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cover the sections indicated by an asterisk. If you find mistakes or misprints,
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The classical moment problem studies the map S taking a (positive Borel) measure µ
on R to its moment sequence (sk)k≥0,

sk[µ] =
∫
λkdµ(λ) .

The map is defined on the set of measures with finite moments:

µ(R \ [−R,R]) = O(R−∞) , i.e. ∀k µ(R \ [−R,R]) = O(R−k) .

The two basic questions are

1. existence: characterise the image of S, i.e. for which sequences (sk)k≥0 of real
numbers can one find µ such that sk[µ] = sk for k = 0, 1, 2, · · · ?

2. uniqueness, or determinacy: which sequences in the image have a unique pre-
image, i.e. which measures are characterised by their moments? In the case of
non-uniqueness, one may wish to describe the set of all solutions.

The classical moment problem originated in the 1880-s, and reached a definitive state
by the end of the 1930-s. One of the original sources of motivation came from probability
theory, where it is important to have verifiable sufficient conditions for determinacy.
Determinacy is also closely related to several problems in classical analysis, particularly,
to the study of the map taking a (germ of a) smooth function f to the sequence of
its Taylor coefficients (f (k)(0))k≥0. Existence in the moment problem is a prototype
of the problem of extension of a positive functional, and it gave the impetus for the
development of several functional-analytic tools.
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The moment problem also enjoys a mutual relation with the spectral theory of self-
adjoint operators. In fact, the spectral theorem for bounded self-adjoint operators can
be deduced from the existence theorem for the moment problem. Further, the moment
problem provides simple and yet non-trivial examples of various notions from the abstract
theory of unbounded symmetric and self-adjoint operators.

The classical monograph Akhiezer [1965] is still the best reference on the moment
problem and related topics. We touch only briefly on the approach (originating in the
work of Chebyshev) to the moment problem as an extremal problem; see Krein and
Nudel′man [1977]. The classical reference on quasianalyticity is Carleman [1926].

1 Introduction

1.1 A motivating example

The following problem is a variant of the one considered by Pafnuty Chebyshev in the
1880-s1. Let (µn)n≥1 be a sequence of probability measures. Assume:

∀k ≥ 1 lim
n→∞

sk[µn] =

{
k!

2k/2(k/2)!
, k is even

0 , k is odd
(1.1)

Example 1.1. Let X1, X2, X3, · · · be independent, identically distributed random vari-
ables with EX1 = 0, EX2

1 = 1 and E|X1|k < ∞ for any k ≥ 3. Let µn be the law of
1√
n
(X1 +X2 + · · ·+Xn), i.e.

µn(B) = P
{

1√
n

(X1 +X2 + · · ·+Xn) ∈ B
}
.

Then (1.1) holds.

Exercise 1.2. Prove this.

Exercise 1.3. Prove that the numbers in the right-hand side of (1.1) are exactly the
moments of the standard Gaussian measure γ:∫ ∞

−∞
λke−λ2/2 dλ√

2π
=

{
k!

2k/2(k/2)!
, k is even

0 , k is odd

Therefore, it is natural to ask whether (1.1) implies the weak convergence of µn to the
Gaussian measure γ, i.e.

∀φ ∈ Cbdd(R) lim
n→∞

∫
φ(λ)dµn(λ) ??=

∫
φ(λ)e−λ2/2 dλ√

2π
.

This was solved in the affirmative by Andrei Markov, who developed Chebyshev’s ideas.
1In Chebyshev’s formulation, explicit bounds for finite n played a central rôle. Markov’s form of

Theorem 1.4 was also stated more quantitatively than here.
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Theorem 1.4 (Markov). Let (µn)n≥1 be a sequence of probability measures that satisfy
(1.1). Then µn −→

n→∞
γ in weak topology.

In juxtaposition with the two exercises above, this theorem implies the Central Limit
Theorem for random variables with finite moments2.

The theorem follows from two propositions. The first one shows that the crucial
property of the limiting measure is determinacy.3

Proposition 1.5 (Fréchet–Shohat). If µ is a determinate measure (i.e. its moments
determine it uniquely), and the measures µn are such that

∀k ≥ 0 lim
n→∞

sk[µn] = sk[µ] , (1.2)

then µn → µ in weak topology.

Obviously4, if µ is indeterminate, then one can find µn 9 µ such that (1.2) holds.

How to check whether a measure is determinate?

Exercise 1.6. Prove that every compactly supported measure is determinate.

To handle the Gaussian measure, we need to relax the assumptions.

Proposition 1.7. If µ is such that

∃ε > 0 :
∫
eε|λ|dµ(λ) <∞ , (1.3)

then µ is determinate.

Obviously5, Proposition 1.5 and Proposition 1.7 imply Theorem 1.4.

Exercise 1.8. The condition (1.3) (called: “µ has exponential tails”) is equivalent to the
following condition on the moments (“factorial growth”):

∃C > 0 : ∀k ≥ 0 s2k[µ] ≤ Ck+1(2k)! . (1.4)

The exponential tails are not a necessary condition for determinacy. In fact, there
exist determinate measures with extremely heavy tails.6 However, it is important to
know that not all measures are determinate.

2The Lévy–Lindeberg CLT can be also obtained by the combination of such arguments with a trunca-
tion.

3It is the proof of this proposition that relies on a compactness argument which Chebyshev may not
have approved.

4i.e. please convince yourself that this is obvious before proceeding
5in the sense of footnote 4
6i.e. determinacy does not imply anything stronger than the obvious condition µ(R\[−R, R]) = O(R−∞)
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Example 1.9. Let u(y) be a 1-periodic function (say, a bounded and measurable one).
Denote

Zu =
∫

exp(−1
2
y2 + u(y))dy

and define a measure supported on R+:

dµu(λ) =
1
Zu

exp(−1
2

log2 λ+ u(log λ))
dλ

λ
.

Then sk[µn] = ek
2/2 for all k, regardless of the choice of u! In particular, none of these

measures is determinate.

Exercise 1.10. (a) Prove this. (b) Is there a discrete measure with the same moments
as these µu?

1.2 Proofs of Proposition 1.5 and 1.7

Proof of Proposition 1.5. It suffices to show that (a) (µn)n≥1 is precompact in weak
topology, and (b) µ is the unique weak limit point of this sequence. To prove (a), recall
the criterion for compactness in weak topology (in the old days, it used to be called the
Helly selection theorem): a collection M of finite measures is precompact if and only if
the following two conditions hold:

sup
ν∈M

ν(R) <∞ (1.5)

∀ε > 0 ∃R > 0 : sup
ν∈M

ν(R \ [−R,R]) < ε (1.6)

The first condition holds for M = {µn} since

lim
n→∞

µn(R) = lim
n→∞

s0[µn] = s0[µ] <∞ ,

whereas the second one follows from the Chebyshev inequality:

µn(R \ [−R,R]) ≤ supn s2[µn]
R2

≤ C

R2
.

Thus (a) is proved and we proceed to (b). If ν is a limit point of (µn), we have:

µnj → ν , j →∞ .

By definition ∫
φ(λ)dµnj (λ)→

∫
φ(λ)dν(λ)

for any bounded continuous φ. Please check (using the assumptions) that also∫
λkdµnj (λ)→

∫
λkdν(λ) ,

4



although the function λ 7→ λk is not bounded for k ≥ 1. Then we have:

sk[µ] = lim
n→∞

sk[µn] = sk[ν]

for all k, and therefore ν = µ by determinacy.

The proof of Proposition 1.7 is a bit more analytic.

Proof of Proposition 1.7. Consider the Fourier–Stieltjes transform of µ, which is7 the
function

φ(ξ) =
∫
eiξλdµ(λ) .

The integral converges for complex ξ with |=ξ| < ε (where ε comes from the definition
(1.3) of exponential tails), therefore φ can be extended to an analytic function in this
strip. If ν is another measure with the same moments, then by Exercise 1.8 also

ψ(ξ) =
∫
eiξλdν(λ)

is analytic in a strip.8 Now observe that

φ(k)(0) = iksk[µ] = ψ(k)(0) , k = 0, 1, 2, · · ·

and hence, by the uniqueness theorem for analytic functions, ψ ≡ φ in some strip
containing R and in particular on R. Invoking the inversion formula for the Fourier–
Stieltjes transform, we infer that ν = µ.

2 Quasianalyticity; determinacy

While the condition of exponential tails in Proposition 1.7 can not be dropped, it can
be relaxed. The proof relied on a uniqueness theorem for analytic functions, so we shall
discuss wider classes of functions (known as quasianalytic classes) in which one has a
uniqueness theorem. The idea goes back to Hadamard, and the theory was developed in
the first half of the XX-th century. Two of the classical references are Carleman [1926],
Mandelbrojt [1942].

2.1 The Denjoy–Carleman theorem

First, let us move back to the real domain. How do we state the uniqueness theorem for
analytic functions without using complex variables?

7The properties of the Fourier–Stieltjes transform are described in any textbook on harmonic analysis,
e.g. Katznelson [2004]. We shall only use the fact that a finite measure is determined by its transform,
as follows from the inversion formula.

8formally, this may be a smaller strip |=ξ| < ε′ ≤ ε; this is sufficient for our purposes, though in fact
one may take ε′ = ε.
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Exercise 2.1. Let I ⊂ R be a bounded interval. A function φ ∈ C∞(I) has an analytic
extension to a neighbourhood of I if and only if there exists C > 0 such that for every
k ≥ 0 and ξ ∈ I

|φ(k)(ξ)| ≤ Ck+1k! (2.1)

Corollary 2.2. Let C > 0, and let φ, ψ ∈ C∞(R) be two functions satisfying (2.1). If
φ(k)(0) = ψ(k)(0) for all k ≥ 0, then φ ≡ ψ.

Exercise 2.3. Prove the corollary without using the theory of functions of a complex
variable.

In the proof of Proposition 1.7, we could have used the uniqueness theorem in this
form. We know from a calculus course that the assumption (2.1) can not be dropped:
there exist non-zero C∞ functions which vanish at a point with all derivatives. However,
it can be relaxed.

Definition 2.4. Let M = (Mk)k≥0 be a sequence of positive numbers. The Carleman
class C{M} consists of all φ ∈ C∞(R) such that, for some C > 0,

sup
ξ∈R
|φ(k)(ξ)| ≤ Ck+1Mk . (2.2)

Definition 2.5. A Carleman class is called quasianalytic if the map

φ 7→ (φ(k)(0))k≥0

is injective, i.e. if a function vanishing with all derivatives at a point has to vanish
identically.

Example 2.6. For Mk = k!, the class C{M} is quasianalytic.

Exercise 2.7. Find an explicit non-quasianalytic Carleman class (without reverting to
the Denjoy–Carleman theorem below).

From now on we shall assume that the sequence M is log-convex:

Mk ≤
√
Mk−1Mk+1 . (2.3)

This regularity assumption does not entail a great loss of generality: every Carleman
class C{M} can be embedded in a larger (explicit) Carleman class C{M′} which sat-
isfies (2.3), so that C{M} is quasianalytic if and only if C{M′} is quasianalytic (see
Mandelbrojt [1942]).

Theorem 2.8 (Denjoy–Carleman). Let M be a log-convex (2.3) sequence of positive
numbers. The Carleman class C{M} is quasianalytic if and only if∑

k≥0

Mk

Mk+1
=∞ . (2.4)
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Example 2.9. Each of the following sequences defines a quasianalytic Carleman class
C{M}:

Mk = k! logk(k + 10) , Mk = k! logk(k + 10) logk log(k + 10) , · · ·

On the other hand, Mk = k! log2k(k + 10) defines a non-quasianalytic class.

Remark 2.10. Let M be a sequence of positive numbers. If∑
k≥1

M
−1/k
k =∞ , (2.5)

then (2.4) holds. Vice versa, ifM satisfies (2.4) and (2.3), then (2.5) holds.

