zero cusp

form having real Fourier coefficients a(T ) and suppose that a(T0) 6= 0 for some fundamental T0 ∈ N2

with gcd(4 det(T0), N) = 1. If k = 2, assume that each element of Sk(Γ
(2)
0 (N)) that is of general

type satisfies the Ramanujan conjecture. Then the sequence {a(pT0)}p inert in Q(
√
−4det T0) changes sign

infinitely often.

Proof. Let us write F as a finite sum

F =
m∑
i=1

Fi,

where Fi’s are Hecke eigenforms at all good places having normalized Hecke eigenvalues
λi(m) (for m ≥ 1, (m,N) = 1) and Fourier coefficients ai(T ) (T ∈ N2). Let us fix a funda-
mental T0 ∈ N2 such that a(T0) 6= 0 and put K := Q(

√
−4 det T0) and let PK,− denote the set

of primes inert in K. Put M := 4 det(T0). Fix some a such that gcd(aN,M) = 1 and such that
each prime p ≡ amodM lies in PK,−. It suffices to show that the sequence {a(pT0)}p≡amodM

changes sign infinitely often.
Put ri = ai(T0). So

∑m
i=1 ri = a(T0) 6= 0. Following the notation of Proposition 4.2.1, define

aR(p) =
∑m

i=1 riλi(p) and let R = (r1, r2, . . . , rm;F1, F2, . . . , Fm); note that R depends only on
F and T0.

Using Proposition 4.1.1 we have for each p ≡ amodM ,

a(pT0)

pk−1/2
=
aR(p)

p
,
|a(pT0)|2

p2k−2
=
|aR(p)|2

p



FOURIER COEFFICIENTS AND HECKE EIGENVALUES 27

We now consider two cases according to which case of Proposition 4.2.1 we find ourselves
in.

In Case 1, there is a constant C1 depending on F and T0 such that for each p ≡ amodM

|a(pT0)|2

p2k−2
=
|aR(p)|2

p
≤ C1

|aR(p)|
p

= C1

∣∣∣∣a(pT0)

pk−1/2

∣∣∣∣ ,
and for all large X using Proposition 4.2.1 we have

(30)
∑
p≤X

p≡amodM

a(pT0)

pk−1/2
=

∑
p≤X

p≡amodM

aR(p)

p
�F,T0 1,

∑
p≤X

p≡amodM

|a(pT0)|2

p2k−2
=

∑
p≤X

p≡amodM

|aR(p)|2

p
= CF,T0 log logX +OF,T0(1).(31)

Now for any 0 < δ < 1, let y = Xδ. Assume that a(pT0) has the same sign δ ∈ {1,−1} for any
prime y ≤ p ≤ X and p ≡ amodM . Therefore (30) and (31) imply

CF,T0 log

(
logX

log y

)
+ OF,T0(1) =

∑
y≤p≤X

p≡amodM

|a(pT0)|2

p2k−2
≤ C1δ

∑
y≤p≤X

p≡amodM

a(pT0)

pk−1/2
= OF,T0(1).

This is absurd when δ > 0 is sufficiently small. Hence we are done.
In Case 2, for each p ≡ amodM there is a constant C1 such that

|a(pT0)|2

p2k−1
=
|aR(p)|2

p2
≤ C1

|aR(p)|
p3/2

= C1

∣∣∣∣a(pT0)

pk

∣∣∣∣ ,
and for all large X using Proposition 4.2.1 we have

(32)
∑
p≤X

p≡amodM

a(pT0)

pk
=

∑
p≤X

p≡amodM

aR(p)

p3/2
�F,T0 1,

∑
p≤X

p≡amodM

|a(pT0)|2

p2k−1
=

∑
p≤X

p≡amodM

|aR(p)|2

p2
= CF,T0 log logX +OF,T0(1).(33)

Now for any 0 < δ < 1, let y = Xδ. Assume that a(pT0) has the same sign δ ∈ {1,−1} for any
prime y ≤ p ≤ X and p ≡ amodM . Therefore (32) and (33) imply

CF,T0 log

(
logX

log y

)
+ OF,T0(1) =

∑
y≤p≤X

p≡amodM

|a(pT0)|2

p2k−1
≤ C1δ

∑
y≤p≤X

p≡amodM

a(pT0)

pk
= OF,T0(1).

