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These lecture notes were prepared for a 10-hour introductory mini-course
at LTCC. A cap was imposed at 50 pages; even thus, I did not have time to
cover the sections indicated by an asterisk. If you find mistakes or misprints,
please let me know. Thank you very much!

The classical moment problem studies the map S taking a (positive Borel) measure p
on R to its moment sequence (S)r>0,

selpl = [ Ardu(
The map is defined on the set of measures with finite moments:
w(R\ [-R,R])) =O(R™), ie Vk u(R\[-R,R])=0(R").
The two basic questions are

1. existence: characterise the image of S, i.e. for which sequences (si)r>o of real
numbers can one find p such that sg[u] = s for k=0,1,2,---7

2. uniqueness, or determinacy: which sequences in the image have a unique pre-
image, i.e. which measures are characterised by their moments? In the case of
non-uniqueness, one may wish to describe the set of all solutions.

The classical moment problem originated in the 1880-s, and reached a definitive state
by the end of the 1930-s. One of the original sources of motivation came from probability
theory, where it is important to have verifiable sufficient conditions for determinacy.
Determinacy is also closely related to several problems in classical analysis, particularly,
to the study of the map taking a (germ of a) smooth function f to the sequence of
its Taylor coefficients (f (k)(O))kZO. Existence in the moment problem is a prototype
of the problem of extension of a positive functional, and it gave the impetus for the
development of several functional-analytic tools.
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The moment problem also enjoys a mutual relation with the spectral theory of self-
adjoint operators. In fact, the spectral theorem for bounded self-adjoint operators can
be deduced from the existence theorem for the moment problem. Further, the moment
problem provides simple and yet non-trivial examples of various notions from the abstract
theory of unbounded symmetric and self-adjoint operators.

The classical monograph Akhiezer [1965] is still the best reference on the moment
problem and related topics. We touch only briefly on the approach (originating in the
work of Chebyshev) to the moment problem as an extremal problem; see Krein and
Nudel'man [1977]. The classical reference on quasianalyticity is Carleman [1926].

1 Introduction

1.1 A motivating example

The following problem is a variant of the one considered by Pafnuty Chebyshev in the
1880-s!. Let (ttn)n>1 be a sequence of probability measures. Assume:

k! :
{MW N k is even (11)

Vk>1 lim sifp,] =
= tlpn] 0, k is odd

n—oo

Example 1.1. Let X1, X2, X3, - be independent, identically distributed random vari-
ables with EX; = 0, EX? = 1 and E|X1|¥ < oo for any k > 3. Let p, be the law of

ﬁ(Xl + X044+ X,), ie

1
J(B)=P! — (X1 4+ Xo+---+X,)eB} .
n(B) = P{ 06+ X4+ X,) € B
Then (1.1) holds.

FEzxercise 1.2. Prove this.

FEzercise 1.3. Prove that the numbers in the right-hand side of (1.1) are exactly the
moments of the standard Gaussian measure +:

o k)' 1
/ \kp—A2/2 d\ ) sy o ks even
—o0 V2r 0, k is odd

Therefore, it is natural to ask whether (1.1) implies the weak convergence of p, to the
Gaussian measure v, i.e.

Vo € Cpaa(R) nlin;o/¢(A)dun(A) z /qﬁ(/\)eA?/Q\;i%r .

This was solved in the affirmative by Andrei Markov, who developed Chebyshev’s ideas.

In Chebyshev’s formulation, explicit bounds for finite n played a central réle. Markov’s form of
Theorem 1.4 was also stated more quantitatively than here.



Theorem 1.4 (Markov). Let (fin)n>1 be a sequence of probability measures that satisfy
(1.1). Then p, — 7 in weak topology.
n—oo

In juxtaposition with the two exercises above, this theorem implies the Central Limit
Theorem for random variables with finite moments?.

The theorem follows from two propositions. The first one shows that the crucial
property of the limiting measure is determinacy.?

Proposition 1.5 (Fréchet-Shohat). If p is a determinate measure (i.e. its moments
determine it uniquely), and the measures p, are such that

VE>0 lim sglun] = sklyl , (1.2)

n—oo
then p, — u in weak topology.

Obviously?, if u is indeterminate, then one can find p, - u such that (1.2) holds.

How to check whether a measure is determinate?
Ezercise 1.6. Prove that every compactly supported measure is determinate.

To handle the Gaussian measure, we need to relax the assumptions.

Proposition 1.7. If u is such that
de>0: /ed/\'d,u()\) < o0, (1.3)

then p is determinate.

Obviously®, Proposition 1.5 and Proposition 1.7 imply Theorem 1.4.

FEzercise 1.8. The condition (1.3) (called: “u has exponential tails”) is equivalent to the
following condition on the moments (“factorial growth”):

IO >0: Vk>0 sylp] < CFPL2K)! . (1.4)

The exponential tails are not a necessary condition for determinacy. In fact, there
exist determinate measures with extremely heavy tails.® However, it is important to
know that not all measures are determinate.

2The Lévy-Lindeberg CLT can be also obtained by the combination of such arguments with a trunca-
tion.

3Tt is the proof of this proposition that relies on a compactness argument which Chebyshev may not
have approved.

4i.e. please convince yourself that this is obvious before proceeding

Sin the sense of footnote 4

%i.e. determinacy does not imply anything stronger than the obvious condition u(R\[-R, R]) = O(R™°°)



Example 1.9. Let u(y) be a 1-periodic function (say, a bounded and measurable one).
Denote

Zu= [ exp(= 52 + ulw)dy

and define a measure supported on R, :
1 1. 5 dA

Then sg[pn] = ek’ /2 for all k, regardless of the choice of u! In particular, none of these
measures is determinate.

FEzercise 1.10. (a) Prove this. (b) Is there a discrete measure with the same moments
as these 1,,?

1.2 Proofs of Proposition 1.5 and 1.7

Proof of Proposition 1.5. It suffices to show that (a) (pn)n>1 is precompact in weak
topology, and (b) p is the unique weak limit point of this sequence. To prove (a), recall
the criterion for compactness in weak topology (in the old days, it used to be called the
Helly selection theorem): a collection 90t of finite measures is precompact if and only if
the following two conditions hold:

sup (R) < oo (1.5)
veMm

Ve>03R>0: suprv(R\[-R,R]) <e (1.6)
vem

The first condition holds for 9t = {u,,} since
lim Nn(R) = lim So[l’l’n] = SO[M] <o,

whereas the second one follows from the Chebyshev inequality:

supy, s2(ptn] _ C
pn(®\ [ B)) < Mo 2lin] o O

Thus (a) is proved and we proceed to (b). If v is a limit point of (i, ), we have:

:U’nj_)Va J — 0.

[ o, () = [ oyavx

for any bounded continuous ¢. Please check (using the assumptions) that also

/ Nedpn, (X) — / Medu(\)

By definition



although the function A — A* is not bounded for k£ > 1. Then we have:

sklp] = lm sglun] = sk[v]

n—oo
for all k, and therefore v = p by determinacy. O
The proof of Proposition 1.7 is a bit more analytic.

Proof of Proposition 1.7. Consider the Fourier-Stieltjes transform of u, which is” the
function

o(6) = / ()

The integral converges for complex & with |3¢| < € (where € comes from the definition
(1.3) of exponential tails), therefore ¢ can be extended to an analytic function in this
strip. If v is another measure with the same moments, then by Exercise 1.8 also

b(E) = / eNdu ()

is analytic in a strip.® Now observe that

and hence, by the uniqueness theorem for analytic functions, ¥ = ¢ in some strip
containing R and in particular on R. Invoking the inversion formula for the Fourier—
Stieltjes transform, we infer that v = p. O

2 Quasianalyticity; determinacy

While the condition of exponential tails in Proposition 1.7 can not be dropped, it can
be relaxed. The proof relied on a uniqueness theorem for analytic functions, so we shall
discuss wider classes of functions (known as quasianalytic classes) in which one has a
uniqueness theorem. The idea goes back to Hadamard, and the theory was developed in
the first half of the XX-th century. Two of the classical references are Carleman [1926],
Mandelbrojt [1942].