Proof of Remark 2.10. Assume that M is log-convex. Then Mk ≤ M0(Mk/Mk−1)k,
hence ∑

k≥1

M
−1/k
k ≥

∑
k≥1

M
−1/k
0

Mk−1

Mk
≥ min(

1
M0

, 1)
∑
k≥1

Mk−1

Mk
.

The condition (2.4) implies that the right-hand side is infinite, and hence (2.5) holds.
The reverse implication (2.5)=⇒(2.4) follows from

Lemma 2.11 (Carleman’s inequality). For any positive sequence (ak),

∞∑
k=1

(a1 · · · ak)1/k ≤ e
∞∑

k=1

ak . (2.6)

Proof. (See [Pólya, 1990, Chapter XVI] for a discussion) Let rk be auxiliary positive
numbers. Then

(a1 · · · ak)1/k =
(
a1r1 · · · akrk
r1 · · · rk

)1/k

≤ a1r1 + · · ·+ akrk
k(r1 · · · rk)1/k

.

Therefore
∞∑

k=1

(a1 · · · ak)1/k ≤
∞∑

k=1

a1r1 + · · ·+ akrk
k(r1 · · · rk)1/k

=
∞∑

j=1

ajrj
∑
k≥j

1
k(r1 · · · rk)1/k

.

Choose rk = (k + 1)k/kk−1 so that r1r2 · · · rk = (k + 1)k; then the right-hand side takes
the value

∞∑
j=1

aj
(j + 1)j

jj−1

∑
k≥j

1
k(k + 1)

=
∞∑

j=1

aj
(j + 1)j

jj−1

1
j

=
∞∑

j=1

aj(1 + 1/j)j ≤ e
∞∑

j=1

aj .

This concludes the proof of the Carleman inequality (2.6) and of the remark.
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Corollary 2.12 (Carleman’s criterion). Any measure µ with

∞∑
k=0

s2k[µ]−
1
2k =∞ . (2.7)

is determinate.

Proof of Carleman’s criterion. LetM = (Mk)k≥0, whereMk =
√
s2k[µ]s0[µ]. By Hölder’s

inequality, M is log-convex (2.3). Let

φ(ξ) =
∫
eiξλdµ(λ) ,

then
sup

ξ
|φ(k)(ξ)| ≤

∫
|λ|kdµ(λ) ≤Mk .

The same bound is satisfied by the Fourier transform of any measure ν sharing the
moments of µ. By the Denjoy–Carleman theorem (and Remark 2.10) the class C{M} is
quasianalytic, hence φ (and thus also µ) is uniquely determined by the moments sk.

Now we prove the Denjoy–Carleman theorem. Before proceeding to the proof, the
readers may wish to to convince themselves that the uniqueness part (sufficiency) is not
a direct consequence of the Taylor expansion with remainder. In fact, the original proofs
relied on complex-variable methods. The first two real-variable proofs were found by
Bang [1946, 1953]; we reproduce the second one.9

Proof of Theorem 2.8.

Sufficiency First let us prove that (2.4) implies quasianalyticity, following an argument
due to Bang [1953].

Assume that φ ∈ C∞ admits the bounds

sup
ξ∈R
|φ(k)(ξ)| ≤ Ck+1Mk (2.8)

For integer p ≥ 0, denote

Bp =
{
ξ ∈ R

∣∣∣ ∀0 ≤ k < p |φ(k)(ξ)| ≤ Ck+1ek−pMk

}
. (2.9)

Note that R = B0 ⊃ B1 ⊃ B2 · · · . If φ vanishes with all the derivatives at 0, then 0 ∈⋂
p≥0 Bp. The following lemma asserts that if a point lies in Bp, then its neighbourhood

lies in Bp−1. (Properties of this kind are sometimes called “propagation of smallness”.)
It will be more convenient to state it in the contrapositive:

9Thøger Sophus Vilhelm Bang (27.6.1917–18.1.1997) — a Danish mathematician. In addition to his
work on quasianalyticity, Bang is remembered for the solution of Tarski’s plank problem.
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Lemma 2.13. Assume that φ satisfies (2.8) for some log-convex sequence M. If ξ /∈
Bp−1 for some p ≥ 1, then[

ξ − Mp−1

CeMp
, ξ +

Mp−1

CeMp

]
∩ Bp = ∅ .

Proof of Lemma 2.13. Assume that ξ+h ∈ Bp for some |h| ≤ Mp−1

CeMp
. Then for k ≤ p− 1

|φ(k)(ξ)| ≤
p−k−1∑

j=0

|φ(k+j)(ξ + h)| |h|
j

j!
+ Cp+1|φ(p)(ξ + h̃)| |h|

p−k

(p− k)!
(2.10)

≤
p−k∑
j=0

Ck+j+1ek+j−pMk+j
|h|j

j!
, (2.11)

where on the second step we used (2.9) to bound the terms in the sum and (2.8) to
bound the remainder. Using log-convexity, we bound

(2.11) = Mk

p−k∑
j=0

Ck+j+1ek+j−pMk+j

Mk

|h|j

j!

≤Mk

p−k∑
j=0

Ck+j+1ek+j−p

(
Mp

Mp−1

)j |h|j

j!
≤Mk

∞∑
j=0

[· · · ]

= MkC
k+1ek−p exp

{
Ce|h| Mp

Mp−1

}
≤MkC

k+1ek−(p−1)

This proves the lemma.

Now we conclude the proof of sufficiency. If φ is not identically zero, there exist p and
ξ such that ξ /∈ Bp. By Lemma 2.13, for q > pξ − q∑

k=p+1

Mk−1

CeMk
, ξ +

q∑
k=p+1

Mk−1

CeMk

 ∩ Bp+k = ∅ ,

thus – by the main assumption (2.4) – we have 0 /∈ Bq for sufficiently large q. Therefore
φ can not vanish at zero with all the derivatives. This proves the sufficiency of the
Denjoy–Carleman condition (2.4) for quasianalyticity.

Necessity Now we assume that (2.4) fails and construct a non-zero compactly sup-
ported φ ∈ C {M}. The construction goes back at least to Mandelbrojt [1942], where
unpublished work of Bray is quoted.

Let u be a bump function such that

0 ≤ u ≤ 1 , suppu ⊂ [−2, 2] ,
∫
u(ξ)dξ = 1 ,

∫
|u′(ξ)|dξ ≤ 1
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In fact, u = 1
21[−1,1] is fine, but you may as well take a C1 function if δ-functions make

you feel uncomfortable. Let M−1 = M2
0 /M1; define uk(ξ) = Mk

Mk−1
u(ξ Mk

Mk−1
), and let

φp = u0 ∗ u1 ∗ · · · ∗ up−1

be the convolution of the first p functions. Then, for p > k, φp admits the bounds:

|φ(k)
p | = |u′0 ∗ u′1 ∗ · · · ∗ u′k−1 ∗ uk ∗ · · · ∗ up−1|

≤
k−1∏
j=0

∫
|u′j(ξ)|dξ ×max

ξ
|uk(ξ)| ×

p−1∏
j=k+1

∫
uj(ξ)dξ

≤
k−1∏
j=0

Mj

Mj−1
× Mk

Mk−1
=

Mk

M−1

(2.12)

In particular, for any k the sequence (φ(k)
p )p>k is precompact in uniform topology. Choose

φ such that for any k the derivative φ(k) is a uniform limit point of (φ(k)
p )p>k.10 The

estimates (2.12) allow to exchange the limit with differentiation, therefore

∀k ≥ 0 |φ(k)| ≤ Mk

M−1
;

also,

suppφ ⊂

−2
∑
k≥0

Mk−1

Mk
, 2
∑
k≥0

Mk−1

Mk

 ( R .

Remark 2.14. The proof of necessity shows that if (2.4) fails, one may construct non-
zero functions in the corresponding Carleman class with a prescribed constant C in (2.2).
Alternatively, one may prescribe the support of the function. Also, the log-convexity
assumption (2.3) is not used in the proof of necessity.

2.2 Remarks

Sharpness Although Carleman’s condition (2.7) is not necessary for the determinacy
of the moment problem, it is sharp in the following sense.11

Proposition 2.15. If µ is a measure that fails (2.7), then there exists an indeterminate
measure ν such that s2k[ν] ≤ s2k[µ] for all k ≥ 0.

Proof. Suppose µ fails (2.7). Then the class of functions φ with

|φ(2n)|, |φ(2n+1)| ≤ s2n[µ]/(2π)2

is not quasianalytic12, and thus contains a non-zero function φ with suppφ ⊂ [1, A] for
10It is not hard to see that φ is unique, so in fact φ

(k)
p → φ(k) for any k, but we do not need this.

11Cf. [Kostyučenko and Mityagin, 1960, Theorem 6]. I learned the argument below from B. Mityagin,
who refused to take credit for it: � “everybody” – say, Sz. Mandelbrojt or B. Ya. Levin – knew this
in the 30’s, maybe without saying it explicitly all the time.�

12Why? note that the condition (2.3) may fail, and find a way to save the argument
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some A > 1 (cf. Remark 2.14). Decompose the Fourier transform φ̂ into a difference
φ̂ = g− h of two non-negative functions, then the measures with Radon densities g/

√
A

and h/
√
A have the same moments, and these moments can be bounded as follows.

First, by Cauchy–Schwarz∫
λ2ng(λ)dλ ≤

∫
λ2n|φ̂(λ)|dλ =

∫
λ2n
√

1 + λ2|φ̂(λ)| dλ√
1 + λ2

≤
{
π

∫
λ4n(1 + λ2)|φ̂(λ)|2dλ

}1/2

.

(2.13)

Using the Parseval identity,

(2.13) ≤
{

2π2

∫ [
|φ(2n)(λ)|2 + |φ(2n+1)(λ)|2

]
dλ

}1/2

≤
√
As2n[µ] . (2.14)

Thus the moments of the indeterminate measure ν, dν(λ) = A−1/2g(λ)dλ, are majorised
by those of µ.

3 Existence

The Hamburger moment problem asks whether there exists a (positive Borel) measure
µ on R with the given sequence of moments (sk)k≥0. There is an obvious necessary
condition: if such µ exists, one has for any k and any z0, · · · , zk ∈ C:

k∑
j=0

k∑
l=0

sj+lzj z̄l =
∫
|

k∑
j=0

zjλ
j |2dµ(λ) ≥ 0 .

In other words, the Hankel matrix H = (sj+l)∞j,l=0 should be positive semidefinite, i.e.
define a positive semidefinite quadratic form.

3.1 Hamburger’s theorem

Theorem 3.1 (Hamburger). A sequence (sk)k≥0 is a moment sequence if and only if
the corresponding Hankel matrix H = (sj+l)∞j,l=0 is positive semidefinite, i.e. for any k
and any z0, z1, · · · , zk ∈ C

k∑
j,l=0

sj+lzj z̄l ≥ 0 .

In the sequel, we employ the following (ab)use of notation. If R(λ) =
∑
cjλ

j is a
polynomial, we denote R(λ) =

∑
cjλ

j and |R|2 = RR̄. The first step in the proof is

Proposition 3.2. If P ∈ C[λ] is non-negative on R, then it can be represented as
P = |R|2 for some R ∈ C[λ].
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Proof. From the assumption P has real coefficients. Let aj be the real zeros of P , so
that a zero of multiplicity 2m is counted m times, and let bl be the complex zeros of P
in the upper half-plane. Then (for real λ)

P (λ) = c
∏
j

(λ− aj)2
∏

l

|λ− bl|2

for some c > 0. Then P = |R|2 for

R(λ) =
√
c
∏
j

(λ− aj)
∏

l

(λ− bl) .

To prove Hamburger’s theorem, define a functional Φ : C[λ]→ C by

Φ[
∑

j

ajλ
j ] =

∑
j

ajsj .

It is positive in the following sense: Φ[P ] ≥ 0 whenever P is a non-negative polynomial.
Let E be the linear space spanned by C[λ] and the collection of functions {1(−∞,λ]}λ∈R,
and let K ⊂ E be the cone of non-negative functions. We shall extend Φ to a linear
functional Φ̃ : E → C such that Φ(K) ⊂ R+. This is done using the following general
device.