This is absurd when δ > 0 is sufficiently small. Hence we are done. �

4.4. Sign changes for forms in the generalized Maass subspace. The next result together with
Proposition 4.3.1 completes the proof of Theorem 1.2.1.

Proposition 4.4.1. Let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero cusp form having real Fourier coefficients a(T )

and a(T0) 6= 0 for some fundamental T0. Then there exists a constant C > 0 such that the quantities
a(pT0) have the same sign for all primes p > C.
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Proof of Proposition 4.4.1. Since F ∈ S∗k(Γ
(2)
0 (N)), there exist a set of Hecke eigenforms (at all

good places) F1, . . . , F` ∈ S∗k(Γ
(2)
0 (N)) so that

F =
∑̀
i=1

Fi.

We let ai(T ) denote the Fourier coefficient of Fi. Then for any fundamental T0 ∈ N2 with
a(T0) 6= 0 and for any prime p Lemma 4.1.4 gives

ai(pT0) = ai(T0)pk−1

[
1−

(
d

p

)
1

p
+

λ0,i(p)

p1/2

]
,

where d := −4det T0. Hence we have

a(pT0) =
∑̀
i=1

ai(pT0)

=
∑̀
i=1

ai(T0)pk−1

[
1−

(
d

p

)
1

p
+

λ0,i(p)

p1/2

]
= a(T0)pk−1 + OF,T0

(
pk−3/2

)
.

Here in the last line we used λ0,i(p) � 1. The above shows that for all large p, a(pT0) has the
same sign as a(T0) and this completes the proof. �

5. BOUNDS FOR FOURIER COEFFICIENTS OF CUSP FORMS IN THE MAASS SUBSPACE

In this section, we will prove Theorem 1.2.2. We give two proofs, using very different meth-
ods. For the first proof, carried out in Section 5.1, we build upon some calculations due to
Pitale–Schmidt [PS14] to obtain key bounds (see Proposition 5.1.4) quantifying the growth of
the local Bessel functions associated to certain fixed vectors in representations of GSp4(Qp).
This relates the sizes of general Fourier coefficients of forms of Saito–Kurokawa type to the
sizes of fundamental Fourier coefficients, and in the latter case the desired bounds easily fol-
low from bounds for central values of L-functions. Using the above method, we are able to
prove a refined form of Theorem 1.2.2 in Theorem 5.1.6 below.

For the second proof, which is classical and carried out in Section 5.2, we restrict ourselves
to Saito-Kurokawa lifts of newforms of squarefree levels; see the statement of Proposition 5.2.1.
To prove Proposition 5.2.1, we follow a technique of Kohnen [Koh92, Koh93] together with
recent developments in the theory of Fourier–Jacobi expansion.

5.1. Bounds for Fourier coefficients using local Bessel functions. For S =
[
a b/2
b/2 c

]
∈ N2 we

denote LS := gcd(a, b, c), disc(S) := −4 det(S) = b2 − 4ac; we call LS the content of S and call
disc(S) the discriminant of S. For any S =

[
a b/2
b/2 c

]
∈ N2, the non-zero integer disc(S) factors

as follows:

disc(S) = dSL
2
SM

2
S

where dS < 0 is a fundamental discriminant, and MS is a positive integer. Note that S is
fundamental if and only if LS = MS = 1 in the above factorization. Moreover, any S ∈ N2 is
SL2(Z)-equivalent to a matrix

(34) S′ :=
[
LS

LS

][
MS

1

]
Sc
[
MS

1

]
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where Sc is a fundamental matrix of discriminant dS ; see Proposition 5.3 of [PSS17].
It is clear that the fundamental discriminant dS is uniquely determined by disc(S), and there-

fore the pair of integers (disc(S), LS) determine dS and MS . A key distinguishing property of
forms F in S∗k(Γ

(2)
0 (N)) — which does not hold in general for F /∈ S∗k(Γ

(2)
0 (N)) — is that a

Fourier coefficient a(S) of F only depends on disc(S) and LS (or equivalently, only on dS , LS
and MS).

Lemma 5.1.1. Let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero cusp form with Fourier coefficients a(T ). Suppose

that S1, S2 ∈ N2 with disc(S1) = disc(S2) and LS1 = LS2 . Then a(S1) = a(S2).