2.1 The Denjoy—Carleman theorem

First, let us move back to the real domain. How do we state the uniqueness theorem for
analytic functions without using complex variables?

"The properties of the Fourier—Stieltjes transform are described in any textbook on harmonic analysis,
e.g. Katznelson [2004]. We shall only use the fact that a finite measure is determined by its transform,
as follows from the inversion formula.

8formally, this may be a smaller strip |3¢| < € < ¢; this is sufficient for our purposes, though in fact
one may take € = e.



FEzercise 2.1. Let I C R be a bounded interval. A function ¢ € C°°(I) has an analytic
extension to a neighbourhood of I if and only if there exists C' > 0 such that for every
k>0and el

6 (e)] < CFH 1k (2.1)

Corollary 2.2. Let C > 0, and let ¢,v € C*°(R) be two functions satisfying (2.1). If
#*)(0) = ) (0) for all k > 0, then ¢ = 1p.

Ezercise 2.3. Prove the corollary without using the theory of functions of a complex
variable.

In the proof of Proposition 1.7, we could have used the uniqueness theorem in this
form. We know from a calculus course that the assumption (2.1) can not be dropped:
there exist non-zero C'*° functions which vanish at a point with all derivatives. However,
it can be relaxed.

Definition 2.4. Let M = (My)r>0 be a sequence of positive numbers. The Carleman
class C{M} consists of all p € C*°(R) such that, for some C >0,

sup [¢) (€)] < CFH M (2.2)
£eR

Definition 2.5. A Carleman class is called quasianalytic if the map

¢ (6™ (0))r0

is injective, i.e. if a function vanishing with all derivatives at a point has to vanish
identically.

Example 2.6. For My = k!, the class C{M} is quasianalytic.
Ezercise 2.7. Find an explicit non-quasianalytic Carleman class (without reverting to
the Denjoy—Carleman theorem below).

From now on we shall assume that the sequence M is log-convex:

My </ My_1 My . (2.3)

This regularity assumption does not entail a great loss of generality: every Carleman
class C{M} can be embedded in a larger (explicit) Carleman class C{M’} which sat-
isfies (2.3), so that C{M} is quasianalytic if and only if C{M’} is quasianalytic (see
Mandelbrojt [1942]).

Theorem 2.8 (Denjoy—Carleman). Let M be a log-convex (2.3) sequence of positive
numbers. The Carleman class C{M} is quasianalytic if and only if

> My _ o (2.4)

M
k>0 k+1




Example 2.9. Each of the following sequences defines a quasianalytic Carleman class

C{M}:
My, = kllogk(k 4 10) , My = k!logk(k + 10) log” log(k + 10) ,
On the other hand, M, = k!log? (k + 10) defines a non-quasianalytic class.

Remark 2.10. Let M be a sequence of positive numbers. If
S =0, (2.5)
k>1

then (2.4) holds. Vice versa, if M satisfies (2.4) and (2.3), then (2.5) holds.

Proof of Remark 2.10. Assume that M is log-convex. Then M; < My(My/M;_1)*,

hence M, 1 M,
Z ~1/k Z —1/k ME—1 . Z k—1
Mk} 2 MO Tk Z mln(ﬁo,l) Mk .
E>1 E>1 E>1

The condition (2.4) implies that the right-hand side is infinite, and hence (2.5) holds.
The reverse implication (2.5)==(2.4) follows from

Lemma 2.11 (Carleman’s inequality). For any positive sequence (ay),

Z(al )R < eZak . (2.6)
k=1 k=1

Proof. (See [Pdlya, 1990, Chapter XVI] for a discussion) Let 7 be auxiliary positive
numbers. Then

(ay---ap)"* = 171 AkTk e B U W e L
rLe Tk k(rl...rk)l/k
Therefore
o0 o0
1/k airy + -+ agrg
oo S 3 S S S
h=t k=1 k:>]

Choose 7 = (k +1)*/k*=1 so that rire-- -7 = (k + 1)¥; then the right-hand side takes
the value

—  (j+1) o~ (+1)1
;a i1 Zkk+1 ;a’ﬂ T
o0 (o]
=Y a;(1+1/jY <ed
Jj=1 Jj=1

This concludes the proof of the Carleman inequality (2.6) and of the remark.



Corollary 2.12 (Carleman’s criterion). Any measure p with

> sanlu] 7 = oo (2.7)

k=0
is determinate.

Proof of Carleman’s criterion. Let M = (M},) >0, where My, = \/sox[p]so[p]. By Holder’s
inequality, M is log-convex (2.3). Let

o(6) = / () |

then
sup )] < / AFdu(N) < M,

The same bound is satisfied by the Fourier transform of any measure v sharing the
moments of . By the Denjoy—Carleman theorem (and Remark 2.10) the class C{M} is
quasianalytic, hence ¢ (and thus also p) is uniquely determined by the moments sg. [

Now we prove the Denjoy—Carleman theorem. Before proceeding to the proof, the
readers may wish to to convince themselves that the uniqueness part (sufficiency) is not
a direct consequence of the Taylor expansion with remainder. In fact, the original proofs
relied on complex-variable methods. The first two real-variable proofs were found by
Bang [1946, 1953]; we reproduce the second one.”

Proof of Theorem 2.8.
Sufficiency First let us prove that (2.4) implies quasianalyticity, following an argument

due to Bang [1953].
Assume that ¢ € C*° admits the bounds

sup [¢)(¢)| < C*H M (2.8)
£eR
For integer p > 0, denote
By={¢eR|W<k<p loW(©) < CHHeFTag) . (2.9)

Note that R = By D By D By---. If ¢ vanishes with all the derivatives at 0, then 0 €
ﬂp>0 By,. The following lemma asserts that if a point lies in B),, then its neighbourhood
lies in B,—1. (Properties of this kind are sometimes called “propagation of smallness”.)
It will be more convenient to state it in the contrapositive:

“Thgger Sophus Vilhelm Bang (27.6.1917-18.1.1997) — a Danish mathematician. In addition to his
work on quasianalyticity, Bang is remembered for the solution of Tarski’s plank problem.



Lemma 2.13. Assume that ¢ satisfies (2.8) for some log-conver sequence M. If & ¢
B,—1 for some p > 1, then

M,_
_ My =
{{;‘ ,§ + Ce M NB,=o .
Proof of Lemma 2.13. Assume that {4 h € B, for some -1
—k— _

(k) < ’ (k+3) h) ‘h‘ P+l 4P h [hP~ 2.1
[ < !<75 (€ + ! + [P (€ + )\(p_k), (2.10)
J=0 '

p-k . . |h)?

< Ck:—i—]-i—lek—&-]—pMkﬂ.T , (2.11)
, 4!
Jj=0

where on the second step we used (2.9) to bound the terms in the sum and (2.8) to
bound the remainder. Using log-convexity, we bound

p—Fk .
. My |hJ
2.11) = My, Y COFFITlek+imp 20 0
@) =M Y L
S gl Iy
S ) Mkz
j=0 p=l
= M CFleh~ pexp{CeUz] } < M Ck+1eh=(—1)
p 1
This proves the lemma. O

Now we conclude the proof of sufficiency. If ¢ is not identically zero, there exist p and
€ such that £ ¢ B,. By Lemma 2.13, for ¢ > p

M1 oM

6 - 75 +
Ml CeMj, ) CeMj,

me-l—k:@a

thus — by the main assumption (2.4) — we have 0 ¢ B, for sufficiently large ¢q. Therefore
¢ can not vanish at zero with all the derivatives. This proves the sufficiency of the
Denjoy—Carleman condition (2.4) for quasianalyticity.