Theorem 3.3 (M. Riesz). Let E be a linear space and let K ⊂ E be a convex cone. If
Φ : F → C is a linear functional defined on a linear subspace F ⊂ E so that Φ(F ∩K) ⊂
R+ and E = F +K (i.e. every element of E can be represented as a sum of an element
of F and an element of K), then there exists a linear extension Φ̃ : E → C, Φ̃|F = Φ,
such that Φ̃(K) ⊂ R+.

Proof of the Hamburger theorem. Let us apply the Riesz theorem to

F = C[λ] , E = C[λ] + span{1(−∞,λ]}λ∈R , K = {φ ∈ E |φ(R) ⊂ R+}

and Φ[
∑

j ajλ
j ] =

∑
j ajsj as above.

Exercise 3.4. Check that E = F +K.
By the Riesz extension theorem, there exists an extension Φ̃ : E → C such that

Φ̃(K) ⊂ R+. Denote µ(λ) = Φ̃(1(−∞,λ]); then µ : R→ R is non-negative, non-decreasing
and bounded. Let us show that the corresponding measure (of which µ is the cumulative
distribution function) is the desired solution of the moment problem, i.e. that

∀P ∈ C[λ]
∫
P (λ)dµ(λ) = Φ[P ] . (3.1)

Representing

P =
P 2 + 1

2
− (P − 1)2

2
,

12



we reduce (3.1) to its special case P ≥ 0. Choose a sequence (fj) in

span{1(−∞,a] | µ{a} = 0}

such that
0 ≤ fj ≤ P , fj ↗ P locally uniformly.

Then by monotone convergence∫
Pdµ = lim

j→∞

∫
fjdµ = lim

j→∞
Φ̃[fj ] ≤ lim

j→∞
Φ̃[P ] = Φ[P ] .

In the converse direction, choose ε > 0 and choose R > 0 such that P (λ) ≥ 1
ε for

|λ| ≥ R. Then, for sufficiently large j, fj ≥ P − ε on [−R,R], whereas for |λ| ≥ R we
have P (λ) ≤ εP (λ)2. Thus for all λ

P (λ) ≤ fj(λ) + ε+ εP (λ)2 ,

and therefore

Φ[P ] ≤ Φ̃[fj ] + εΦ[1] + εΦ[P 2]

=
∫
fjdµ+ ε(Φ[1] + Φ[P 2]) ≤

∫
Pdµ+ ε(Φ[1] + Φ[P 2]) .

Letting ε→ +0, we obtain that Φ[P ] ≤
∫
Pdµ.

Proof of the Riesz theorem. Let us first consider the case when dimE/F = 1. Let E =
F + uC. To define Φ̃(u) = a, we need to satisfy the constraints

inf
f∈F,f+u∈K

Φ(f) + a ≥ 0 , inf
f∈F,f−u∈K

Φ(f)− a ≥ 0 ,

which are equivalent to

− inf
f1∈F,f1+u∈K

Φ(f1) ≤ a ≤ inf
f2∈F,f2−u∈K

Φ(f2) . (3.2)

According to the assumption F + K = E, both infima are taken over non-empty sets.
Furthermore, for each such f1 and f2

Φ(f2) + Φ(f1) = Φ(f2 − u) + Φ(f1 + u) ≥ 0 ,

hence the right-hand side of (3.2) is not smaller than the left-hand side, hence a good
choice of a exists.

The general case follows by transfinite induction. Consider the set of pairs P =
{(F ′,Φ′)}, where F ⊂ F ′ ⊂ E is a linear space, and Φ′ : F ′ → C is a linear functional
such that Φ′|F = Φ and Φ′(K ∩ F ′) ⊂ R+. Introduce a partial order:

(F ′,Φ′) ≺ (F ′′,Φ′′) if F ′ ⊂ F ∧ Φ′′|F ′ = Φ′ .

13



If C ⊂ P is a chain (linearly ordered subset), thenF ′′ = ⋃
(F ′,Φ′)∈C

F ′, Φ′′ =
⋃

(F ′,Φ′)∈C

Φ′

 ∈ C ;

hence by Zorn’s lemma P has a maximal element (F̃ , Φ̃). By the special case considered
above, F̃ = E, and the theorem is proved.

Exercise 3.5. Does the conclusion of the theorem hold without the assumption E =
F +K? Prove or construct a counterexample.

Exercise 3.6. Show that the Riesz extension theorem implies the Hahn–Banach theorem:
if F ⊂ E are linear spaces, ‖ · ‖ is a seminorm on E and Ψ : F → C satisfies |Ψ| ≤ ‖ · ‖,
then there is a linear extension Ψ̃ : E → C of Ψ such that |Ψ̃| ≤ ‖ · ‖.
Remark 3.7. By Sylvester’s criterion, strictly positive definite Hankel matrices are char-
acterised by the sequence of inequalities

det(sj+l)k
j,l=0 > 0 , k ≥ 0 .

These matrices correspond to measures the support of which contains an infinite number
of points.

Remark 3.8. The corresponding characterisation of moment sequences corresponding to
measures supported on a finite set of points was found by Berg and Szwarc [2015]: there
exists k0 such that

det(sj+l)k
j,l=0

{
> 0, k < k0

= 0, k ≥ k0

3.2 The spectral theorem for bounded self-adjoint operators

Let H be a Hilbert space, and let T : H → H be a bounded self-adjoint operator. This
means that ‖Tu‖ ≤ K‖u‖ for any u ∈ H (the smallest K ≥ 0 for which this inequality
holds is the operator norm ‖T‖), and

〈Tu, v〉 = 〈u, Tv〉

for any u, v ∈ H.

Theorem 3.9 (The spectral theorem). There exist a collection {µα}α∈A of Borel prob-
ability measures on the real line and a unitary (i.e. norm-preserving) bijection

U : H ←→
⊕
α∈A

L2(µα)

which conjugates T to a direct sum of multiplication operators:

UTU−1 :
⊕
α∈A

L2(µα)→
⊕
α∈A

L2(µα) , (fα(λ))α∈A 7→ (λfα(λ))α∈A . (3.3)

14



The measures µα are supported in [−‖T‖, ‖T‖], and in fact⋃
α

suppµα = σ(T ) (the spectrum of T ) (3.4)

The following exercise may help digest the formulation of the theorem, if you have not
seen it before.

Exercise 3.10. (a) Check that the theorem holds in dimH <∞. (b)
∑

α µα is pure point
if and only if T has an orthonormal basis of eigenvectors.

Now we proceed to the proof of the theorem.

Lemma 3.11. Let u ∈ H. There exists a measure µu supported in [−‖T‖, ‖T‖] such
that 〈T ku, u〉 = sk[µu] for any k ≥ 0.

Proof. Observe that ∑
j,`

〈Tj+`u, u〉zj z̄` = ‖
∑

j

zjT
ju‖2 ≥ 0

and use the Hamburger theorem to construct µ. Then∫
λ2kdµ(λ) ≤ ‖T‖2k ,

hence suppµ ⊂ [−‖T‖, ‖T‖] (why?)

Let us now explain why the lemma implies the spectral theorem. For u ∈ H, define

Uu : span
{
T ku | k ≥ 0

}
→ L2(µu)

which sends T ku to the monomial λk ∈ L2(µu). Let us check that this operator is
norm-preservng:

‖(
∑

akT
ku)‖2 =

∑
k,`

akāl〈T ku , T lu〉

=
∑
k,`

akāl〈T k+lu , u〉 (by self-adjointness)

=
∑
k,`

akālsk+l[µ] (by construction),

which is equal to

‖U(
∑

akT
ku)‖2 =

∑
k,`

akāl

∫
λkλldµu(λ) .

In particular Uu can be extended to the closure Hu = span {T ku | k ≥ 0}. Then Uu :
Hu ↔ L2(µu) is a unitary bijection (why is it onto?), and

(UuT |HuU
−1
u f)(λ) = λf(λ)

15



since this equality holds for f(λ) = λk. This proves the theorem in the case Hu = H.
The equality (3.4) follows a posteriori from (3.3) and the fact that the spectrum of a
multiplication operator f(λ) 7→ λf(λ) in L2(µ) is exactly the support of µ.

Exercise 3.12. Complete the proof of the spectral theorem in full generality.

Exercise 3.13. Compute the spectral measure µu for

T : `2(Z)→ `2(Z) , (ak)k∈Z 7→

 m∑
j=0

[αjak+j + ᾱjak−j ]


k∈Z

where (αj)m
j=0 are fixed complex coefficients, and

u = (uj)j∈Z , uj =

{
1 , j = 0
0 .

3.3 Other moment problems*

The Stieltjes moment problem The Stieltjes moment problem concerns the moment
sequences of measures that are supported on a half-line. Chronologically, the following
result preceded Hamburger’s theorem. The original argument of Stieltjes was based on
considerations involving continued fractions, which can not be directly applied to the
moment problem on the line.

Theorem 3.14 (Stieltjes). A sequence (sk) is the moment sequence of a measure µ
supported on R+ if and only if

H = (sj+l)∞j,l=0 � 0 and H ′ = (sj+l+1)∞j,l=0 � 0 . (3.5)

Exercise 3.15. Prove Theorem 3.14.

Exercise 3.16. Let µ be a measure on R+ such that∑
k≥0

sk[µ]−
1
2k =∞ . (3.6)

Prove that µ is Stieltjes determinate, i.e. it shares its moments with no other measure
on R+.

Remark 3.17. Beware: not every Stieltjes-determinate measure on R+ is Hamburger-
determinate. Nevertheless, the conclusion of Exercise 3.16 can be strengthened (Wouk
[1953]): a measure µ on R+ that satisfies (3.6) is necessarily Hamburger-determinate,
i.e. it shares its moments with no other measure on R.
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The Hausdorff moment problem The Hausdorff moment problem concerns the mo-
ment sequences of measures that are supported on a bounded interval, e.g. [0, 1]. Al-
though there is a criterion similar to (3.5), the following, different, criterion is simpler
and more convenient.

Theorem 3.18 (Hausdorff). A sequence (sk) is the moment sequence of a measure µ
supported on R+ if and only if

∀k,m ≥ 0
m∑

j=0

(−1)j

(
m

j

)
sj+k ≥ 0 . (3.7)

In terms of the functional Φ : C[λ] → C sending λk 7→ sj , the condition (3.7) asserts
that

∀k,m ≥ 0 Φ[λk(1− λ)m] ≥ 0 . (3.8)

Proof of Hausdorff’s theorem. The necessity of (3.8) is obvious. To prove sufficiency,
first define Φ as above on C[λ]. Introduce the Bernstein polynomial of a function f :
[0, 1]→ C:

(BNf)(λ) =
N∑

k=0

(
N

k

)
f(k/N)λk(1− λ)N−k .

Claim. If R ∈ C≤n[λ], then

BNR = R+
n∑

j=1

EjR

N j
, EjR ∈ C[λ] . (3.9)

Having the claim at hand, we let R be a polynomial which is non-negative on [0, 1],
and estimate:

Φ[R] = Φ[BNR]−
n∑

j=1

Φ[EjR]
N j

;

the first term is non-negative, whereas the second term tends to zero as N →∞. Thus
Φ is positive and can be extended to C[0, 1] using the M. Riesz theorem.

It remains to prove the claim. Let p, q be two formal variables. We shall later substi-
tute p = λ, q = 1− λ, but for now we keep them independent. Since

(p+ q)N =
N∑

k=0

(
N

k

)
pkqN−k ,

we have

(p ∂/∂p)n(p+ q)N =
N∑

k=0

(
N

k

)
knpkqN−k = Nn

N∑
k=0

(
N

k

)
pkqN−k(k/N)n . (3.10)

On the other hand, the “uncertainty relation”

(∂/∂p)p− p(∂/∂p) = 1

17



between the derivative and the operator of multiplication by p in C[p] implies that

(p ∂/∂p)n =
n∑

j=0

cj,np
j(∂/∂p)j , where cn,n = 1 .