Proof. We may assume without loss of generality that F gives rise to an irreducible automor-
phic representation, and thus is a Hecke eigenform at all good primes. The lemma was proved
in the case N = 1 in this setting in [PSS17, Theorem 5.1 (i)], and the proof for general N is
essentially identical and follows from [Mar21, Lemma 9] and (34) above. �

In the next lemma we collect some facts about the local representations associated to forms
of classical Saito-Kurokawa type.

Lemma 5.1.2. Let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero form in the generalized Maass subspace such that

F is a Hecke eigenform at all good primes. Let π ∈ Π(F ) and write π ' ⊗vπv. Let f0 be a cuspidal
holomorphic newform of weight 2k − 2 for Γ0(N0) (see Proposition 2.3.1) whose adelization generates
the automorphic representation π0 of GL2(A) such that LN (s, π) = LN (s, π0)ζN (s+1/2)ζN (s−1/2).
Then the following hold:

(1) Suppose that p is a prime such that p - N0.7 Then πp ' χp1GL(2) o χ−1
p is a representation of

type IIb in the notation of Table A.15 of [RS07], where χp is an unramified unitary character of
Q×p .

(2) Suppose that p is a prime such that p|N0 and vp(N) = 1. Then we have vp(N0) = 1, and
moreover either πp ' τ(T, ν−1/2) is of type VIb in the notation of Table A.15 of [RS07], or
πp ' L((ν1/2ξpStGL(2), ν

−1/2) is of type Vb in the notation of Table A.15 of [RS07], where ξp
is the unramified non-trivial quadratic character of Q×p . The former case above occurs iff π0,p is
the Steinberg representation, and the latter case occurs iff π0,p is the unramified quadratic twist
of the Steinberg representation.

Furthermore, ifN is squarefree, thenF gives rise to an irreducible automorphic representation. More-
over, if N is squarefree then F is a newform (in the sense of Section 3.2 of [DPSS20]) if and only if
N0 = N .

Proof. By definition, the global Arthur parameter of π is equal to (π0 � 1) � (1 � ν(2)); see the
notation and explanation in Section 1 of [Sch20] and note that the quadratic character σ (which
equals the character χ0 in the notation of part 3 of Proposition 2.3.1)) is trivial in the present
case. Now the possibilities for πp can be read off from Table 2 of [Sch20]. In particular, if p is a
prime such that such that p - N0, then π0,p is an unramified principal series of the form χp×χ−1

p ,
in which case Table 2 of [Sch20] asserts that πp ' χp1GL(2) o χ−1

p .
Next suppose p|N0. Hence p|N and so πp has a vector fixed by K0,p(N), the group defined

in (13). Looking at Table 2 of [Sch20] we see that πp is one of the types Vb, Va*, VIb, VIc, XIb

7Note here that by Proposition 2.3.1, if p|N0 then p|N ; so the set of p - N is contained in the set of p - N0.
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or XIa*, and of these only Vb and VIb has a vector fixed by K0,p(N) when vp(N) = 1 (as can
be read off from Table A.15 of [RS07]). So πp is either of Type VIb or Type Vb. Again from
Table 2 of [Sch20], we see that in the former case π0,p is the Steinberg representation, and in the
latter case π0,p is the unramified quadratic twist of the Steinberg representation. Clearly in both
cases, the conductor exponent of π0,p equals 1, and hence vp(N0) = 1.

Finally, suppose that N is squarefree. By the previous parts we have that N0 is also square-
free and we also know that N0|N . Furthermore, we know exactly the local components πp at
each place. It follows that any two representations in π(F ) are isomorphic, and consequently, F
gives rise to an irreducible automorphic representation. If N0 = N , then for each prime p|N (as
well as for each prime p - N), πp has a 1-dimensional space of K0,p(N)-fixed vectors as follows
from the previous parts and Table A.15 of [RS07]; consequently, F is a newform. Conversely, if
F is a newform then πp cannot be of Type IIb at any p|N , because the Type IIb representation
being spherical does not contain a local newvector with respect to K0,p(N) (see Theorem 2.3.1
of [Sch05]). Therefore by the previous parts, N0 = N .

This concludes the proof. �

Remark 5.1.3. If N is not squarefree, then there are 4 further possibilities for πp beyond the Types IIb,
Vb and VIb mentioned in Lemma 5.1.2, namely the types Va*, VIc, XIb and XIa*.