Necessity Now we assume that (2.4) fails and construct a non-zero compactly sup-
ported ¢ € C {M}. The construction goes back at least to Mandelbrojt [1942], where
unpublished work of Bray is quoted.

Let u be a bump function such that

0<u<1, suppucC[-2,2], /u(ﬁ)df =1, /]u'(§)|d§ <1



In fact, u = %1[,1,1] is fine, but you may as well take a C' function if §-functions make

you feel uncomfortable. Let M_y = Mg /My; define ug(€) = MAﬁlu( MM’“ ), and let

Op = U kUL * -+ ¥ Up_1

be the convolution of the first p functions. Then, for p > k, ¢, admits the bounds:

|gb](j€)|:|uf)>|<u'1>a<---*u;g LK U K K Uy
p—1
< H/|u \dfxmax\uk H /u]
o (2.12)

M,
< H My, k
M Mk L M,
In particular, for any k the sequence (qﬁp )p> & 1s precompact in uniform topology. Choose

¢ such that for any k the derivative ¢(¥) is a uniform limit point of ((b](f))wk.lo The
estimates (2.12) allow to exchange the limit with differentiation, therefore

M,
Vk>0 |o |_M,1’

also,

supp ¢ C —QZMk ! 22Mk ! -

k>0 k>0
O

Remark 2.14. The proof of necessity shows that if (2.4) fails, one may construct non-
zero functions in the corresponding Carleman class with a prescribed constant C' in (2.2).
Alternatively, one may prescribe the support of the function. Also, the log-convexity
assumption (2.3) is not used in the proof of necessity.

2.2 Remarks

Sharpness Although Carleman’s condition (2.7) is not necessary for the determinacy
of the moment problem, it is sharp in the following sense.!!

Proposition 2.15. If i is a measure that fails (2.7), then there exists an indeterminate
measure v such that sop[v] < soxp] for all k> 0.

Proof. Suppose p fails (2.7). Then the class of functions ¢ with
03], 6CM D] < sa,[u]/ (27)

is not quasianalytic'?, and thus contains a non-zero function ¢ with supp ¢ C [1, A] for

10Tt is not hard to see that ¢ is unique, so in fact ¢§,’“> — ¢™ for any k, but we do not need this.

HCf. [Kostyucenko and Mityagin, 1960, Theorem 6]. I learned the argument below from B. Mityagin,
who refused to take credit for it: < “everybody” — say, Sz. Mandelbrojt or B. Ya. Levin — knew this
in the 30’s, maybe without saying it explicitly all the time.>

12Why? note that the condition (2.3) may fail, and find a way to save the argument

10



some A > 1 (cf. Remark 2.14). Decompose the Fourier transform ¢ into a difference
qAS = g — h of two non-negative functions, then the measures with Radon densities g/v/A
and h/vA have the same moments, and these moments can be bounded as follows.
First, by Cauchy—Schwarz

n n| _ n n d\
/)\2 g(N)dx < /A2 |p(\)]d\ = /)\2 \/1+>\2]¢()\)|7m
1/2
< {W/A4"(1+A2)\$(A)]2dA} |

Using the Parseval identity,

(2.13)

1/2
(2.13) < {27T2/ [’¢(2n)()\)’2+ ’¢(2n+1)()\)|2} d)\} < /ASQn[,U] . (2.14)

Thus the moments of the indeterminate measure v, dv(\) = A="/2g(\)d), are majorised
by those of pu. ]

3 Existence

The Hamburger moment problem asks whether there exists a (positive Borel) measure
w on R with the given sequence of moments (si)r>0. There is an obvious necessary

condition: if such u exists, one has for any k and any zg, -,z € C:
Eok k
S sz = [ 130 2N Pdn() = 0.
j=0 1=0 j=0

In other words, the Hankel matrix H = (st);?‘;:O should be positive semidefinite, i.e.
define a positive semidefinite quadratic form.

3.1 Hamburger’s theorem

Theorem 3.1 (Hamburger). A sequence (sg)r>0 is a moment sequence if and only if
the corresponding Hankel matriz H = (st)‘]?‘;:O is positive semidefinite, i.e. for any k
and any 2g, 21, , 2, € C

k
E Sj+12521 >0.
Ji=0

In the sequel, we employ the following (ab)use of notation. If R(\) = SciM is a
polynomial, we denote R(A\) = Y. ¢;\ and |R|*> = RR. The first step in the proof is

Proposition 3.2. If P € C[)] is non-negative on R, then it can be represented as
P = |R|? for some R € C[)].

11



Proof. From the assumption P has real coefficients. Let a; be the real zeros of P, so
that a zero of multiplicity 2m is counted m times, and let b; be the complex zeros of P
in the upper half-plane. Then (for real \)

3 =TT @ TTIA -0l
j !
for some ¢ > 0. Then P = |R|? for
N =ve[[a=a) J[Tx—0) . O
j 1
To prove Hamburger’s theorem, define a functional ® : C[A\] — C by

‘P[Z aj)\j] = ZCL]’SJ' B

It is positive in the following sense: ®[P] > 0 whenever P is a non-negative polynomial.
Let E be the linear space spanned by C[A] and the collection of functions {1 (_s x}reRrs
and let K C E be the cone of non-negative functions. We shall extend ® to a linear
functional ® : E — C such that ®(K) C Ry. This is done using the following general
device.

Theorem 3.3 (M. Riesz). Let E be a linear space and let K C E be a convex cone. If
¢ : F' — C is a linear functional defined on a linear subspace F' C E so that ®(FNK) C
Ry and E = F + K (i.e. every element of E can be represented as a sum of an element
of F and an element of K ), then there exists a linear extension d:E — C, <I>\F = o,
such that ®(K) C R

Proof of the Hamburger theorem. Let us apply the Riesz theorem to
F=C], E=CP+span{l_syher, K ={6€E|4(R) CR,}

and [}, ajN]| = 2_ja;s; as above.
Ezercise 3.4. Check that £ = F + K.

By the Riesz extension theorem, there exists an extension ® : E — C such that
®(K) C Ry. Denote u(\) = &)(]l(_oo’/\}); then 4 : R — R is non-negative, non-decreasing
and bounded. Let us show that the corresponding measure (of which p is the cumulative
distribution function) is the desired solution of the moment problem, i.e. that

VP € C[\ / P(\)du()) = ®[P] . (3.1)

Representing
_P*41 (P-1)

P
2 2 ’

12



we reduce (3.1) to its special case P > 0. Choose a sequence (f;) in

Span{]l(foo,a] ’ ;,L{CL} = O}

such that
0<f; <P, fj /P locally uniformly.

Then by monotone convergence

/Pd,u: lim /fj w= hm (I)[fj] < lim ®[P] = ®[P] .

Jj—oo

In the converse direction, choose € > 0 and choose R > 0 such that P(\) > 1 for
|A| > R. Then, for sufficiently large j, f; > P — € on [—R, R|, whereas for |\| > R we
have P(\) < eP()\)2. Thus for all A

PA) < £i(\) + e+ eP(N\)?
and therefore
D[P] < B[fj] + ®[1] + e®[P?

— [ i+ (@l + 2P < [ Pdu+e(@[1) + B[P

Letting € — 40, we obtain that ®[P] < [ Pdpu. O

Proof of the Riesz theorem. Let us first consider the case when dim E/F = 1. Let £ =
F +uC. To define ®(u) = a, we need to satisfy the constraints

inf ) >0 inf ) —a>0
feF,lfnJrueK (f)+az0, feF,lfn—ueK (f)—az0,

which are equivalent to

— inf d <a< inf 0] . 2
fleF,IJ”I}+ueK (fl) =a= fgeF,lfI;—ueK (f2) (3 )

According to the assumption F' 4+ K = F, both infima are taken over non-empty sets.
Furthermore, for each such fi and fo

O(f2) + @(f1) = O(fo—u) +(fi +u) >0,

hence the right-hand side of (3.2) is not smaller than the left-hand side, hence a good
choice of a exists.