Therefore

(p ∂/∂p)n(p+ q)N =
n∑

j=0

cj,nN(N − 1) · · · (N − j + 1)pj(p+ q)n−j . (3.11)

From the two representations (3.10) and (3.11)

N∑
k=0

(
N

k

)
pkqN−k(k/N)n = N−n

n∑
j=0

cj,nN(N − 1) · · · (N − j + 1)pj(p+ q)n−j ,

whence, taking p = λ, q = 1− λ as promised, we obtain the identity

N∑
k=0

(
N

k

)
λk(1− λ)N−k(k/N)n =

n∑
j=0

cj,n
Nn−j

(1− 1
N

)(1− 2
N

) · · · (1− j − 1
N

)λj ,

in which the left-hand side is BN [λn], whereas the right-hand side is brought to the form
(3.9) by collecting powers of N .

Remark 3.19. The polynomial BNf admits the following probabilistic interpretation:
for p ∈ [0, 1],

(BNf)(p) = Ef(
1
N

N∑
j=1

βj) ,

where βj are independent Bernoulli random variables with P(βj = 1) = p.

Exercise 3.20 (S. Bernstein). If f ∈ C[0, 1], then BNf ⇒ f as N →∞.

De Finetti theorem We briefly mention a theorem of De Finetti which follows from
Hausdorff’s theorem, and is in fact equivalent to it. See Diaconis [1987] and references
therein for more details.

Definition 3.21. A sequence (X1, X2, X3, · · · ) of random variables is called exchange-
able if for any N and any permutation π ∈ SN

(X1, · · · , XN ) = (Xπ(1), · · · , Xπ(N)) in distribution.

Example 3.22. A sequence of independent identically distributed random variables is
exchangeable, e.g.

P {X1 = ε1 , · · · , XN = εN} = λ
P

εj (1− λ)N−
P

εj , ε1, · · · , εN ∈ {0, 1}

(where λ ∈ [0, 1] is an arbitrary parameter).
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Theorem 3.23 (De Finetti). Let (X1, X2, · · · ) be an exchangeable sequence of random
variables taking values in {0, 1}. Then there exists a probability measure µ on [0, 1] so
that

P {X1 = ε1 , · · · , XN = εN} =
∫
λ

P
εj (1− λ)N−

P
εjdµ(λ) .

Proof. Consider the linear functional Φ : C[λ]→ C which sends

λk(1− λ)` 7→ P {1 = ε1 , · · · , Xk = 1, Xk+1 = 0 , · · · , Xk+` = 0} .

The definition is consistent (why?), and by Hausdorff’s theorem there exists µ such that

Φ[λk(1− λ)`] =
∫
λk(1− λ)`dµ(λ) .

4 Orthogonal polynomials

Here we develop another approach to the Hamburger theorem, that will avoid functional
analysis (the Riesz extension theorem) and provide more detailed information.

Let (sk) be a moment sequence, i.e. a sequence such that

H = (sj+l)∞j,l=0 � 0 . (4.1)

Define a functional Φ : C[λ] → C by Φ[
∑
ajλ

j ] =
∑
ajsj . By Hamburger’s theorem Φ

admits a realisation as integration with respect to a measure, however, we shall not use it
(and in fact, we shall reprove Hamburger’s theorem, without even using Proposition 3.2).
Equivalently, we can start with a linear functional Φ : C[λ]→ C which satisfies

Φ[|Q|2] ≥ 0 , Q ∈ C[λ] (4.2)

(as before, we denote Q̄(λ) =
∑
ᾱjλ

j for Q(λ) =
∑
αjλ

j , and |Q|2 = QQ̄).
Define an inner product on C[λ] by 〈P,Q〉 = Φ[PQ̄]. The condition (4.2) ensures that
〈P, P 〉 ≥ 0. If H is not of finite rank, the monomials 1, λ, λ2, · · · are linearly independent.
Thus 〈P, P 〉 > 0 whenever P is not identically zero. (The case of finite rank corresponds
to measures supported on a finite number of points.)
Exercise 4.1. A positive-definite bilinear form 〈·, ·〉 on C[λ] can be obtained via this
construction if and only if

〈λP (λ), Q(λ)〉 = 〈P (λ), λQ(λ)〉 (4.3)

for any P,Q ∈ C[λ], i.e. multiplication by λ is a symmetric operator.
Applying the Gram–Schmidt orthonormalisation procedure, we obtain a sequence of

polynomials Pk, where Pk is of degree k with positive leading coefficient, and

〈Pk, P`〉 = δkl .

IfH is of finite rank, the same procedure yields a finite sequence of polynomials P0, · · · , PN .
We shall assume for the time being thatH is not of finite rank, so that Φ[P ] > 0 whenever
P is a non-negative polynomial which is not identically zero.
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Definition 4.2. The polynomials Pk are called the orthogonal polynomials with respect
to the functional Φ.

Example 4.3. suppµ = [−1, 1], dµ/dλ = 1
π
√

1−λ2
. Define

Tk(cos θ) = cos(kθ) .

Note that this defines a polynomial of degree k with positive leading coefficient. Then:

∫
Tk(λ)T`(λ)dµ(λ) =

∫ π

0
cos(kθ) cos(`θ)

dθ

π
=


1 , k = ` = 0
1
2 , k = ` > 0
0 , k 6= ` .

Thus 1,
√

2T1,
√

2T2,
√

2T3, · · · is the sequence of orthogonal polynomials with respect to
µ. The polynomials Tk are called the Chebyshev polynomials of the first kind.

In the general case, the orthogonal polynomials admit the following formula.

Exercise 4.4. Prove that

Pk(λ) =
1√

detHk detHk+1

det


s0 s1 · · · sk

s1 s2 · · · sk+1

· · ·
sk−1 sk · · · s2k−1

1 λ · · · λk


where Hk = (sj+`)k−1

j,`=0.

Unfortunately, the computation of large determinants is as complicated (or as simple)
as a Gram–Schmidt procedure.

4.1 Properties of orthogonal polynomials

We start with some elementary properties.

(a) 〈Pk, Q〉 = 0 whenever degQ < k. (Obvious)

(b) Pk has k distinct real zeros.

Indeed, if x1 < · · · < λm (m < k) are the real zeros of odd multiplicity, then

Pk(λ)(λ− λ1)(λ− λ2) · · · (λ− λm) ≥ 0 (and not ≡ 0)

and hence
Φ[Pk(λ)(λ− λ1)(λ− λ2) · · · (λ− λm)] > 0 .

However, the left-hand side should vanish by (a).
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(c) There exist coefficients ak, bk (k ≥ 0) such that the following three-term recurrent
relation holds:

λPk(λ) = bkPk+1(λ) + akPk(λ) + bk−1Pk−1(λ) , k ≥ 0 . (4.4)

Indeed, λPk(λ) is a linear combination of Pj (0 ≤ j ≤ k + 1). For j < k − 1,

〈λPk(λ), Pj(λ)〉 = 〈Pk(λ), λPj(λ)〉 = 0

by (a). Finally,
〈λPk(λ), Pk+1(λ)〉 = 〈Pk(λ), λPk+1(λ)〉 .

Note that all bk are positive (we still assume that H is not of finite rank).

Remark 4.5. As we see from the proof, the three-term recurrent relation is a consequence
of the symmetry relation (4.3).

Let C≤d[λ] = {P ∈ C[λ] | degP ≤ d}. Denote by πd : C[λ] → C≤d[λ] the orthogonal
projection.

(d) πdQ =
∑d

j=0〈Q,Pj〉Pj (obvious).

Denote:

Kd(z, z′) =
d∑

j=0

Pj(z)Pj(z̄′) .

(e) (Reproducing property) For Q ∈ C≤d[λ], one has:

Q(z) = Φ(Kd(z, ·)Q(·)) = 〈Kd(z, ·), Q〉 ,

and in particular

Φ(Kd(z, ·)Kd(·, z′)) = 〈Kd(z, ·),Kd(z′, ·)〉 = Kd(z, z′) .

Proposition 4.6 (Christoffel–Darboux formula).

Kd(z, z′) = bd
Pd+1(z)Pd(z̄′)− Pd(z)Pd+1(z̄′)

z − z̄′
.

Proof. It is sufficient to consider the case z = λ, z′ = λ′ ∈ R. The expression

(λ− λ′)Kd(λ, λ′)

is a polynomial of degree d+ 1 in λ′, hence it is a linear combination of Pj(λ′) (0 ≤ j ≤
d+ 1). Let us compute the coefficients: for j ≤ d− 1,

〈(λ− λ′)Kd(λ, λ′), Pj(λ′)〉λ′ = 〈Kd(λ, λ′), (λ− λ′)Pj(λ′)〉λ′ = 0
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by the reproducing property (e). Similarly (using (c))

〈(λ− λ′)Kd(λ, λ′), Pd(λ′)〉λ′
= 〈Kd(λ, λ′), (λ− λ′)Pd(λ′)〉λ′
= 〈Kd(λ, λ′), λPd(λ′)− (bdPd+1(λ′) + adPd(λ′) + bd−1Pd−1(λ′))〉λ′
= λPd(λ)− (adPd(λ) + bd−1Pd−1(λ)) = bdPd+1(λ)

and
〈(λ− λ′)Kd(λ, λ′), Pd+1(λ′)〉λ′ = −bdPd(λ) .

Therefore
(λ− λ′)Kd(λ, λ′) = bd(Pd+1(λ)Pd(λ′)− Pd(λ)Pd+1(λ′)) .

Exercise 4.7. Compute Kd for µ from Example 4.3.

4.2 Extremal problems

Denote by LC(Q) the leading coefficient of a polynomial Q. We still denote

〈Q,R〉 = Φ(QR̄) , ‖Q‖ =
√

Φ(|Q|2) .

Proposition 4.8.

min
deg Q<d,LC(Q)=1

‖Q‖ =
1

LC(Pd)
,

and the minimum is uniquely attained when Q(λ) = Pd/LC(Pd).

Proof. The minimum is attained when Q(λ) is the projection of λd to the orthogonal
complement of C≤d−1[λ], i.e.

Q(λ) = (πd − πd−1)[λd] = 〈yd, Pd(y)〉y Pd(λ) =
Pd(λ)

LC(Pd)
.

This can be generalised.

Proposition 4.9. For any z ∈ C,

min
deg Q≤d, Q(z)=1

‖Q(λ)‖ =
1√

Kd(z, z)
,

and the minimum is uniquely attained when Q(λ) = Kd(λ,z)
Kd(z,z) .
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Proof. Let Q =
∑d

j=0 cjPj , then

1 =
∑

cjPj(z) ≤
√∑

|cj |2
√∑

|Pj(z)|2 =
√∑

|cj |2
√
Kd(z, z) .

On the other hand, Pj form an orthonormal basis, hence
∑
|cj |2 = ‖Q‖2. Thus

‖Q‖2 ≥ 1√
Kd(z, z)

with equality attained when cj ∝ Pj(z), i.e.

Q(λ) =

∑d
j=0 Pj(λ)Pj(z)∑d
j=0 Pj(z)Pj(z)

=
Kd(λ, z)
Kd(z, z)

.

4.3 Gaussian quadrature

Now we make a short digression. In a calculus course we have been taught the rectangle
rule ∫ 1

−1
f(λ)dλ ≈ 2

2k + 1

k∑
j=−k

f(j/k)

and the trapezoid rule∫ 1

−1
f(λ)dλ ≈ 1

2k
f(−1) +

1
k

k−1∑
j=−k+1

f(j/k) +
1
2k
f(1) .

What is the optimal integration scheme? Following Gauss, we shall understand optimal-
ity as follows: we will look for a rule that is exact for all polynomials of a certain degree,
and try to maximise this degree.