Given a prime p and non-negative integers `,m, define the matrix

hp(`,m) =

[
p`+2m

p`+m

1
pm

]
We also need the subgroup P1,p ⊂ GSp4(Zp) which is defined as P1,p := K0,p(p) where K0,p(N)

is defined in (13).
Consider an irreducible admissible representation π of GSp4(Qp) that admits a local Bessel

model with respect to a standard additive character θ (see Section 2 of [PSS17]) and the trivial
character Λ = 1 of a quadratic extension L of Qp (L equals either Qp ⊕ Qp or a quadratic
field extension of Qp). We fix an isomorphism w 7→ Bw (which is uniquely determined up to
multiples) of π with its (1, θ)-Bessel model. This associates to each vector w ∈ Vπ a function
Bw on GSp4(Qp) and we are interested in bounding Bw(hp(`,m)) as a function of ` and m.
The heart of our method is the next proposition, which quantifies the growth of the functions
Bw(hp(`,m)) associated to suitable vectors w in local representations of Saito-Kurokawa type.

Proposition 5.1.4. (1) Let π ' χ1GL(2) o χ−1 be a representation of GSp4(Qp) of type IIb in the
notation of Table A.15 of [RS07], where χ is an unramified unitary character of Q×p . Let w0 be
the (unique up to multiples) spherical function in the space of π. Then Bw0(1) 6= 0 and for each
pair of non-negative integers `,m, we have the bound

|Bw0(hp(`,m))| < (`+ 1)(2`+ 2m+ 1)p−`−
3m
2 |Bw0(1)|.

Moreover, the space of P1,p-fixed vectors in π has a basis {w0, w1, w2} where w0 is as above, and
for i = 1, 2 we have Bwi(1) 6= 0 and

|Bwi(hp(`,m))| = p−
3
2
`− 3

2
m|Bwi(1)|.

(2) Let π be isomorphic to one of the following representations of GSp4(Qp):
• The representation τ(T, ν−1/2) of type VIb in the notation of Table A.15 of [RS07],
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• The representation L((ν1/2ξStGL(2), ν
−1/2) of type Vb in the notation of Table A.15 of

[RS07] where ξ is the unramified non-trivial quadratic character of Q×p .
Suppose that π admits a (1, θ) Bessel model and let w be a non-zero vector in the 1-dimensional
space of P1,p-fixed vectors in π. ThenBw(1) 6= 0 and for each pair of non-negative integers `,m,
we have

Bw(hp(`,m)) = ±p−2`−2mBw(1).

Above, the sign in ± equals -1 if and only if π is of Type Vb and `+m is odd.

Proof. Suppose that π ' χ1GL(2) o χ−1 is a representation of GSp4(Qp) of type IIb where χ is
an unramified unitary character of Q×p , and put α = χ($) where $ is a uniformizer in Qp. The
fact thatBw0(1) 6= 0 is a consequence of Sugano’s formula [Sug85]; see also Section 2 of [PSS17].
We may therefore without loss of generality assume that Bw0(1) = 1. Now by [PSS17, (12)], we
obtain that |Bw0(hp(0,m))| < (2m+1)p−3m/2 (note that the Satake parameters α± have absolute
value 1) for all m. Now using [PSS17, (10)] and the above bound, we obtain

|Bw0(hp(`,m))| <
∑̀
i=0

(2`+ 2m− 2i+ 1)p−
3`
2
− 3m

2
+ i

2 < (`+ 1)(2`+ 2m+ 1)p−`−
3m
2 .

Moreover, the space of P1,p-fixed vectors in π is 3-dimensional and has a basis {w1, w2, w3}
consisting of eigenvectors for the commuting Hecke operators T1,0 and T0,1 with eigenvalues
(αp3/2, α(p + 1)p3/2), (α−1p3/2, α−1(p + 1)p3/2), (p2, (α + α−1)p5/2) as calculated in Table 3 of
[PS]. Since w1 + w2 + w3 = w0, it follows that {w0, w1, w2} is a basis for the space of P1,p-fixed
vectors in π. Now by Proposition 6.1 of [PS14] it follows that Bwi(hp(`,m)) = α±`±mp−

3`
2
− 3m

2

which completes the proof of the first part of the proposition.
Finally, let π be either isomorphic to either τ(T, ν−1/2) or L((ν1/2ξStGL(2), ν