The general case follows by transfinite induction. Consider the set of pairs P =
{(F',®")}, where F C F’ C E is a linear space, and ® : F/ — C is a linear functional
such that ®'|z = ® and ®'(K N F’) C R,. Introduce a partial order:

(F,, @/) < (F”,@”) lf F/ C F/\¢”|F/ — @/ .

13



If € C P is a chain (linearly ordered subset), then

= U F/ ' = U Y cc :
(F",®")e€ (F',®")ee

hence by Zorn’s lemma ‘B has a maximal element (F, 5) By the special case considered
above, F' = FE, and the theorem is proved. O

Ezercise 3.5. Does the conclusion of the theorem hold without the assumption F =
F + K7 Prove or construct a counterexample.

Ezercise 3.6. Show that the Riesz extension theorem implies the Hahn—Banach theorem:
if F' C E are linear spaces, || - || is a seminorm on £ and ¥ : ' — C satisfies |W| <[] - ||,
then there is a linear extension ¥ : E — C of ¥ such that [¥| < || -|.

Remark 3.7. By Sylvester’s criterion, strictly positive definite Hankel matrices are char-
acterised by the sequence of inequalities

det(st) >0, kE>0.
These matrices correspond to measures the support of which contains an infinite number
of points.

Remark 3.8. The corresponding characterisation of moment sequences corresponding to
measures supported on a finite set of points was found by Berg and Szwarc [2015]: there
exists kg such that

>0, k<k

det(8]+l);€l =0 {_ 0. k> ko

3.2 The spectral theorem for bounded self-adjoint operators

Let H be a Hilbert space, and let T': H — H be a bounded self-adjoint operator. This
means that ||Tu| < K||u|| for any v € H (the smallest K > 0 for which this inequality
holds is the operator norm ||T’||), and

(Tu,v) = (u, Tv)
for any u,v € H.

Theorem 3.9 (The spectral theorem). There exist a collection {pq taca of Borel prob-
ability measures on the real line and a unitary (i.e. norm-preserving) bijection

U:He— P La(pa)
acA

which conjugates T to a direct sum of multiplication operators:

UTU™ : D La(pa) = @ L2(ta) ,  (fa(MN)aca = AMfa(M)aca - (33)
acA acA

14



The measures o are supported in [—||T||, || T|l], and in fact

Usupp po = 0(T) (the spectrum of T) (3.4)

The following exercise may help digest the formulation of the theorem, if you have not
seen it before.

Ezercise 3.10. (a) Check that the theorem holds in dimH < co. (b) Y_, pa is pure point
if and only if T" has an orthonormal basis of eigenvectors.

Now we proceed to the proof of the theorem.

Lemma 3.11. Let u € H. There exists a measure p,, supported in [—||T||,||T||] such
that (T*u,u) = s, for any k > 0.

Proof. Observe that
D (Tjreu,w)ziz = || Y Tl > 0

Jit J

and use the Hamburger theorem to construct p. Then
[ du < P
hence supp p C [—[|T|, [ T[] (why?) O
Let us now explain why the lemma implies the spectral theorem. For u € H, define

U, : span {Tku | k> 0} — Lo(py)

which sends T*u to the monomial A¥ € Ly(u,). Let us check that this operator is
norm-preservng:

1" @ )2 = S aga( T, Tha)

k,l

= Z apay(T* | u) (by self-adjointness)
k0

= Z aka Sk (by construction),
k,l

which is equal to

U apTru)|* = Zakal/)\k)\lduu()\) :
k.l

In particular U, can be extended to the closure H, = span{T*u | k > 0}. Then U, :
Hy, < La(p,) is a unitary bijection (why is it onto?), and

(UuTlr, Uy ' F)A) = Af(N)

15



since this equality holds for f(\) = A*. This proves the theorem in the case H, = H.
The equality (3.4) follows a posteriori from (3.3) and the fact that the spectrum of a
multiplication operator f(A) — Af(A) in La(u) is exactly the support of p.

Ezercise 3.12. Complete the proof of the spectral theorem in full generality.

Ezercise 3.13. Compute the spectral measure u,, for

T: EQ(Z) — EQ(Z) , (ak)kez — Z [ajak-+j -+ o?jak,j]
=0 ke,

where (o)7L are fixed complex coefficients, and

1, j=
u=(uj)jez , uj= 0

3.3 Other moment problems*

The Stieltjes moment problem The Stieltjes moment problem concerns the moment
sequences of measures that are supported on a half-line. Chronologically, the following
result preceded Hamburger’s theorem. The original argument of Stieltjes was based on
considerations involving continued fractions, which can not be directly applied to the
moment problem on the line.

Theorem 3.14 (Stieltjes). A sequence (si) is the moment sequence of a measure p
supported on Ry if and only if

H = (sj41)51=0 =0 and H' = (sj4141)5i— = 0. (3.5)
Ezercise 3.15. Prove Theorem 3.14.
Exercise 3.16. Let u be a measure on R4 such that

S sklp) a3 =00 . (3.6)

k>0

Prove that u is Stieltjes determinate, i.e. it shares its moments with no other measure
on R+.

Remark 3.17. Beware: not every Stieltjes-determinate measure on R, is Hamburger-
determinate. Nevertheless, the conclusion of Exercise 3.16 can be strengthened (Wouk
[1953]): a measure p on Ry that satisfies (3.6) is necessarily Hamburger-determinate,
i.e. it shares its moments with no other measure on R.

16



The Hausdorff moment problem The Hausdorff moment problem concerns the mo-
ment sequences of measures that are supported on a bounded interval, e.g. [0,1]. Al-
though there is a criterion similar to (3.5), the following, different, criterion is simpler
and more convenient.

Theorem 3.18 (Hausdorff). A sequence (si) is the moment sequence of a measure p
supported on Ry if and only if

Vkem >0 Y (~1) <m> Sivk >0 (3.7)
; J
7=0

In terms of the functional ® : C[A\] — C sending A\* — s, the condition (3.7) asserts
that
Vik,m >0 ®NF1 -\ >0. (3.8)

Proof of Hausdorff’s theorem. The necessity of (3.8) is obvious. To prove sufficiency,
first define ® as above on C[A]. Introduce the Bernstein polynomial of a function f :
[0,1] — C:

N
(Baf)N) =3 <N)f(k‘/N) NE(L— )N

k=0 k
Claim. If R € C<,[A], then
" E,R
BNR:R+ZlAJm., E;jR e C[\ . (3.9)
J:

Having the claim at hand, we let R be a polynomial which is non-negative on [0, 1],

and estimate:
n

®[R] = ®[ByR] - )

J=1

O[E;R]
NI

the first term is non-negative, whereas the second term tends to zero as N — oo. Thus
® is positive and can be extended to C[0, 1] using the M. Riesz theorem.

It remains to prove the claim. Let p,q be two formal variables. We shall later substi-
tute p = A, ¢ = 1 — A, but for now we keep them independent. Since

N

(p+Q)N=kZ::0<Z:>pqu_'“,
we have
n N al N n,_k N—k n al N k N—k n
(p0/0p)"(p+q) =Z(k>kpq =N Z(k>pq (k/N)™ .  (3.10)

k=0 k=0

On the other hand, the “uncertainty relation”

(0/0p)p —p(0/dp) =1

17



between the derivative and the operator of multiplication by p in C[p] implies that
(po/op)" Z cj, W0’ (0/0p) ,  where Cnm=1.
7=0

Therefore
(p0/dp)"(p+ )~ chn N—-1)-(N—j+1)p(p+q"7. (3.11)

From the two representations (3.10) and (3.11)

> () )t = - Zcm N 1) (N =+ 0ot )

k=0
whence, taking p = A\, ¢ = 1 — A as promised, we obtain the identity

n

N
> (3 )= WY R = 3 1= - 3= TN

k=0 7=0

in which the left-hand side is By [\"], whereas the right-hand side is brought to the form
(3.9) by collecting powers of N. O

Remark 3.19. The polynomial By f admits the following probabilistic interpretation:
for p € [0,1],

(Bnf)(p Zﬁj :

where (3 are independent Bernoulli random variables with P(3; = 1) = p.
Ezercise 3.20 (S. Bernstein). If f € C[0,1], then Byf = f as N — oo.

