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Introduction

[. . .] the program is impressive and definitely worth to spend
time on it. And if you feel the progress then it is OK to
continue. I am always worry on a situation of no progress.
Because this situation may continue infinite time.
Just I think (again) that if the largest goals are not moving,
think where you may reduce goals but to receive the results
to the end. This is usually important not only for
self-satisfaction and (as Jean said) not to feel himself “an
impotent”, but also it organize correctly a piece and “free”
our brain preparing it to the next step.
You know all this my philosophy, but one should also use it.

(15.1.2008)
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An operator

(or two)

f (θ) =
∑
n

ane
inθ 7→ φf (x) =

∑
n

an cos(x
√
n)

f (x) =

∫
e ixλdσ(λ) 7→ φf (x) =

∫
cos(x

√
λ)dσ(λ)

I if f has a zero of infinite order at zero, then so does φf

I ‖φ(2k)f ‖ grows roughly as ‖f (k)‖
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I. (Simple) analytic quasianalyticity

Prop. (pre-Carleson–Salinas–Korenblum [’50s–’60s]; Hardy?):

Any function f (z) =
∞∑
n=0

anz
n 6≡ 0 with |an| ≤ e−ε

√
n (for some

ε > 0) has a finite number of zeros in D, counting multiplicity.

Proof:
If f has ∞ zeros, these accumulate at some boundary point, say,
z = 1, which has to be a zero of ∞ order. Then

φf (x) =
∞∑
n=0

an cos(
√
n x) has a zero of ∞ order at x = 0. But

|φ(k)f | ≤
∞∑
n=0

|an|nk/2 ≤
∞∑
n=0

e−ε
√
nnk/2 ≤ (C/ε)k+1k!

i.e. φf admits an analytic extension to a strip (of width ε/C ).
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A quantitative version

Prop. (Borichev–Frank–Volberg 2018)

Let f (z) =
∞∑
n=0

anz
n with |an| ≤ e−ε

√
n and |a0| ≥ e−A.

Then

N(f ) ≤ Cεe
Cε
√
A (and the dependence on A is sharp).

Sketch of proof, using our operator:

If f has “many” (> CeC
√
A) zeros, there have to be “many” zeros

“near” some boundary point, say, z = 1. Then f and its first
“many” derivatives are “small” at z = 1, and hence so are the

first “many” derivatives of φf (x) =
∞∑
n=0

an cos(
√
n x) at x = 0.

This implies |φf (x)| . e−e
(
√
A−x)+ (“propagation of smallness”)

On the other hand, the average of φf is a0, |a0| ≥ e−A. Moreover,
one can find (with the help of Fedja Nazarov) |x∗| .

√
A with

|φf (x∗)| ≥ e−A−1. Contradiction.
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Application: non-selfadjoint Schroedinger operator

V
D

M
’6

2

For which decaying q = q1 does L = L1 behave like L0 = d2

dx2
?

Self-adjoint case:[ ∞∫
0

(1 + x2)|q(x)|dx <∞
]

implies (Marchenko ’52) the existence

of transformation operators, which in turn implies

(a) σcont.(L) = (−∞, 0]; σres.(L) = ∅
(b) σpoint(L) = a finite number of isolated eigenvalues of finite

multiplicity.
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Non-selfadjoint Schroedinger operator (cont.)

VDM ’62: transformation operators exist also in the

non-selfadjoint case, and even if
[ ∞∫

0

(1 + x2)|q(x)|dx <∞
]

is

relaxed to
[ ∞∫

0

x |q(x)|dx <∞
]

=⇒

(a) σcont.(L) = (−∞, 0]; σres.(L) = ∅ (always);

(b) σpoint(L) = a finite number of isolated eigenvalues of finite
multiplicity (in the self-adjoint case).