−1/2). Using
Table 3 of [PS14], we see that w is an eigenvector for the operators T1,0 and T0,1 with pair of
eigenvalues (εp, εp(p + 1)) where ε = 1 for τ(T, ν−1/2) and ε = −1 for L((ν1/2ξStGL(2), ν

−1/2).
Now by Proposition 6.1 of [PS14] (noting thatm0 = 0 in our case) it follows thatBw(hp(`,m)) =

ε−`−mp−2`−2mBw(1). The fact that Bw(1) 6= 0 follows from Theorem 8.2 of [PS14]. �

The next proposition bounds the fundamental Fourier coefficients of cusp forms in the gen-
eralized Maass subspace.

Proposition 5.1.5. Let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero cusp form with Fourier coefficients a(T ). For

fundamental T ∈ N2, we have

|a(T )| �F,ε

(det T )
k
2
− 7

12
+ε unconditionally,

(det T )
k
2
− 3

4
+ε assuming the generalized Lindelöf hypothesis.

Proof. We may assume without loss of generality that F gives rise to an irreducible representa-
tion π ' πF (since any F ∈ S∗k(Γ

(2)
0 (N)) may be written as a sum of such forms). By Proposition

2.3.1 there exists a representation π0 of GL2(A) such that

LN (s, π) = LN (s, π0)ζN (s+ 1/2)ζN (s− 1/2).

Let T be fundamental and put d = −4 det(T ). Then by Proposition 5.13 of [JLS21], we have

|a(T )| �F (det T )
k
2
− 3

4L(1
2 , π0 × χd)1/2.
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By [PY19] we have L(1
2 , π0×χd)�π0,ε |d|1/3+ε and conditionally on the generalized Lindelöf

hypothesis we have L(1
2 , π0 × χd)�π0,ε |d|ε. The result follows. �

We can now prove the main theorem of this section.

Theorem 5.1.6. Let k and N be positive integers and let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero cusp form

with Fourier coefficients a(T ). Write N = N1N2 where N1 is squarefree and gcd(N1, N2) = 1. Then

|a(T )| �F,ε L
k−1+ε
T M

k−3/2+ε
T |dT |

k
2
− 7

12
+ε

for all T ∈ N2 satisfying

(35) gcd(LTMT , N2) = 1.

Furthermore, if we assume the generalized Lindelöf hypothesis, then we have

|a(T )| �F,ε L
k−1+ε
T M

k−3/2+ε
T |dT |

k
2
− 3

4
+ε

for all T ∈ N2 satisfying (35).

Proof. We may assume without loss of generality that F has the following properties:

• F gives rise to an irreducible representation π ' ⊗vπv, and therefore (by Lemma 2.2.1)
F is a Hecke eigenform at all good primes.
• The adelization φF of F corresponds to a factorizable vector φF = ⊗vφv in the space of
π.
• If p|N1 and πp = χ1GL(2)oχ−1 is of type IIb, then φp equals one of the vectors w0, w1, w2

in the notation of Proposition 5.1.4.

Note that the set of F satisfying the above properties linearly generate S∗k(Γ
(2)
0 (N)). Note also

(by Lemma 5.1.2 that if p|N1 and πp is not of Type IIb, then πp must be of Type Vb or VIb and
φp must correspond to a (unique up to multiples) P1,p-fixed vector in the space of πp. Finally,
Lemma 5.1.2 also tells us that at each prime p - N , πp is of Type IIb.

Now, using essentially the same argument as in Corollary 2 of [Mar21] (with Λ = 1) together
with Lemma 5.1.1, we see that for T as in the statement of the Theorem

a(T )
∏

p|LTMT

Bφp(1) = (LTMT )ka(ST )
∏

p|LTMT

Bφp(hp(`p,mp)),

where we write LT =
∏
p p

`p , MT =
∏
p p

mp , and ST is any matrix of discriminant dT . Above,
we have used that gcd(LTMT , N2) = 1 and consequently, Bφp(1) 6= 0 for each p|LTMT by the
remarks at the beginning of this proof together with Proposition 5.1.4. Now, by Proposition
5.1.4,

∏
p|LTMT

|Bφp(hp(`p,mp))| �ε L
−1+ε
T M

−3/2+ε
T

∏
p|LTMT

|Bφp(1)|. The result now follows
from Proposition 5.1.5. �

In the special case that N is squarefree and F ∈ S∗k(Γ
(2)
0 (N)) is a newform (in the sense of

[DPSS20, Section 3.2]) we have an even sharper result.