De Finetti theorem We briefly mention a theorem of De Finetti which follows from
Hausdorft’s theorem, and is in fact equivalent to it. See Diaconis [1987] and references
therein for more details.

Definition 3.21. A sequence (X1, X2, X3,--+) of random variables is called exchange-
able if for any N and any permutation m € Sy

(X1, , XnN) = (Xﬂ(l), e ,XW(N)) in distribution.

Example 3.22. A sequence of independent identically distributed random wvariables is
exchangeable, e.g.

P{Xi=¢ , - Xn=en} =221 -NN"2% | ¢, ey e {01}

(where X € [0,1] is an arbitrary parameter).

18



Theorem 3.23 (De Finetti). Let (X1, Xa, ) be an exchangeable sequence of random
variables taking values in {0,1}. Then there exists a probability measure p on [0,1] so
that

P{Xi=e , ,Xy=¢n}= /)\EEJ — NV 2 dp())
Proof. Consider the linear functional ® : C[\] — C which sends
ML= —Pi=e, ,Xk: 1, Xpy1 =0, -, Xpro =0} .
The definition is consistent (why?), and by Hausdorff’s theorem there exists p such that

D1 - N = /)\k(l — Ndu() .

4 Orthogonal polynomials

Here we develop another approach to the Hamburger theorem, that will avoid functional
analysis (the Riesz extension theorem) and provide more detailed information.
Let (sx) be a moment sequence, i.e. a sequence such that

H = (sj0)3520 = 0 - (4.1)

Define a functional ® : C[]A\] — C by ®[>_a;M] = " a;s;. By Hamburger’s theorem ®
admits a realisation as integration with respect to a measure, however, we shall not use it
(and in fact, we shall reprove Hamburger’s theorem, without even using Proposition 3.2).
Equivalently, we can start with a linear functional ® : C[A\] — C which satisfies

®[QP) >0, QeC (4.2)

(as before, we denote Q(\) = 3" a; N for Q(\) = X" a; M, and |Q]? = QQ).

Define an inner product on C[\] by (P, Q) = ®[PQ)]. The condition (4.2) ensures that
(P, P) > 0. If H is not of finite rank, the monomials 1, A\, A2, - - - are linearly independent.
Thus (P, P) > 0 whenever P is not identically zero. (The case of finite rank corresponds
to measures supported on a finite number of points.)

Ezercise 4.1. A positive-definite bilinear form (-,-) on C[A] can be obtained via this
construction if and only if

(AP(A), Q(A)) = (P(A), AQ(N)) (4.3)
for any P, @ € C])], i.e. multiplication by A\ is a symmetric operator.

Applying the Gram—Schmidt orthonormalisation procedure, we obtain a sequence of
polynomials Pj, where Py is of degree k with positive leading coefficient, and

(Py, Pp) = 0py -

If H is of finite rank, the same procedure yields a finite sequence of polynomials Py, - - - , Pn.
We shall assume for the time being that H is not of finite rank, so that ®[P] > 0 whenever
P is a non-negative polynomial which is not identically zero.
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Definition 4.2. The polynomials Py, are called the orthogonal polynomials with respect
to the functional ®.

Example 4.3. suppp = [—1,1], du/d)\ = ﬁ Define
T (cos @) = cos(k0) .

Note that this defines a polynomial of degree k with positive leading coefficient. Then:

1, k=(=0
" 4 ’
/ TN TN du()) = / cos(kt) cos(t0) T = {1 k=050
0 0, k#AL.

Thus 1,v/2T1,V/2T5, /2T, - - - is the sequence of orthogonal polynomials with respect to
w. The polynomials Ty are called the Chebyshev polynomials of the first kind.

In the general case, the orthogonal polynomials admit the following formula.

FEzercise 4.4. Prove that

S0 §1 - Sk
1 51 S22 Sk+1
Pu()) = det
\/det Hk; det Hk;+1 Sk—1 Sk -+ Sok_1
TR W

where Hy, = (s]-H);?’z:lO.

Unfortunately, the computation of large determinants is as complicated (or as simple)
as a Gram—Schmidt procedure.

4.1 Properties of orthogonal polynomials

We start with some elementary properties.
(a) (Pg, Q) =0 whenever deg Q < k. (Obvious)
(b) Py has k distinct real zeros.
Indeed, if ;1 < -+ < Ay (m < k) are the real zeros of odd multiplicity, then
Pe(MAN=A)A=X2)---(A=Ap) >0 (and not =0)

and hence
B[Py (M)A = A1) A= A2) - (A= Apn)] > 0.

However, the left-hand side should vanish by (a). O
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(c¢) There exist coefficients ag, by (k > 0) such that the following three-term recurrent
relation holds:

APi(N) = bk Per1(A) + apPe(A) + bg—1Pe—1(A) , k>0 (4.4)

Indeed, APy () is a linear combination of P; (0 < j <k+1). For j <k —1,
(APp(A), Pj(A)) = (P(A), APj(A)) = 0

by (a). Finally,
PN, Posa (V) = (Pe(0), APy (V) . O

Note that all by are positive (we still assume that H is not of finite rank).

Remark 4.5. As we see from the proof, the three-term recurrent relation is a consequence
of the symmetry relation (4.3).

Let C<4[\] = {P € C[\] | deg P < d}. Denote by mq : C[A\] = C<4[A] the orthogonal
projection.

(d) 7@ = 39_0(Q, P;)P; (obvious).
Denote: ;
Kq(z,2) =Y Pi(2)P;(7) .
j=0
(e) (Reproducing property) For @ € C<4[A], one has:
Q(z) = ®(Ka(z,-)Q()) = (Ka(z,-),Q) ,
and in particular

CI)(Kd(Zv ')Kd(" Z/)) = <Kd(z7 ')7 Kd(zl7 )> = Kd(zv Z/) .

Proposition 4.6 (Christoffel-Darboux formula).

Payi1(2)Py(Z") — Py(2) Pyya(Z) .

Kd(zv Z/) = bd 5 —

Proof. Tt is sufficient to consider the case z = )\, 2z’ = X € R. The expression
(>‘ - )‘/)Kd()V >‘/)

is a polynomial of degree d + 1 in X', hence it is a linear combination of P;(X') (0 < j <
d+1). Let us compute the coefficients: for j < d — 1,

(A= XN)Kg(A X)), Pi(\)) v = (Ka(\ X)), (A= X)Pj(N))yv =0
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by the reproducing property (e). Similarly (using (c))

(A= N)Ka(AX), Pa(X) v

= (Ka(A\ ), (A = X)Pa(N))
= (Ka(M\ ), APg(N) = (bgPas1(N') + agPa(N') 4+ bg—1Ps—1 (X)) x
= APu(N) — (@gPa(N) + ba-1Pa-1(N)) = baPay1(N)
and
(A= N)EKa(AX), Pay1 (X)) = —baPa(N) -
Therefore

(A = N)Ka(A, X) = ba(Pa1 (M) Pa(N') = Pa(N) Para (X)) -

Ezercise 4.7. Compute K, for p from Example 4.3.

4.2 Extremal problems

Denote by LC(Q) the leading coefficient of a polynomial Q). We still denote

(Q,R) = ®(QR), [IQ=ve(QP) .
Proposition 4.8.