Example 4.10. For Q ∈ C≤5[λ],∫ 1

−1
Q(λ)dλ =

5
9
Q

(
−
√

3
5

)
+

8
9
Q(0) +

5
9
Q

(√
3
5

)
.

Note: there are 6 parameters and 6 degrees of freedom, so one can not do better.

Lemma 4.11 (Lagrange interpolation). Let z1, · · · , zd and α1, · · · , αd be complex num-
bers; assume that all the zj are distinct. There is a unique polynomial P ∈ C≤d+1[λ]
such that

P (zj) = αj (1 ≤ j ≤ d) ;

it is explicitly given by

P (z) =
d∑

j=1

αj

∏
k 6=j

z − zk
zj − zk

=
k∑

j=

αj
Q(z)

Q′(zj)(z − zj)
,

where Q(z) = A
∏

(z − zj) (here A ∈ C is arbitrary).
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Exercise 4.12. Prove the lemma.

Proposition 4.13 (Gaussian quadrature). Let Φ : C[λ] → C be a linear functional
satisfying the positivity condition Φ[|R|2] ≥ 0. Let Pj be the orthogonal polynomials
constructed from Φ, and let (ξj)d

j=1 be the zeros of Pd. Then

Φ[R] =
d∑

j=1

Φ
[

Pd(λ)
P ′d(ξj)(λ− ξj)

]
R(ξj)

for any R ∈ C≤2d−1[λ].

Proof. Let R = PdSd−1 +Rd−1, where degRd−1,degSd−1 ≤ d− 1. Then

Φ[R] = Φ[PdSd−1] + Φ[Rd−1] = Φ[Rd−1] (since Pd ⊥ Sd−1)

=
d∑

j=1

Rd−1(ξj)Φ
[

Pd(λ)
(λ− ξj)P ′d(ξj)

]
(Lagrange interp.)

=
d∑

j=1

R(ξj)Φ
[

Pd(λ)
(λ− ξj)P ′d(ξj)

]
(Pd(ξj) = 0)

The coefficients Φ
[

Pd(λ)
P ′d(ξj)(λ−ξj)

]
are called the Christoffel coefficients corresponding to

Φ. It will be convenient to define the polynomials of the second kind:

Qk(z) = Φλ

[
Pk(z)− Pk(λ)

z − λ

]
; (4.5)

then the Christoffel coefficients can be rewritten as

Φ
[

Pd(λ)
P ′d(ξj)(λ− ξj)

]
=
Qd(ξj)
P ′d(ξj)

.

Exercise 4.14. Qk is a polynomial of degree k − 1; it satisfies the recurrence

zQk(z) = bkQk+1(z) + akQk(z) + bk−1Qk−1(z) , k ≥ 1

with the initial conditions

Q0(z) ≡ 0 , Q1(z) =
√
s0
b0

. (4.6)

For comparison,

P0(z) =
1
√
s0

, P1(z) =
z − a0

b0
√
s0

.

Exercise 4.15. Prove the identity:

Pk−1Qk − PkQk−1 ≡
1

bk−1
(k ≥ 1) (4.7)
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Proposition 4.16. The Christoffel coefficients admit the alternate expression

Φ
[

Pd(λ)
P ′d(ξj)(λ− ξj)

]
=

1
Kd−1(ξj , ξj)

,

and in particular are positive.

Proof. Let Aj be the j-th Christoffel coefficient, and let

Lj(λ) =
Pd(λ)

(λ− ξj)P ′d(λ)

be the j-th interpolation polynomial. Then for any c1, · · · , cd ∈ C

Φ[|
∑

cjLj |2] =
∑
j,k

cj c̄kΦ[LjL̄k] =
∑

j

|cj |2Aj .

In particular, Aj ≥ 0 for all j. Since every R ∈ C≤d−1[λ] can be represented as

R =
∑

R(ξj)Lj ,

we obtain
Aj = min

R∈C≤d−1[λ],R(ξj)=1
Φ[|R|2] =

1
Kd−1(ξj , ξj)

.

Second proof of Hamburger’s theorem. The Gaussian quadrature yields, for any R ∈
C≤2d−1[λ]:

Φ[R] =
d∑

j=1

1
Kd−1(ξj , ξj)

R(ξj) =
∫
R(λ)dµd(λ) ,

where

µd =
d∑

j=1

δξj

Kd−1(ξj , ξj)
. (4.8)

The sequence µd is precompact in weak topology (why?). For every R ∈ C[λ] and any
limit point µ of the sequence (µd),

Φ[R] =
∫
Rdµ

(note that R is not bounded, hence this also requires an additional argument.) Therefore
µ is a solution of the moment problem.

For the sequel, we need the following generalisation of the measure

µd =
d∑

j=1

δξj

Kd−1(ξj , ξj)
.
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Let τ ∈ R (sometimes it will be convenient to allow τ =∞ as well). Let

P τ
k = Pk − τPk−1 , Q

τ
k = Qk − τQk−1 .

Then from (4.5)

Qτ
k(z) = Φλ

[
P τ

k (z)− P τ
k (λ)

z − λ

]
. (4.9)

Exercise 4.17. Prove that, for any τ ∈ R, the polynomial P τ
d has d distinct real zeros.

Let ξτ
j be the zeros of P τ

d . For τ =∞ we let ξτ
j be the zeros of Pd−1. Set

µτ
d =

d∑
j=1

Qτ
d(ξ

τ
j )

(P τ
d )′(ξτ

j )
δξτ

j
, τ ∈ R̄ . (4.10)

Exercise 4.18. Prove that for any τ ∈ R̄

Φ[R] =
∫
Rdµτ

d

for any R ∈ C≤2d−2[λ]. (Note that the maximal degree is in general one less than that
of the optimal Gauss quadrature, corresponding to τ = 0.)

Exercise 4.19. Prove that
Qτ

d(ξτ
j )

(P τ
d )′(ξτ

j ) = 1
Kd−1(ξτ

j ,ξτ
j ) .

5 Description of solutions

5.1 Stieltjes transform

The Stieltjes transform of a finite measure µ is defined as

w(z) = wµ(z) =
∫
dµ(λ)
λ− z

, z ∈ C \ R .

Exercise 5.1. For any a < b,

lim
ε→+0

1
π

∫ b

a
=w(λ+ iε) dλ =

µ{a}
2

+ µ(a, b) +
µ{b}

2
,

and in particular µ is uniquely determined by w.

If the moment sequence (sk) is determinate, w(z) is uniquely determined by (sk).
Otherwise, w(z) may assume different values for different solutions. In this section, we
shall study the following question: given a moment sequence (sk) and a point z ∈ C \R,
describe the geometric locus of all the values of wµ(z) as µ runs over the set of solutions
of the moment problem.13 Throughout this section, we assume that s0 = 1.
13The original plan of Chebyshev was to describe the geometric locus of the numbers µ(−∞, a] (for each

fixed a ∈ R). This is possible, but the use of the Stieltjes transform avoids complications such as
that of Remark 5.4.
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Define:

Kd(z) = {wµ(z) | ∀0 ≤ k ≤ 2d− 2 : sk[µ] = sk} , K(z) =
⋂
d≥1

Kd(z) .

The goal in this section is to prove the following two results.

Theorem 5.2. For each d and z ∈ C \ R, Kd(z) is a closed disc centred at

zd(z) = −Qd(z)Pd−1(z̄)−Qd−1(z)Pd(z̄)
Pd(z)Pd−1(z̄)− Pd−1(z)Pd(z̄)

and of radius

rd(z) =
1

2|=z|
1

Kd−1(z, z)
.

Hence K(z) is either a disc or a point. Let

r(z) = lim
d→∞

rd(z) .

Theorem 5.3 (Invariability). If r(z) > 0 for some z ∈ C \ R, then r(z) > 0 for all
z ∈ C \ R.

That is, the moment problem is determinate if and only if

K(z, z) =
∞∑

k=0

|Pk(z)|2 =∞

for some (or for any) z ∈ C \ R.

Remark 5.4. It is possible that a determinate measure µ has

K(λ, λ) <∞

for some λ ∈ R; in fact, this happens if and only if λ is an atom of µ.

5.2 The Stieltjes transform of the quadratures

We first describe the geometric locus of w(z) as µ varies over the one-parametric family
µτ

d of special solutions to the truncated moment problem

∀R ∈ C≤2q−2[λ] Φ[R] =
∫
R(λ)dµ(λ) . (5.1)

Proposition 5.5. The Stieltjes transform wτ
d = wµτ

d
(z) is given by

wτ
d(z) = −

Qτ
d(z)

P τ
d (z)

.
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Proof. By Lagrange interpolation

Qτ
d(z)

P τ
d (z)

=
d∑

j=1

Qτ
d(ξ

τ
j )

(z − ξτ
j )(P τ

d )′(ξτ
j )

=
∫
dµτ

d(λ)
z − λ

.

Remark 5.6. Proposition 5.5 makes sense also for τ =∞.

Proposition 5.7. Fix z ∈ C \ R. As τ varies in R, the quantity wτ
d(z) describes the

circle Γd(z) = {|w − zd(z)| = rd(z)}.

Proof. We have:

wτ
d(z) = −

Qτ
d(z)

P τ
d (z)

= −
Qτ

d(z)− τQτ
d−1(z)

P τ
d (z)− τPd−1(z)

This is a fractional-linear function of τ , hence the image of the (generalised) circle R is
a (generalised) circle. To find its equation, we rewrite

wτ
d(z) = −Qd(z)Pd−1(z̄)−Qd−1(z)Pd(z̄)

Pd(z)Pd−1(z̄)− Pd−1(z)Pd(z̄)

+
Qd(z)Pd−1(z)−Qd−1(z)Pd(z)
Pd(z)Pd−1(z)− Pd−1(z)Pd(z)

Pd(z̄)− τPd−1(z̄)
Pd(z)− τPd−1(z)

and observe that ∣∣∣∣Pd(z̄)− τPd−1(z̄)
Pd(z)− τPd−1(z)

∣∣∣∣ = 1 ,

whence the centre is at

zd(z) = −Qd(z)Pd−1(z̄)−Qd−1(z)Pd(z̄)
Pd(z)Pd−1(z̄)− Pd−1(z)Pd(z̄)

whereas the radius is equal to

rd(z) =
∣∣∣∣Qd(z)Pd−1(z)−Qd−1(z)Pd(z)
Pd(z)Pd−1(z)− Pd−1(z)Pd(z)

∣∣∣∣ = 1
Kd−1(z)

by (4.7) and the Christoffel–Darboux formula.

5.3 Weyl circles

Recall that Γd(z) = {|w − zd(z)| = rd(z)} and set Kd(z) = conv Γd(z). We have shown
that for the special solutions µτ

d of the truncated moment problem

sk[µ] = sk (0 ≤ k ≤ 2d− 2) (5.2)

the Stieltjes transform evaluated at the point z ∈ C \R lies on the circle Γd(z). Now we
prove:
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Theorem 5.2. For any solution µ of (5.2) and any z ∈ C \ R, wµ(z) ∈ Kd(z). Vice
versa, for any z ∈ C\R and w ∈ Kd(z) there exists a solution µ of (5.2) with wµ(z) = w.

Lemma 5.8. For any z ∈ C \ R,

Γd(z) =

{
w
∣∣ =w
=z

=
d−1∑
k=0

|wPk(z) +Qk(z)|2
}

(5.3)

Kd(z) =

{
w
∣∣ =w
=z
≥

d−1∑
k=0

|wPk(z) +Qk(z)|2
}

. (5.4)

Proof. Observe that w ∈ Γd(z) if and only if

w = −
Qτ

d(z)− τQτ
d−1(z)

P τ
d (z)− τPd−1(z)

=
τQτ

d−1(z)−Qτ
d(z)

−τPd−1(z) + P τ
d (z)

for some τ ∈ R, i.e. if and only if

wPd(z) +Qd(z)
wPd−1(z) +Qd−1(z)

∈ R .