Proposition 5.1.7. Let N be a squarefree integer. Let F ∈ S∗k(Γ
(2)
0 (N)) be a non-zero cusp form with

Fourier coefficients a(T ), and suppose that F is a newform (in the sense of [DPSS20, Section 3.2]).
Then

|a(T )| �F,ε
Lk−1+ε
T M

k−3/2+ε
T

gcd(LT , N∞)(gcd(MT , N∞))1/2
|dT |

k
2
− 7

12
+ε
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for all T ∈ N2, and if we assume the generalized Lindelöf hypothesis, then the exponent of |dT | can be
taken to be k

2 −
3
4 + ε.

Proof. The proof is essentially the same as Theorem 5.1.6 with the additional information that in
this case, we know that πp is of Type Vb or Type VIb for all p|N (see Lemma 5.1.2. The sharper
bound results from the fact that we are always in the situation of part (2) of Proposition 5.1.4
for all p|N . �

Proof of Theorem 1.2.2. Note that if T ∈ N2 has the property that gcd(4 det(T ), N) is squarefree,
then we must have gcd(LTMT , N2) = 1. Now the result follows from the observation that

Lk−1
T M

k−3/2
T |dT |

k
2
− 7

12 =
(4 det(T ))

k−1
2

M
1
2
T |dT |

1
12

�k det(T ))
k−1
2 .

�

5.2. Bounds for Fourier coefficients using Fourier–Jacobi expansions. The main result of this
subsection is the following.

Proposition 5.2.1. Let k ≥ 4 be an even integer and N be an odd square-free positive integer. Also
let f ∈ Snew2k−2(Γ0(N)) be a newform and F ∈ Sk(Γ

(2)
0 (N)) be its Saito-Kurokawa lift as described in

[AB15]. Assume that a(T ) is the T -th Fourier coefficient of F . Then, for any ε > 0, we have

(36) |a(T )| �F,ε (detT )
k−1
2

+ε.

The statement of the above proposition refers to the work of Agarwal and Brown [AB15]
who, building upon work of Ibukiyama [Ibu12], wrote down a classical construction of Saito-
Kurokawa lifts obtained from elliptic Hecke eigenforms of odd squarefree level N , and expli-
cated some key properties of these lifts. In the next lemma, we show that the Saito-Kurokawa
lifts constructed by Agarwal–Brown coincide with the newforms in S∗k(Γ

(2)
0 (N)) in our sense.

Lemma 5.2.2. Let k ≥ 2 be even, let N be an odd squarefree integer, and let f ∈ Snew2k−2(Γ0(N)) be a
newform8; let πf be the automorphic representation of GL2(A) generated by f . Let F ∈ Sk(Γ

(2)
0 (N)) be

the Saito-Kurokawa lift of f as described in [AB15].
Then F ∈ S∗k(Γ

(2)
0 (N)) and satisfies LN (s, πF ) = LN (s, πf )ζN (s+1/2)ζN (s−1/2). Furthermore,

F is a newform in the sense of [DPSS20, Section 3.2]. Moreover, if M is an integer and G is a newform
in S∗k(Γ

(2)
0 (M)) satisfyingLM (s, πG) = LM (s, πf )ζM (s+1/2)ζM (s−1/2) thenM = N andG = cF

for some non-zero complex number c.

Proof. Let π ∈ Π(F ). The fact that LN (s, π) = LN (s, πf )ζN (s + 1/2)ζN (s − 1/2) follows from
Theorem 3.5 of [AB15] (observe that our normalization of the L-functions differ from theirs).
So by definition F ∈ S∗k(Γ

(2)
0 (N)), and since N is squarefree, Lemma 5.1.2 tells us that π = πF

is irreducible and F is a newform. Next, let G be as in the statement of the lemma. Since G is
a newform, Lemma 5.1.2 tells us that M = N . Let π′ be the representation generated by the
adelization of G. Applying Lemma 5.1.2 to F and G, we see that the local components of π and
π′ are isomorphic at all finite primes, and hence at all places (since they are clearly isomorphic
at infinity). It follows that the spaces of π and π′ coincide. Since these representations have a