1
dog Q<d LG Q)= 1”6’2H LC(Py)

and the minimum is uniquely attained when Q(\) = Py/ LC(FPy).

Proof. The minimum is attained when Q()) is the projection of A% to the orthogonal
complement of C<q4_1[A], i.e.

Q(A) = (mq — ma—1)[M] = (Y%, Pa(y))y Pa(\) =

This can be generalised.

Proposition 4.9. For any z € C,

1
min —
tew g NeMl= D)
and the minimum is uniquely attained when Q(\) = Kalz2)"
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Proof. Let Q = Z?:o ¢; Pj, then

1= 6P < Yl S 1B = /X Il VEa(z ) -
On the other hand, P; form an orthonormal basis, hence 3 |¢j|? = [|Q]|?. Thus
1
Kd(za Z)
with equality attained when ¢; o« Pj(2), i.e.
S BWBG) _ Kah2)
Yo Pi(2)Pi(z)  Kalz2)

lQI* >

Q(A)

4.3 Gaussian quadrature

Now we make a short digression. In a calculus course we have been taught the rectangle
rule

1 9 k '
| rans 5= PR

and the trapezoid rule

k-1

1
| rans g S HG ).

j=—k+1

What is the optimal integration scheme? Following Gauss, we shall understand optimal-
ity as follows: we will look for a rule that is exact for all polynomials of a certain degree,
and try to maximise this degree.

Example 4.10. For QQ € C<5[\],

/ 11 QU= @ (—\@) F2Q(0) +2Q <\/§> .

Note: there are 6 parameters and 6 degrees of freedom, so one can not do better.

Lemma 4.11 (Lagrange interpolation). Let z1,--- ,zq and oy, - ,aq be complex num-
bers; assume that all the z; are distinct. There is a unique polynomial P € C<gy1[)]
such that

1t 1s explicitly given by

where Q(z) = A[(z — z;) (here A € C is arbitrary).
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FEzercise 4.12. Prove the lemma.

Proposition 4.13 (Gaussian quadrature). Let ® : C[]\] — C be a linear functional
satisfying the positivity condition ®[|R|*] > 0. Let P; be the orthogonal polynomials
constructed from ®, and let (ﬁj)?zl be the zeros of P;. Then

Edj o [)] R()

M ]

for any R € C<oq_1[A].

Proof. Let R = P;S4_1 + Ry_1, where deg Ry_1,deg Sy_1 < d— 1. Then
O[R] = ®[PiS4-1] + P[R4—1] = P[R4-1] (since Py L Sq_1)

Rq_1(&)® [( Pa()

)\_gj)pcll(gj)} (Lagrange interp.)

I
M=~

1

.
Il

I
M~

R(¢;)® [ : Pa())

A— §j)PZz(€j)} (Falts) = 0)

1

.
I

O

The coefficients ® [%] are called the Christoffel coefficients corresponding to
Pi(&)(A=&5)

®. It will be convenient to define the polynomials of the second kind:

Pi.(z) — P.(\
Qi) =y | D= (45)
z—A
then the Christoffel coefficients can be rewritten as
[ Py(N) } _Qul&)
Pi&)A=&)]  Py&)
Ezxercise 4.14. Qy is a polynomial of degree k — 1; it satisfies the recurrence
2Qk(2) = bpQr11(2) + arQr(2) + bp—1Qk—1(2) , k>1
with the initial conditions
80
Qo(2) =0, Qi(2) = \g . (4.6)
For comparison,
1 zZ—ag
P = — P = .
O(Z) \/% ? 1(2) bo\/%
Ezercise 4.15. Prove the identity:
1
Py 1Qr — PrQp-1 = [ (k>1) (4.7)
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Proposition 4.16. The Christoffel coefficients admit the alternate expression

[ Pa(A) ] _ 1
P& A —&)]  Kaa(§,&)

and in particular are positive.

Proof. Let A; be the j-th Christoffel coefficient, and let

Pa(N)
LiN) = —F—F—
! (A =&)P5(N)
be the j-th interpolation polynomial. Then for any ¢, ,¢cq € C
> L = @@Ly =Y | A; .
Jk J

In particular, A; > 0 for all j. Since every R € C<4_1[\] can be represented as

R=Y R(&)L; ,
we obtain

A; = min SR = — .
! ReC<q-1[A,R(&;)=1 IR del(gjvfj)

O

Second proof of Hamburger’s theorem. The Gaussian quadrature yields, for any R €
ngdfl[)\]:

d
Z Kd 1 gjagj EJ /R d'ud )\)

j=1

where
fa = Z_: Ka1(85,&5) (48)

The sequence pg is precompact in weak topology (why?). For every R € C[A] and any
limit point p of the sequence (puq),

@m:/Rm

(note that R is not bounded, hence this also requires an additional argument.) Therefore
1 is a solution of the moment problem. O

For the sequel, we need the following generalisation of the measure

d
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Let 7 € R (sometimes it will be convenient to allow 7 = oo as well). Let
Pl =P, —7P1, Qp=Qr —TQp-1 .

Then from (4.5)

(4.9)

) =, [ FLO0]

zZ—A
Ezercise 4.17. Prove that, for any 7 € R, the polynomial P] has d distinct real zeros.

Let &£ be the zeros of Pj. For 7 = oo we let £ be the zeros of Py—;. Set
4 s rEeR. (4.10)

Exercise 4.18. Prove that for any 7 € R

B[R] = [ i

for any R € C<g4-2[A]. (Note that the maximal degree is in general one less than that
of the optimal Gauss quadrature, corresponding to 7 = 0.)

Q7(£7) 1

FExercise 4.19. Prove that D = Ki €8

5 Description of solutions

5.1 Stieltjes transform

The Stieltjes transform of a finite measure p is defined as

w(z):wu(z):/@, ze C\R.

Ezercise 5.1. For any a < b,

1 , p{a} p{b}
1 — 23 fmd
el—l>r£0 - /a Sw (A + ie) dA 5 + p(a, b) + B

and in particular y is uniquely determined by w.

If the moment sequence (si) is determinate, w(z) is uniquely determined by (sg).
Otherwise, w(z) may assume different values for different solutions. In this section, we
shall study the following question: given a moment sequence (s) and a point z € C\ R,
describe the geometric locus of all the values of w,(z) as p runs over the set of solutions
of the moment problem.'® Throughout this section, we assume that sq = 1.

13The original plan of Chebyshev was to describe the geometric locus of the numbers u(—o0, a] (for each
fixed a € R). This is possible, but the use of the Stieltjes transform avoids complications such as
that of Remark 5.4.
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Define:

Ka(z) ={wu(z) | VO<k <2d—2: sip] =s,} , K(z)= ﬂ Ka(z) .

d>1
The goal in this section is to prove the following two results.

Theorem 5.2. For each d and z € C\ R, Ky(z) is a closed disc centred at

_ Qa(2)Pi-1(2) — Qa-1(2) Fa(2)
Pu(2)Pg-1(2) — Py—1(2) FPa(2)

3a(2) =

and of radius
1 1

T 282 Kya(z,2)

ta(2)
Hence K(z) is either a disc or a point. Let
t(z) = lim t4(z) .
d—o0

Theorem 5.3 (Invariability). If v(z) > 0 for some z € C\ R, then t(z) > 0 for all
ze€ C\R.

That is, the moment problem is determinate if and only if
o0
K(z,2) =Y |Pi(2)* = o0
k=0

for some (or for any) z € C\ R.

Remark 5.4. Tt is possible that a determinate measure p has
K(\)A) < oo

for some A\ € R; in fact, this happens if and only if A is an atom of u.