The last condition is equivalent to

(wPd(z) +Qd(z))(w̄Pd−1(z̄) +Qd−1(z̄)) ∈ R . (5.5)

On the other hand,

d−1∑
k=0

|wPk(z) +Qk(z)|2 =
=w
=z

+ 2ibd−1={(wPd(z) +Qd(z))(w̄Pd−1(z̄) +Qd−1(z̄))} .

(5.6)
This identity is a generalisation of the Christoffel–Darboux Formula (Proposition 4.6);
it can be proved by the same method. We omit the proof, since we prove a more general
fact in Corollary 7.2. Thus, w satisfies (5.5) if and only if

d−1∑
k=0

|wPk(z) +Qk(z)|2 =
=w
=z

.

We leave (5.4) as an exercise.

Proof of Theorem 5.2. The “vice versa” part follows from Proposition 5.7 by taking
convex combinations, therefore let us prove the first part. Consider an arbitrary solution
µ of (5.2). The function f(λ) = 1/(λ−z) lies in L2(µ), and the polynomials P0, · · · , Pd−1

form an orthonormal system in this space. Therefore∫
|f(λ)|2dµ(λ) ≥

d−1∑
k=0

∣∣∣∣∫ f(λ)Pk(λ)dµ(λ)
∣∣∣∣2 . (5.7)
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Observe that

|f(λ)|2 =
1

λ− z
1

λ− z̄
=

1
z̄ − z

[
1

λ− z̄
− 1
λ− z

]
,

hence
(LHS of (5.7)) =

=wµ(z)
=z

.

On the other hand,∫
f(λ)Pk(λ)dµ(λ) =

∫ [
Pk(λ)− Pk(z)

λ− z
dµ(λ) + Pk(z)

∫
dµ(λ)
λ− z

]
= Qk(z) + wµ(z)Pk(z) ,

hence

(RHS of (5.7)) =
d−1∑
k=0

|Qk(z) + wµ(z)Pk(z)|2 .

It remains to appeal to the second relation of Lemma 5.8.

5.4 Invariability

We have a nested sequence of circles K1(z) ⊃ K2(z) ⊃ K3(z) ⊃ · · · . From Lemma 5.8
and the equality w∞d (z) = w0

d−1(z) we see that the boundaries Γd(z) of Kd(z) and Γd−1(z)
of Kd−1(z) intersect at a single point. Denote:

K(z) =
⋂
d≥1

Kd(z) .

This is either a disc or a point.

Proposition 5.9. Let z ∈ C \ R, then K(z) is a disc if and only if

∞∑
k=0

(
|Pk(z)|2 + |Qk(z)|2

)
<∞ . (5.8)

Proof. For any z ∈ C \ R there exists w = z(z) 6= 0 such that

∞∑
k=0

|wPk(z) +Qk(z)|2 ≤
=w
=z

<∞ .

If K(z) is a disk, then also
∞∑

k=0

|Pk(z)|2 <∞ (5.9)

and hence
∞∑

k=0

|Qk(z)|2 <∞ .

Vice versa, (5.8) implies (5.9).
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Theorem 5.3 (Invariability). If (5.9) holds for some z ∈ C \ R, then it holds for all
z ∈ C. In particular, if K(z) is a disc for some z ∈ C \ R, then it is a disc for all
z ∈ C \ R.

Lemma 5.10. Let A = (ank)n,k≥0 be an infinite matrix such that

ank = 0 (k ≥ n) ,
∑
n,k

|ank|2 <∞ .

Then there exists C(A) such that, for any y = (yn)n≥0, the solution x = (xn)n≥0 of the
system

yn = xn −
n−1∑
k=0

ankxk

satisfies ∑
|xn|2 ≤ C(A)2

∑
|yn|2 . (5.10)

In other words, (1−A)−1 is a bounded operator in `2.

Proof. It suffices to prove the relation (5.10) for vectors y of finite support, as long as
the bound is uniform in the support. First, if AN = (ank)N−1

n,k=0 is a finite matrix of
dimension N ×N , then

x = (1−AN )−1y = (1+AN + · · ·+AN−1
N )y ,

hence
‖x‖ ≤ (1 + ‖AN‖+ · · ·+ ‖AN−1

N ‖)‖y‖ ≤ C1(AN )‖y‖ . (5.11)

Now consider an infinite matrix A. Denote

N = min

m ∣∣ ∑
n≥m

n−1∑
k=0

|ank|2 <
1
8


then by (5.11) applied to a principal submatrix AN of A,

N−1∑
n=0

|xn|2 ≤ C1(AN )2‖y‖ . (5.12)

Fix y and denote

J(x) =

n ≥ N ∣∣ |xn| ≤ 2

√√√√n−1∑
k=0

|ank|2 ‖x‖

 .

Then ∑
n∈J(x)

|xn|2 ≤ 4
∑

n∈J(x)

n−1∑
k=0

|ank|2‖x‖2 ≤ 4
∑
n≥N

n−1∑
k=0

|ank|2‖x‖2 ≤
1
2
‖x‖2 . (5.13)
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On the other hand, for n ≥ N , n /∈ J(x)

|yn| ≥ |xn| −
n−1∑
k=0

|ank||xk| ≥ |xn| −

√√√√n−1∑
k=0

|ank|2 ‖x‖ ≥
1
2
|xn| ,

hence ∑
n≥N, n/∈J(x)

|yn|2 ≥
1
4

∑
n≥N, n/∈J(x)

|xn|2 . (5.14)

From (5.13), (5.14) and (5.12)

∑
n

|xn|2 =
N−1∑
n=0

+
∑

n≥N, n/∈J(x)

+
∑

n∈J(x)

≤ 3
2


N−1∑
n=0

+
∑

n≥N, n/∈J(x)


≤ 3

2
(C(AN )2 + 4)

∑
n

|yn|2 ,

which proves that

‖(1−A)−1‖ ≤
√

3
2
(C(AN )2 + 4) .

Exercise 5.11. In the setting of Lemma 5.10, show that ‖(1 − A)−1‖ may be bounded
by a quantity depending only on

‖A‖2HS =
∑
k,n

|ak,n|2 .

Proof of Theorem 5.3. Suppose (5.9) holds for some z0 ∈ C \ R. Then also∑
|Qn(z0)|2 <∞

by Proposition 5.9. Observe that

Pd(z)− Pd(z0)
z − z0

=
d−1∑
k=0

ad,k(z0)Pk(z) ,

where

ad,k(z0) = Φ
[
Pd(λ)− Pd(z0)

λ− z0
Pk(λ)

]
= Pk(z0)Φ

[
Pd(λ)− Pd(z0)

λ− z0

]
+ Φ

[
Pd(λ)− Pd(z0)

λ− z0
(Pk(λ)− Pk(z0))

]
= Pk(z0)Qd(z0)− Pd(z0)Qk(z0) ;
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hence
∞∑

d=0

d−1∑
k=0

|ad,k(z0)|2 ≤ 4
∑

k

|Pk(z0)|2
∑

d

|Qd(z0)|2 <∞ .

Invoking Lemma 5.10, we obtain that
∞∑

d=0

|Pd(z)|2 <∞ .

Exercise 5.12. Under the assumptions of Theorem 5.3, the series

K(z, z′) =
∞∑

k=0

Pk(z)Pk(z̄′)

converges locally uniformly, and thus defines a function which is analytic in z and anti-
analytic in z′.

6 Some applications

6.1 Completeness of polynomials*

Theorem 6.1 (Riesz). Let µ be a solution of an indeterminate moment problem. The
following are equivalent:

1. there exists z ∈ C \ R such that wµ(z) ∈ Γ(z) = ∂K(z);

2. the relation wµ(z) ∈ Γ(z) holds for any z ∈ C \ R;

3. polynomials are dense in L2(µ).

Proof. (3) =⇒ (2): if polynomials are dense in L2(µ), then, in particular, φz(λ) = 1
λ−z

can be approximated by polynomials for any z ∈ C \ R, i.e.

‖φz‖2L2(µ) =
∑
k≥0

|〈φz, Pk〉|2 .

Therefore wµ ∈ Γ(z).
Since (2) =⇒ (1) is obvious, we proceed to (1) =⇒ (3). If wµ(z) ∈ Γ(z), then φz and

φz̄ can be approximated by polynomials. Next, the squares φ2
z and φ2

z̄ lie in the closure
of polynomials:∫ ∣∣∣∣∣ 1

(λ− z)2
− A

λ− z
−

n∑
k=0

Bkλ
k

∣∣∣∣∣
2

dµ(λ)

≤ 1
|=z|2

∫ ∣∣∣∣∣ 1
λ− z

−A−
n∑

k=0

Bkλ
k(λ− z)

∣∣∣∣∣
2

dµ(λ)

=
1
|=z|2

∫ ∣∣∣∣∣ 1
λ− z

− (A+B0)−
n∑

k=1

(Bk−1 − zBk)λk

∣∣∣∣∣
2

dµ(λ) ,
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and this expression can be made arbitrarily small by choosing suitable A and Bk. Pro-
ceeding in a similar fashion, we obtain that φk

z and φk
z̄ can be approximated by polyno-

mials.
Suppose polynomials are not dense. Then there exists 0 6= g ∈ L2(µ) such that

〈g, f〉 = 0 for any f in the closure of polynomials. In particular,∫
g(λ)

(λ− z)k
dµ(λ) =

∫
g(λ)

(λ− z̄)k
dµ(λ) = 0 , k = 1, 2, 3 · · ·

Let
u(ζ) =

∫
g(λ)
λ− ζ

dµ(λ) , ζ ∈ C \ R .

This function is analytic in C±, and

u(z) = u′(z) = u′′(z) = · · · = u(z̄) = u′(z̄) = u′′(z̄) = · · · = 0 .

Hence u ≡ 0, and then g dµ = 0 by the inversion formula for the Stieltjes transform,
thus g = 0 in L2(µ).

Theorem 6.2 (Naimark). Consider the convex set of solutions to an indeterminate
moment problem. A measure µ is an extreme point of this set if and only if polynomials
are dense in L1(µ).

Proof. If µ is not an extreme point in the set of solutions, then it can be represented as
µ = αµ1 + (1− α)µ2. Denote Φ[f ] =

∫
fdµ and Φ1[f ] =

∫
fdµ1. Then we have:

|Φ[f ]| ≤ ‖f‖L1(µ) , |Φ1[f ]| ≤ 1
α
‖f‖L1(µ) ,

hence both functionals are continuous, and coincide on C[λ]. Therefore polynomials are
not dense.

Vice versa, if polynomials are not dense in L1(µ), we can find a functional Φ0 of norm
1 such that C[λ] ⊂ Ker Φ0. Let

Φ±[f ] =
∫
fdµ± Φ0[f ] ,

then Φ± are non-negative functionals. Therefore

Φ±[f ] =
∫
fg±dµ

with g± ≥ 0. The measures dµ± = g±dµ have the same moments as µ, and µ is their
average.

Definition 6.3. A solution µ to a moment problem is called N-extreme if the equivalent
conditions of Theorem 6.1 hold, and V-extreme if the equivalent conditions of Theo-
rem 6.2 hold.
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Corollary 6.4. Any N-extreme measure is V-extreme.

Corollary 6.5. For any z ∈ C \ R and w ∈ Γ(z), there exists a unique solution µ for
which wµ(z) = w.

Proof. If there were two such solutions µ1 and µ2, their average µ1+µ2

2 would also be
N-extreme, in contradiction to Corollary 6.4.

Thus, in the indeterminate case the set of N-extreme solutions is homeomorphic to a
circle.

6.2 Carleman’s criterion, revisited*

Proposition 6.6 (Carleman). If
∑
b−1
k =∞, then the moment problem is determinate.

Proof. According to (4.7), PkQk+1 − Pk+1Qk = b−1
k , hence∑ 1

bk
=
∑

(Pk(i)Qk+1(i)− Pk+1(i)Qk(i)) ≤
∑(

|Pk(i)|2 + |Qk(i)|2
)
.