8Recall that a newform is a Hecke eigenform lying in the newspace.
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1-dimensional space of K0,p(N)-fixed vectors at each prime p, it follows that the adelizations of
F and G are multiples of each other. Hence F and G are multiples of each other. �

The rest of the subsection is devoted to the proof of Proposition 5.2.1. We will assume
throughout that k ≥ 4 is an even integer and N is an odd squarefree integer. For any F ∈
Sk(Γ

(2)
0 (N)), the Fourier–Jacobi expansion of F is given by

F (Z) :=
∞∑
m=1

φm(τ, z)e2πimτ ′ ,

where Z =

(
τ z

z τ ′

)
∈ H2 with τ, τ ′ ∈ H and z ∈ C. It is well-known [EZ85, GS17] that

φm ∈ Jcuspk,m (N), where Jcuspk,m (N) denotes the space of Jacobi cusp form of weight k, index m for
the group ΓJ(N) := Γ0(N) nZ2. The following result of Bringmann [Bri04, Theorem 3.41] (see
also Kohnen [Koh92, Koh93]) on the size of Fourier coefficients of a Jacobi cusp form is crucial
for us.

Proposition 5.2.3 ([Bri04, Theorem 3.41]). Let φ ∈ Jcuspk,m (N) with Fourier coefficients c(n, r). Then

|c(n, r)| �ε,k

(
m3/4 + |D|1+ε

) 1
2 · |D|

k/2−1

m
k−1
2

· ‖ φ ‖,

where ‖ φ ‖ denotes the Petersson norm of φ which is defined by

‖ φ ‖2 = 〈φ, φ〉 :=
1

[ΓJ(1) : ΓJ(N)]

∫
ΓJ (N)\H×C

|φ(τ, z)|2vk−3e−4πmy2/vdudvdxdy,

with τ = u+ iv ∈ H and z = x+ iy ∈ C and D := r2 − 4mn.

We need the following proposition whose proof is similar to Kohnen and Sengupta [KS17,
Theorem 2] (also see [KP21, Section 6]) and relies on a result of Agarwal–Brown [AB15] (see
also [MRV93, MR00, MR02]).

Proposition 5.2.4. Let k be a positive even integer and N be odd square-free positive integer. Also
let f ∈ Snew2k−2(Γ0(N)) be a newform and F ∈ Sk(Γ

(2)
0 (N)) be its Saito-Kurokawa lift as described in

[AB15]. Assume that F has Fourier–Jacobi coefficients {φm}m∈N. Then, for any ε > 0, we have

(37) 〈φm, φm〉 �F,ε m
k−1+ε.

Proof. For any positive integer m, [AB15, Proposition 4.6 and p.659] implies

(38)
〈φm, φm〉
〈φ1, φ1〉

=
∑
d | m,

(d,N)=1

α(d)dk−2λf (m/d),

where λf (m) is the Hecke eigenvalue corresponding to f and hence by Deligne’s bound we
have |λf (m)| ≤ mk−3/2σ0(m). Here σ0(m) denotes the number of positive divisors of m. Fur-
ther, α(d) is given by

α(d) := d
∏
p|d

(
1 +

1

p

)
≤ dσ0(d).

Therefore, one can easily see from (38) that

〈φm, φm〉
〈φ1, φ1〉

≤ mk−3/2
∑
d | m,

(d,N)=1

d1/2σ0(d)σ0(m/d)�ε m
k−1+ε

∑
d | m,

(d,N)=1

1�ε m
k−1+ε.
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This completes the proof. �

Proof of Prop. 5.2.1. The rest of the proof is similar to that of Kohnen [Koh92], mutatis mutan-
dis. We sketch the proof here for convenience of reader. Since both sides of (36) are invari-

ant under T 7→ U tTU for any U ∈ GL2(Z), we can assume that T =

(
n r/2

r/2 m

)
is such

that m = min T , where min T is the least positive integer represented by T . Now observe
that a(T ) is the (n, r)-th Fourier coefficient of φm. Using Proposition 5.2.3, estimate (37) and
m = min T � (det T )1/2 we complete the proof. �

Remark 5.2.5. We would like to mention that if one could prove (37) for F ∈ Sk(Γ
(2)
0 (N)) which

is not of classical Saito–Kurokawa type, that would lead to an improvement of the current best known
unconditional result [Koh92].
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