5.2 The Stieltjes transform of the quadratures

We first describe the geometric locus of w(z) as p varies over the one-parametric family
py; of special solutions to the truncated moment problem

VR € CsyalA] ®[R] = / ROAu(N) . (5.1)

Proposition 5.5. The Stielijes transform wj = w7 (z) is given by
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Proof. By Lagrange interpolation

d
(2) Q5( T) B dpy(N)
(2) ZZ—ST) )(57)_/2—)\ '

J=1

Remark 5.6. Proposition 5.5 makes sense also for 7 = oo.

Proposition 5.7. Fiz z € C\R. As 7 varies in R, the quantity w}(z) describes the
circle Ta(z) = {|w — 3a(2)| = val2)}.

Proof. We have:
wh(z) = _Qa(2) _ _Qg(z) —7Q7_,(2)
‘ Pi(z) Pi(2) — 7Ps_1(2)

This is a fractional-linear function of 7, hence the image of the (generalised) circle R is
a (generalised) circle. To find its equation, we rewrite

wi(z) = — Q@) Pa1(2) = Qaa(2) Ful)

¢ Pa(2)FPy-1(2) — Pa-1(2) Pa(2)
n Qa(2)Pa—1(2) — Qa—1(2)Pa(2) Pa(Z) — TPs-1(%)
Pi(2)Pj—1(2) — Py—1(2)Py(z) Pa(z) — TP3-1(2)

and observe that

whence the centre is at

whereas the radius is equal to

va(2) = Qa(2)Py—1(2) — Qa—1(2)Pi(z) _ 1
d Py(2)Pi—1(2) — Py—1(2)Pa(2) Kq_1(2)

by (4.7) and the Christoffel-Darboux formula. O

5.3 Weyl circles

Recall that T'y(z) = {Jw — 34(2)| = ta(2)} and set K4(z) = convIy(z). We have shown
that for the special solutions p; of the truncated moment problem

splp]l =sg (0<k<2d-—2) (5.2)

the Stieltjes transform evaluated at the point z € C\ R lies on the circle I'4(z). Now we
prove:
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Theorem 5.2. For any solution p of (5.2) and any z € C\ R, w,(z) € K4(z). Vice
versa, for any z € C\R and w € Kq(z) there exists a solution p of (5.2) with w,(z) = w.

Lemma 5.8. For any z € C\ R,

I‘d(z) = {w ‘ P Z |ka —|— Qk(z)IQ} (5.3)

Kalz) = Z|ka +Qk<z>12} . (5.4)

Proof. Observe that w € I'y(z) if and only if

Qa(2) —7Qq 1 (2) _ 7Q4 41(2) — Q4(2)
i (

S Pj(2) —TPy_1(2)  —TPai(z) + Pi(2)

for some 7 € R, i.e. if and only if

wPi(z) + Qq(z) —

WP (5) + Qua(e) < O
The last condition is equivalent to
(WPy(2) + Qa(2))(WPy-1(2) + Qa-1(2)) € R (5.5)
On the other hand,
d—1 v
[wPL(2) + Q=) = 5= + 2iba1 S {(wPa(2) + Qa() (@P4-1(2) + Qu-1(2))} -
k=0

(5.6)
This identity is a generalisation of the Christoffel-Darboux Formula (Proposition 4.6);
it can be proved by the same method. We omit the proof, since we prove a more general
fact in Corollary 7.2. Thus, w satisfies (5.5) if and only if

U

_1 o~
wP(2) + Qu(2)2 = == .

SZ
0

e
Il

We leave (5.4) as an exercise. O

Proof of Theorem 5.2. The “vice versa” part follows from Proposition 5.7 by taking
convex combinations, therefore let us prove the first part. Consider an arbitrary solution
wof (5.2). The function f(A) = 1/(A—2z) lies in La(p), and the polynomials Py, - -+, Py_1
form an orthonormal system in this space. Therefore

JERe

&.

JN)Pe(A du) (5.7)
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Observe that

1 1 1 1 1
2 _ — _
£ _)\—z)\—z_z—z[)\—z )\—z] ’

(LHS of (5.7)) = 3

hence

On the other hand,
[ = [ A= 000 1 mie) [ 94
= Qr(2) + wu(2)Pi(2)

hence

d—1
(RHS of (5.7)) = > |Qk(2) + wyu(2) Pa(2)[* .
k=0
It remains to appeal to the second relation of Lemma 5.8. 0

5.4 Invariability

We have a nested sequence of circles Ki(z) D Ka(z) D K3(2) D ---. From Lemma 5.8
and the equality w3 (z) = wj)_;(z) we see that the boundaries I'y(z) of Kq(z) and T'q—_1(2)
of K4_1(z) intersect at a single point. Denote:

K(z) =[] Kal2) -
d>1
This is either a disc or a point.

Proposition 5.9. Let z € C\ R, then K(2) is a disc if and only if

[e.9]

(1Pe(2)]? + 1Qk(2)?) < o0 . (5-8)
k=0

Proof. For any z € C\ R there exists w = 3(z) # 0 such that

> Cx
Z lwPy(2) + Qr(2)]* < # < 00 .
prt Sz
If K(2) is a disk, then also
> I1P(2)]? < o0 (5.9)
k=0
and hence -
1Rk <o
k=0
Vice versa, (5.8) implies (5.9). O
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Theorem 5.3 (Invariability). If (5.9) holds for some z € C\ R, then it holds for all
z € C. In particular, if K(2) is a disc for some z € C\ R, then it is a disc for all
ze€ C\R.

Lemma 5.10. Let A = (ank)n k>0 be an infinite matric such that

ank =0 (k>n), Z]ank\2<oo.

Then there exists C(A) such that, for any y = (Yn)n>0, the solution x = (xy)n>0 of the

system
n—1
Yn = Tp — § AnkTE
k=0

satisfies
D lzal? < CAPY lyal® - (5.10)

In other words, (1 — A)~! is a bounded operator in fs.

Proof. 1t suffices to prove the relation (5.10) for vectors y of finite support, as long as
the bound is uniform in the support. First, if Ay = (ank)iy ];:10 is a finite matrix of
dimension N x N, then

r=(1—-Ax)"'y=(1+An+ -+ Ay )y
hence
2l < (L+ [[AN] + -+ 1AV DIyl < Cr (AN Iyl - (5.11)

Now consider an infinite matrix A. Denote

—1
N =min ¢ m | an:\ank|2<

n>m k=0

then by (5.11) applied to a principal submatrix Ay of A,

N-1

D lwal® < CL(AN)?ly]) - (5.12)
n=0

Fix y and denote

n—1

> lankl? [l
k=0

Then

S e Y Zrank\ P <43 S lomPlel < el (513

neJ(x) neJ(z) k n>N k=0

[\
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On the other hand, for n > N, n ¢ J(z)

n—1 n—1
1
ynl = |2nl = kzo\ankl\xk\ > |an| - kzolankIQ lzll = 5laal ,

hence

)ORRTHEEEI SR (5.14)

n>N,n¢J(z) n>N,n¢J(z)

From (5.13), (5.14) and (5.12)

Sy Y 'y RS

n n=0 n>N,n¢J(z) ne n=0 n>N,n¢J(z)

<5CUNP + Y W ,

I/\
N W

which proves that

-y < 2y )
O

Ezercise 5.11. In the setting of Lemma 5.10, show that ||(1 — A)~!|| may be bounded
by a quantity depending only on

IAlfs = laral® -

k,n

Proof of Theorem 5.3. Suppose (5.9) holds for some zp € C\ R. Then also

> 1Qn(z0)* < o0

by Proposition 5.9. Observe that

Py(z) — Py(z0
Paz) = Paln) _ z Pl

Z — 20
where
cantea) = @ | =T p )
—
= PuGeoye | P 2T g | B ) (5 ) - (e

= Pi(20)Qa(20) — Pa(20)Qr(20) ;
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hence
oo d—1

DD laan(zo)? <4 |Pi(z0)l* Y |Qalz0)[* < o .
B d

d=0 k=0
Invoking Lemma 5.10, we obtain that

S IP2) < o
d=0

Ezercise 5.12. Under the assumptions of Theorem 5.3, the series
oo
K(z,2) =) Pu(2)P:(?)
k=0

converges locally uniformly, and thus defines a function which is analytic in z and anti-
analytic in 2’.