Thus the divergence of the left-hand side implies the divergence of the right-hand side
and hence (by Proposition 5.9) the determinacy of the moment problem.

Now we can give another proof of

Corollary 2.12 (Carleman’s criterion). If
∑

k s
− 1

2k
2k = ∞, the moment problem is

determinate.

Proof. Without loss of generality s0 = 1. Then

LC(Pk) =
1

b0b1 · · · bk−1
,

whence

b0 · · · bk−1 = b0 · · · bk−1Φ[|Pk|2] = Φ[λkPk(λ)] ≤
√

Φ[λ2k] =
√
s2k ,

hence by Carleman’s inequality (2.6)∑
k

s
− 1

2k
2k ≤

∑
k

(b0 · · · bk)−
1
k ≤ e

∑
k

1
bk

,

whence the divergence of the left-hand side implies determinacy by Proposition 6.6.
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6.3 A condition for indeterminacy

Theorem 6.7 (Krein’s condition). If µ has an absolutely continuous component with
density u(λ) = µ′ac(λ) such that∫

log u(λ)
dλ

1 + λ2
> −∞ , (6.1)

then µ is indeterminate.

Proof. The following proof is borrowed from Berg [2011]. A similar argument was used
by Szegő in the context of the trigonometric moment problem.

It suffices to consider the case dµ = u(λ)dλ. Recall that

Kd(z, z′) =
d∑

k=0

Pk(z)Pk(z̄′) ,
∫
Kd(z, λ)Kd(λ, z′)dµ(λ) = Kd(z, z′) ;

we shall prove that supdKd(i, i) <∞.

Lemma 6.8. If Kd(z, z′) = 0, then either both z and z′ are real, or =z=z′ < 0.

Proof. By the Christoffel–Darboux formula (Proposition 4.6), Kd(z, z′) = 0 if and only
if

Pd+1(z)
Pd(z)

=
Pd+1(z̄′)
Pd(z̄′)

. (6.2)

Now, the ratio Pd+1/Pd is only real on R, since P τ
d+1 = Pd+1 − τPd has only real zeros

for any τ ∈ R (see Exercise 4.17). Also,

lim
y→∞

Pd+1(iy)
Pd(iy)

= i∞

since LC(Pd+1),LC(Pd) > 0. Therefore Pd+1/Pd maps C+ to C+ and C− — to C−, and
(6.2) is impossible if, say, z ∈ C+ and z′ ∈ C− ∪ R.

Exercise 6.9. If R ∈ C[z] is such that R−1(0) ⊂ C−, then

1
π

∫
log |R(λ)|

1 + λ2
dλ = log |R(i)| .

Now we conclude the proof of the theorem. Consider the integral

I =
∫

log(|Kd(i, λ)|2u(λ))
dλ

π(1 + λ2)
.

On the one hand, Jensen’s inequality yields

I ≤ log
∫
|Kd(i, λ)|2u(λ)

dλ

π(1 + λ2)
≤ log

∫
|Kd(i, λ)|2u(λ)

dλ

π
= log

|Kd(i, i)|
π

.
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On the other hand,

I = 2
∫

log |Kd(i, λ)| dλ

π(1 + λ2)
+
∫

log u(λ)
dλ

π(1 + λ2)

= 2 log |Kd(i, i)|+
∫

logw(λ)
dλ

π(1 + λ2)
.

Therefore

Kd(i, i) = |Kd(i, i)| ≤
1
π

exp
{
−
∫

log u(λ)
dλ

π(1 + λ2)

}
.

Exercise 6.10 (A. Ostrowski). Let dµ(λ) = e−a(λ)dλ, where a is even, a(0) > −∞,
t 7→ a(et) is increasing and convex, and

lim
λ→+∞

a(λ)
log λ

= +∞

(so that µ has finite moments). Then µ is determinate if and only if∫
a(λ)dλ
1 + λ2

=∞ .

7 Jacobi matrices

Now we discuss the spectral theory of Jacobi matrices. We study the recurrence

(?)λ : λψ(k) = bkψ(k + 1) + akψ(k) + bk−1ψ(k − 1) , k ≥ 1 , (7.1)

where ak ∈ R and bk ∈ R are fixed coefficients, ψ : Z+ → C is an unknown sequence,
and λ is a parameter. We assume that bk > 0 for all k ≥ 0. The recurrence (?)λ is a
discrete analogue of a Sturm–Liouville equation

− d

dx

[
p(x)

dψ(x)
dx

]
+ q(x)ψ(x) = λw(x)ψ(x) .

We state an important property of solutions:

Proposition 7.1. Let ψj (j = 1, 2) be a solution of (?)λj
. Then for any k ≥ 1

bk

∣∣∣∣ ψ1(k) ψ2(k)
ψ1(k + 1) ψ2(k + 1)

∣∣∣∣− bk−1

∣∣∣∣ ψ1(k − 1) ψ2(k − 1)
ψ1(k) ψ2(k)

∣∣∣∣ = (λ2 − λ1)ψ1(k)ψ2(k) .

The formula remains true for complex λj.
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Proof. The left-hand side is equal to∣∣∣∣ ψ1(k) ψ2(k)
bkψ1(k + 1) + bk−1ψ1(k − 1) bkψ2(k + 1) + bk−1ψ2(k − 1)

∣∣∣∣
=
∣∣∣∣ ψ1(k) ψ2(k)

(λ1 − ak)ψ1(k) (λ2 − ak)ψ2(k)

∣∣∣∣ = ∣∣∣∣ ψ1(k) ψ2(k)
λ1ψ1(k) λ2ψ2(k)

∣∣∣∣ .
Corollary 7.2 (Discrete Green formula). Under the assumptions of Proposition 7.1,

d∑
k=1

ψ1(k)ψ2(k) =
1

λ2 − λ1

{
bd

∣∣∣∣ ψ1(d) ψ2(d)
ψ1(d+ 1) ψ2(d+ 1)

∣∣∣∣− b0 ∣∣∣∣ ψ1(0) ψ2(0)
ψ1(1) ψ2(1)

∣∣∣∣} .

Remark 7.3. The Christoffel–Darboux formula (Proposition 4.6) as well as the formula
(5.6) are special cases of Corollary 7.2, whereas (4.7) follows directly from Proposi-
tion 7.1.

7.1 Connection to spectral theory

Define a semiinfinite matrix

J =


a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a1 b2 0 · · ·
...

...
. . . . . . . . .


It is called a Jacobi matrix. Then (?)λ with the initial condition

λψ(0) = b0ψ(1) + a0ψ(0)

looks like an eigenvector equation: Jψ = λψ, and λ becomes the spectral parameter.
The matrix J is symmetric, so we would expect a nice spectral theorem such as in
Section 3.2. We would of course like the spectrum to be real. However:
Exercise 7.4. Let ak = 0 and bk = k! Prove that, for any z ∈ C\R, there exists a solution
ψ ∈ `2 to Jψ = zψ.

This is a sign that we have not imposed proper boundary conditions at infinity. Indeed,
the problem for a finite interval:

λψ(k) = bkψ(k + 1) + akψ(k) + bk−1ψ(k − 1) , 1 ≤ k ≤ d− 1

is well-posed only with boundary conditions at both edges. The eigenvalues of

Jd+1 =



a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a1 b2 0 · · ·
...

...
. . . . . . . . .

bd−2 ad−1 bd−1

0 0
. . . 0 bd−1 ad


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correspond to the Dirichlet boundary conditions

λψ(0) = b0ψ(1) + a0ψ(0) , (7.2)
λψ(d) = adψ(d) + bd−1ψ(d− 1) . (7.3)

However, ad may be chosen arbitrarily, therefore there is in fact a one-parametric family
of good (self-adjoint) boundary conditions corresponding to different choices of ad. If

the sequences (ak) and (bk) are bounded, the matrix J defines a bounded self-adjoint
operator with real spectrum, hence a situation such as in Exercise 7.4 can not occur.
That is, in this case there is no need for any boundary conditions at infinity. As we shall
see, this is a reflection of the following fact: the solutions corresponding to different
choices of ad coalesce in the limit d→∞.

We turn to the following question: given (ak) and (bk), when is there need for boundary
conditions at infinity? To answer this question, consider the matrices

Jd+1(τ) =



a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a1 b2 0 · · ·
...

...
. . . . . . . . .

bd−2 ad−1 bd−1

0 0
. . . 0 bd−1 ad − τbd


, τ ∈ R .

The spectral measure of Jd+1(τ) corresponding to the vector δ0 is given by

µτ
d+1 =

d+1∑
j=1

|ψτ
j (0)|2δξτ

j
, µτ

d+1(B) =
∑

ξτ
j ∈B

|ψτ
j (0)|2 , (7.4)

where ξτ
j are the eigenvalues of Jd(τ), and ψτ

j are the associated eigenvalues. The
similarity in notation to (4.10) is of course not coincidental.

Definition 7.5. We say that a Jacobi matrix J is of type D if there exists a probability
measure µ such that for any choice of τd ∈ R

µτd
d −→d→∞

µ in weak topology .

Otherwise, we say that J is of type C.

7.2 Connection to the moment problem

In the sequel we assume that bk > 0. This does not entail a loss of generality (why?).

Theorem 7.6 (Perron). For every recurrence of the form (?)λ with bk > 0 there ex-
ists a unique moment sequence s0 = 1, s1, · · · such that the corresponding orthogonal
polynomials Pk(λ) satisfy (?)λ with the initial conditions

P0(λ) ≡ 1, P1(λ) =
λ− a0

b0
. (7.5)
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Proof. Define a sequence of polynomials Pk(λ) that satisfy (?)λ, with the initial con-
ditions (7.5). This sequence forms a (linear-algebraic) basis in C[λ], and LC(Pk) > 0.
Define an inner product 〈·, ·〉 on C[λ]:

〈
∑

j

cjPj ,
∑

k

c′kPk〉 =
∑

j

cj c̄
′
j .

It is obviously positive-definite. Let us show that there is a (unique) sequence (sk) such
that

〈
∑

cjλ
j ,
∑

c′kλ
k〉 =

∑
j,k

cj c̄
′
ksj+k .

By Exercise 4.1, it suffices to show that

〈λR(λ), S(λ)〉 = 〈R(λ), λS(λ)〉

for any pair of polynomials R,S. It suffices to consider the case R = Pj , S = Pk. Then

〈λPj(λ), Pk(λ)〉 = 〈bjPj+1 + ajPj + bj−1Pj−1, Pk〉
= bjδj+1,k + ajδj,k + bj−1δj−1,k = bk−1δj,k−1 + akδj,k + bkδj,k+1

= 〈Pj , bk−1Pk−1 + akPk + bkPk+1 = 〈Pj(λ), λPk(λ)〉 .

The sequence (sk) which we have constructed is a moment sequence, and the associated
orthogonal polynomials are exactly the polynomials Pk.

Theorem 7.7. Let J be a Jacobi matrix with bk > 0. Then J is of type D if and only
if the corresponding moment problem is determinate.

Lemma 7.8. det(z − Jd(τ)) = b0 · · · bd−1P
τ
d (z).

Proof. It suffices to prove the proposition for τ = 0, since

P τ
d = Pd − τPd−1 , det(Jd(τ)− z) = det(Jd − z)− τbd−1 det(Jd−1 − z) .

For d = 1 the identity follows from (7.5). The induction step follows from the recurrent
relation (?)z.

Lemma 7.9. Let J be a Jacobi matrix with bk > 0. The measures µτ
d defined in (7.4)

coincide with those defined in (4.10) for the associated moment problem.

Proof. In this proof, let us denote the measure defined in (7.4) by µ̃τ
d. Observe that for

0 ≤ k ≤ 2d− 2
sk[µ̃τ

d] = (Jd(τ)k)00 = (Jk)00 = Φ[λk] ;

using this equality for 0 ≤ k ≤ d− 1 completes the proof.
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Proof of Theorem 7.7. A sequence of probability measures (νd) is weakly convergent if
and only if the sequence of Stieltjes transforms converges pointwise in C \ R. If the
moment problem is determinate, the sequence (µτ

d) converges to a τ -independent limit,
therefore the geometric locus of the values of wτ

d(z) shrinks to a point for every z ∈ C\R.
Hence J is of type D.