What about the non-selfadjoint case? Naimark: (b) holds if[ ∞∫
0

eεx |q(x)|dx <∞
]
; Levin: relaxed slightly using

quasianalyticity (e.g.
[ ∞∫

0

eεx/ log(x+e)|q(x)|dx <∞
]

suffices)
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Non-selfadjoint Schroedinger operator (cont. - 2)

B.S.Pavlov ’62:

I If
∞∫
0

eε
√
x |q(x)|dx <∞, then σpoint(L) = a finite number of

isolated eigenvalues of finite multiplicity

I if only
∞∫
0

eεx
0.499999 |q(x)|dx <∞, this may fail

Idea:
Consider the relative determinant “ det(L−λ)

det(L0−λ)”, with zeros at the

eigenvalues of L, as a function of z = λ−i
λ+i . It is of the form

f (z) =
∑
n≥0

anz
n with an decaying roughly as q(x), i.e. as e−ε

√
n.

Hence it has a finite number of zeros!
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Quantitative version

I The quantitative estimate on the number of zeros translates
to a quantitative estimate on the number of eigenvalues in
terms of the potential (Borichev–Frank–Volberg).

I With the current argument, one also gets a quantitative
version of the full Carleson–Salinas–Korenblum theorem: a
bound on N(f ) when

|an| ≤ 1/Wn , where
[∑∞ logWn

n3/2
=∞

]
+ regularity

and hence of the full Pavlov theorem, i.e. instead of
∞∫
0

eε
√
x |q(x)|dx <∞ one may assume

∞∫
0

W (x)|q(x)|dx <∞

as long as
[ ∫∞ logW (x)

x3/2
dx =∞

]
+ regularity.
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II. Non-symmetric quasianalyticity (Volberg ∼’80)

Definition

(Wn ∈ [1,∞])n∈Z is quasianalytic if f (θ) =
∞∑

n=−∞
ane

inθ 6≡ 0 with

sup |an|Wn <∞ can not have a zero of infinite order (on T).

Examples

I Wn = eε|n| (f is analytic in |=θ| < ε)

I
∑ logWn

1+n2
=∞ + reg. (Denjoy–Carleman, Izumi–Kawata, . . . )

I Wn =∞ for n < 0 and
∞∑
n=0

logWn

1+n3/2
=∞ + reg.

(Carleson–Salinas–Korenblum, cf. above)

I
−1∑

n=−∞

logWn

1+n2
=
∞∑
n=0

logWn

1+n3/2
=∞ + REG. (Volberg; Borichev)

M. Sodin ’96:

optimal cond. on W |Z+ (“normal QA”)∑
n<0

logWn

1+n2
=∞ + REG.− on W |Z−
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Non-symmetric quasianalyticity (cont.)

A version of Volberg’s result:
∞∑
n=0

logWn

1+n3/2
(a)
= ∞ + reg. on W |Z+∑

n<0

logWn

1+n2
(b)
= ∞ + reg.+ on W |Z−

=⇒W is quasianalytic

can be proved using the map f 7→ φf .

Sketch:

if f (θ) =
∞∑

n=−∞
ane

inθ has a zero of infinite order at zero, then

so does φf (x) =
∑
n≥0

an cos(x
√
n) +

∑
n<0

an ch(x
√
|n|) hence φf ≡ 0.

But why are an all zero? need to use (b).

Uniqueness for σ 7→
∞∫
−∞

cos(x
√
λ)dσ(λ) under sharp tail

conditions: E. Vul ’59 (earlier work: Levitan, Levitan–Meiman).
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Vul ’59
(+)

: Let p : R+ → R+

be non-decreasing, convex. TFAE:

(a) σ 7→
∞∫
−∞

cos(x
√
λ)dσ(λ)

is injective on the class of measures∫ λ

−∞
|dσ(λ′)| ≤ C exp(−p(

√
|λ|)) (λ < 0)

(b)

∫ ∞ p(s)

s3
ds =∞

(earlier work: Levitan, Levitan–Meiman).



Non-symmetric quasianalyticity (cont.)
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Non-symmetric quasianalyticity (cont. – 2)

A couple of questions

I Minimal regularity on W |Z− and W |Z+?

I A quantitative version? (results: Borichev)

Thanks for your attention!
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