Vice versa, if J is of type D, the geometric locus of the values of wµ(z) as µ ranges
over the collection of solutions to the moment problem degenerates to a point for any
z ∈ C \ R, hence the moment problem is determinate.

7.3 Inclusion in the general framework

Let J be a Jacobi matrix with bk > 0. It defines an operator acting on the space of
finitely-supported sequences in `2; this operator is symmetric:

〈Ju, v〉 = 〈u, Jv〉 (7.6)

for such u, v.
Recall several constructions and facts from spectral theory (see Akhiezer and Glazman

[1993]). Let T be an operator defined on a dense subspace D of a Hilbert space H.
Consider the set of pairs

Γ =
{
(u, u′) ∈ H ×H

∣∣ ∃un ∈ D : un → u , Tun → u′
}
.

If T is symmetric, i.e.
〈Tu, v〉 = 〈u, Tv〉 ,

then Γ is a graph of an operator T̄ which is called the closure of T . Also consider the
collection

Γ∗ =
{
(v, v′) ∈ H ×H

∣∣ ∀u ∈ D 〈Tu, v〉 = 〈u, v′〉
}
.

Without any assumptions, Γ∗ is the graph of an operator T ∗, called the adjoint operator;
it is always closed (i.e. its closure coincides with itself). If T is symmetric, T̄ ∗ = T ∗ and
T ∗∗ = T̄ . A symmetric operator T is called self-adjoint if T ∗ = T and essentially
self-adjoint if T ∗ = T̄ .

Self-adjoint operators admit a spectral theorem similar to Theorem 3.9. On the other
hand, symmetric operators that are not self-adjoint do not admit a natural spectral
decomposition.

Let T be a symmetric operator defined on a dense subspace D of a Hilbert space H.
The invariability theorem asserts that the functions

z 7→ dim Ker(T ∗ − z)

are constant in C+ and in C−. The numbers n±(T ) = dim Ker(T ∗ ∓ i) are called the
deficiency indices of T . The operator T is self-adjoint if and only if its deficiency indices
are (0, 0). The operator T admits a self-adjoint extension T̃ : H → H if and only if its
deficiency indices are equal. If the deficiency indices are (n+(T ), n−(T )), the self-adjoint
extensions are parametrised by unitary bijections

U : Ker(T ∗ − i)←→ Ker(T ∗ + i) .
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Theorem 7.10. Let J be a Jacobi matrix with bk > 0. If J is of type D, the correspond-
ing operator J is essentially self-adjoint. If J is of type C, the deficiency indices of the
corresponding operator are (1, 1). The spectral measures of the self-adjoint extensions
(with respect to the vector δ0) are exactly the N-extreme solutions (Definition 6.3) to the
moment problem.

Exercise 7.11. Let H be a separable Hilbert space, and let T : H → H be a bounded
self-adjoint operator with a cyclic vector v1. There exists an orthonormal basis (vj)∞j=1

of H in which T is represented by a Jacobi matrix.

8 The multidimensional moment problem*

The two-dimensional counterpart of the map S from the introduction takes a measure
µ on R2 to the array (s`,k[µ])`,k≥0 of its moments

s`,k[µ] =
∫
λ`

1λ
k
2dµ(λ) .

Similarly to the one-dimensional case, any element of the image satisfies∑
`,`′,k,k′≥0

s`+`′,k+k′z`,kz̄`′,k′ ≥ 0 , (z`,k) ∈ CZ2
+ . (8.1)

However, unlike the one-dimensional case, this condition is necessary but not sufficient.

8.1 Existence

Proposition 8.1 (Hilbert). There exists P ∈ R[λ, κ] which can not be represented as a
sum of squares.

Hilbert’s proof was not constructive; the first example (which we reproduce below)
was constructed in the 1960-s by Motzkin [1967].

Proof. Let
M(λ, κ) = λ4κ2 + λ2κ4 + 1− 3λ2κ2 .

By the arithmetic-geometric mean inequality

M(λ, κ) ≥ 3 3
√
λ6κ6 − 3λ2κ2 = 0 .

Assume that M is a sum of squares: M =
∑

j h
2
j , hj ∈ R[λ1, λ2]. Denote the coefficients

of hj as follows:

hj(λ, κ) = Ajλ
3 +Bjλ

2κ+ Cjλκ
2 +Djκ

3

+Ejλ
2 + Fjλκ+Gjκ

2

+Hjλ+ Ijκ

+Jj .
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Comparing the highest-degree coefficients, we consecutively prove that

Ak = Dk = 0 , Ek = Gk = 0 , Hk = Ik = 0 .

From the equalities M(±1,±1) = 0 we obtain that hk(±1,±1) = 0, i.e.

Bk +Ck +Fk +Jk = Bk−Ck−Fk +Jk = −Bk +Ck−Fk +Jk = −Bk−Ck +Fk +Jk = 0

whence Bk = Ck = Fk = Jk = 0.

Using a Hahn–Banach argument in an appropriate topology, this can be shown to
imply (see Berg [1987] and references therein):

Theorem 8.2. There exists an array (s`,k) satisfying (8.1) which is not a moment array,
i.e. it does not admit a representation

s`,k = s`,k[µ] , `, k ≥ 0

with a positive measure µ.

See also Friedrich [1985] for an explicit construction of such an array (s`,k).

Thus, Hamburger’s theorem fails in two dimensions. On the other hand, Hausdorff’s
theorem can be extended:

Exercise 8.3. Let Φ : C[λ, κ]→ C. The following are equivalent:

1. there exists a measure µ supported on the simplex {λ, κ ≥ 0, λ+ κ ≤ 1} such that

Φ[R] =
∫
Rdµ , R ∈ C[λ, κ] ;

2. Φ[λ`κk(1− λ− κ)m] ≥ 0 for any `,m, k ≥ 0.

More generally, let K ⊂ R2 be a convex body (a compact convex set with non-empty
interior); then

K =
⋂

χ∈K◦

{
λ ∈ R2

∣∣ 〈ξ, λ〉 ≤ 1
}
,

where
K◦ =

{
ξ ∈ R2

∣∣ ∀λ ∈ K : 〈ξ, λ〉 ≤ 1
}
.

Exercise 8.4 (Maserick). Let Φ : C[λ, κ]→ C. The following are equivalent:

1. there exists a measure µ supported on K such that

Φ[R] =
∫
Rdµ , R ∈ C[λ, κ] ;

2. Φ
[
R2
∏

ξ∈Ξ〈ξ, λ〉
]
≥ 0 for any finite Ξ ⊂ K◦ and any R ∈ C[λ, κ].
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Remark 8.5. The following generalisation, due to Schmüdgen [1991], requires arguments
from real algebraic geometry. Let P ⊂ R[λ, κ], and let

K =
⋂

P∈P

{P ≥ 0} .

Let Φ : C[λ, κ]→ C. If K is compact, the following are equivalent:

1. there exists a measure µ supported on K such that

Φ[R] =
∫
Rdµ , R ∈ C[λ, κ] ;

2. Φ
[
R2
∏

P∈Ξ P
]
≥ 0 for any finite Ξ ⊂ P and any R ∈ C[λ, κ].

8.2 Carleman’s criterion

Exercise 8.6. Let (s`,k) be a moment array. If

∞∑
`=0

s
− 1

2`
2`,0 =

∞∑
k=0

s
− 1

2k
0,2k =∞ ,

then the corresponding moment problem is determinate.

The following theorem, due to Nussbaum [1965], is more surprising.

Theorem 8.7 (Nussbaum). Let (s`,k) be an array satisfying (8.1), and such that

∞∑
`=0

s
− 1

2`
2`,0 =∞ .

Then (s`,k) is a moment array.

Proof. Let Φ : C[λ, κ]→ C be the linear functional sending λ`κk to s`,k. For any p ∈ C[λ]
and q ∈ C[κ],

Φ
[
p(λ)2q(κ)2

]
≥ 0 ,

hence for any p there exists a measure τ [p2] such that

Φ
[
p(λ)2q(κ)

]
=
∫
q(κ)dτ [p2](κ) , q ∈ C[κ] .

Observe that
Φ[p(λ)2κ2k] ≤

√
Φ[p(λ)4]Φ[κ4k] ,

hence ∑
k

Φ[p(λ)2κ2k]−
1
2k ≥ Cp

∑
k

Φ[κ4k]−
1
4k =∞ .
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Therefore τ [p2] is defined uniquely. This crucial property allows us to define τ [p] for all
polynomials p ∈ C[λ]. Indeed, any such p can be represented as

p = p2
1 + p2

2 − p2
3 − p2

4 ,

and, if we set
τ [p] = τ [p2

1] + τ [p2
2]− τ [p2

3]− τ [p2
4] ,

the value of this expression does not depend on the choice of the decomposition, and,
moreover, depends linearly on p (why?) Consequently,

Φ[p(λ)q(κ)] =
∫
q(κ) dτ [p](κ) .

Next, τ [p] is monotone in p: if p1 ≤ p2 on R, then τ [p1] ≤ τ [p2]. Indeed, p2−p1 is a sum
of squares, and by construction τ associates a positive measure to each square. Hence
for every B ⊂ R there exists a measure σB such that

τ [p](B) =
∫
p(λ)dσB(λ) . (8.2)

We apply this as follows: on the j-th step, construct σ(j)
B which satisfies (8.2) for B of

the form [i/2j , (i + 1)/2j). If B is a union of such elementary intervals, we define σ(j)
B

as the sum of the corresponding measures. If B is a union of dyadic intervals, then,
for sufficiently large j, σ(j)

B is a solution to the same moment problem (8.2). The set of
such solutions is precompact in weak topology; choose a sequence (jr)r≥1 such that the
sequence (σ(jr)

B ) converges for any (dyadic) B:

σ
(jr)
B → σB .

Then σB is again a solution to the moment problem (8.2), and is, by construction,
monotone non-decreasing as a function of B. Denote

M(λ, κ) = lim
κ′→κ+0

σ(−∞,κ′](−∞, λ] ,

where the limit is taken along κ′ ∈
⋃

j≥0 2−jZ. Then M is monotone non-decreasing in
both λ and κ, and

Φ[p(λ)q(κ)] =
∫
p(λ)q(κ)dM(λ, κ) .

Thus dM is the requested solution to the moment problem

s`,k[µ] = s`,k , `, k ≥ 0 .
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Review questions (Please send me the solutions to a few of them before 11.1.2018)

1. For which α ∈ R is the measure e−|λ| log
α(|λ|+e)dλ determinate?

2. LetM be a log-convex sequence of positive numbers satisfying (2.4). The class of
C∞ functions f such that (2.2) holds for all even k is quasianalytic.

3. Prove that the polynomials (Pk)N
k=0 defined via P0 ≡ 1, P1(λ) = 1√

N
λ and

λPk(λ) =
√

(N − k)(k + 1)Pk+1(λ) +
√

(N − k + 1)k Pk−1(λ) (1 ≤ k ≤ N − 1)

are orthogonal with respect to the measure µN = 1
2N

∑N
j=0

(
N
j

)
δN−2j .

4. Let µ be a determinate measure. Prove that lim
k→∞

Qk(z)
Pk(z) = −wµ(z) for each z ∈ C\R.

5. Suppose f ∈ L2(µ) lies in the closure of polynomials in L2(µ). If µ is indeterminate,
there exists an entire function which coincides µ-almost-everywhere with f .

6. (a) If λ in R is not an eigenvalue of Jd−1(τ), then it is an eigenvalue of Jd(τ) for
some τ ∈ R. (b) Fix λ and find max{µ{λ} | µ satisfies (5.1)}.
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