6 Some applications

6.1 Completeness of polynomials*

Theorem 6.1 (Riesz). Let p be a solution of an indeterminate moment problem. The
following are equivalent:

1. there exists z € C\ R such that w,(z) € I'(2) = 0K(2);
2. the relation w,(2) € I'(2) holds for any z € C\ R;

3. polynomials are dense in La(pu).

Proof. (3) = (2): if polynomials are dense in La(u), then, in particular, ¢,(\)
can be approximated by polynomials for any z € C\ R, i.e.

12175y = D 12 P} -

k>0
Therefore w,, € I'(2).
Since (2) = (1) is obvious, we proceed to (1) = (3). If w,(z) € I'(z), then ¢, and
¢= can be approximated by polynomials. Next, the squares ¢? and ¢2 lie in the closure
of polynomials:

2
1 A = L
/ A—2)2 A—z _ZBk)\ dn(A)
k=0
1 1 & k ’
< e ) s — A=Y BM (A= 2)| dp(N)
k=0
1 1 - ?
- 5o / (A Bo) = Y (Beot — 2BiXE| du()

k=1
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and this expression can be made arbitrarily small by choosing suitable A and By. Pro-
ceeding in a similar fashion, we obtain that ¢* and qb’zf can be approximated by polyno-
mials.

Suppose polynomials are not dense. Then there exists 0 # g € Lo(u) such that
(g, f) =0 for any f in the closure of polynomials. In particular,

/&du(k)—/mdu(k)—o, k=1,2,3--

Let

ue) = [£au . cec\r.

This function is analytic in C4, and

Hence u = 0, and then gdp = 0 by the inversion formula for the Stieltjes transform,
thus g = 0 in Lo(p). O

Theorem 6.2 (Naimark). Consider the convexr set of solutions to an indeterminate
moment problem. A measure p is an extreme point of this set if and only if polynomials
are dense in Li(u).

Proof. If u is not an extreme point in the set of solutions, then it can be represented as
p=ap + (1 — a)us. Denote ®[f] = [ fdu and ®1[f] = | fdu. Then we have:

1
RN < 1Fllzrey > 1®alfIT < ol 2a gy

hence both functionals are continuous, and coincide on C[A]. Therefore polynomials are
not dense.

Vice versa, if polynomials are not dense in L (p), we can find a functional ®¢ of norm
1 such that C[A\] C Ker ®g. Let

éﬂﬂ=/ﬁmi%ﬁh

then &L are non-negative functionals. Therefore

%mz/MMu

with g+ > 0. The measures du+ = g+du have the same moments as p, and g is their
average. U]

Definition 6.3. A solution u to a moment problem is called N-extreme if the equivalent
conditions of Theorem 6.1 hold, and V-extreme if the equivalent conditions of Theo-
rem 6.2 hold.
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Corollary 6.4. Any N-extreme measure is V-extreme.

Corollary 6.5. For any z € C\ R and w € T'(z), there exists a unique solution u for
which w,(z) = w.

Proof. If there were two such solutions p; and o, their average &2“2 would also be
N-extreme, in contradiction to Corollary 6.4. O

Thus, in the indeterminate case the set of N-extreme solutions is homeomorphic to a
circle.

6.2 Carleman’s criterion, revisited*®

Proposition 6.6 (Carleman). If > b, ' = oo, then the moment problem is determinate.

Proof. According to (4.7), PyQy+1 — Prt1Qr = b,;l, hence

Zblk = S (P Qus1 () — P QD) < 3 (1P + 1Qu(i)2) -

Thus the divergence of the left-hand side implies the divergence of the right-hand side
and hence (by Proposition 5.9) the determinacy of the moment problem. O

Now we can give another proof of

1
Corollary 2.12 (Carleman’s criterion). If >, s,,** = 0o, the moment problem is
determinate.

Proof. Without loss of generality so = 1. Then

1

LC(Py) = ————
( k’) bobl"'bk_l )

whence

bo- - bp_1 = by bp_1®[|Pe|*] = B[N PL(N)] < /P[N2F] = /5ar

hence by Carleman’s inequality (2.6)
_ 1 1
Zk)smf S;(bombk) ‘ e;bk,

whence the divergence of the left-hand side implies determinacy by Proposition 6.6. [

x-"‘
IA
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6.3 A condition for indeterminacy

Theorem 6.7 (Krein’s condition). If p has an absolutely continuous component with
density uw(\) = pl.(\) such that

dA
/logu(/\)1 v > —00 , (6.1)

then p s indeterminate.

Proof. The following proof is borrowed from Berg [2011]. A similar argument was used
by Szeg6 in the context of the trigonometric moment problem.
It suffices to consider the case du = u(A)d\. Recall that

d

Ka(z,#) = 3" Pu()B(#) / Koz M Ea(A 2)dp(N) = Ka(z2')
k=0

we shall prove that supy Ky(i,1) < oc.

Lemma 6.8. If Ky(z,2') =0, then either both z and 2’ are real, or I232' < 0.

Proof. By the Christoffel-Darboux formula (Proposition 4.6), K4(z,2’) = 0 if and only
if
Piy1(2) _ Papa (%)
Pa(2) Pa(2)

Now, the ratio Pyy1/Py is only real on R, since PJ—H = Pj+1 — 7P, has only real zeros
for any 7 € R (see Exercise 4.17). Also,

(6.2)

lim Py .(zy)
y—oo  Py(iy)

since LC(Pyy1), LC(P;) > 0. Therefore Pyi1/FPy maps C4 to C4 and C_ — to C_, and
(6.2) is impossible if, say, z € C4 and 2’ € C_ UR. O

Ezercise 6.9. If R € C[z] is such that R~(0) C C_, then

1 log |R(\)] B .

Now we conclude the proof of the theorem. Consider the integral

I= [ og(uli, VPu) = 2

On the one hand, Jensen’s inequality yields

I log/\Kd(z,)\)\ u(A) 1+ 22) log/|Kd(z,)\)\ u(A)— = log
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On the other hand,

. dA dA

. . dA
= 2108 i) + [ Togw(N) T

Therefore

Kalioi) = 1K) < Fexp {= [rogun 2

O

Ezercise 6.10 (A. Ostrowski). Let du(\) = e *Md)\, where a is even, a(0) > —oo,
t — a(e') is increasing and convex, and

1m a(/\) = +00
A—too log A

(so that p has finite moments). Then p is determinate if and only if

/a(/\)d/\ B
1+ ~©

7 Jacobi matrices
Now we discuss the spectral theory of Jacobi matrices. We study the recurrence
as AY(k) =bpp(k + 1) + app(k) + bprp(k— 1), k=1, (7.1)

where a; € R and b € R are fixed coefficients, 9 : Z; — C is an unknown sequence,
and A is a parameter. We assume that by > 0 for all & > 0. The recurrence (), is a
discrete analogue of a Sturm—Liouville equation

i Lv(w) dﬁf)} + (@) (@) = Ao (@)b(a)

We state an important property of solutions:

Proposition 7.1. Let 1; (j =1,2) be a solution of (x)x,. Then for any k > 1

Y1(k—1) ok —1)
V1(k) Yo (k)

The formula remains true for complex \;.

y | k) ba(k) ‘bk_l = (A2 — A1) (k)b (k) .

Mlon(k+1) ok +1)
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Proof. The left-hand side is equal to

’ P1(k) Pa(k) ’
brpr(k + 1) + b1 (k — 1) brha(k + 1) + br_192(k — 1)
V1(k) Yo (k) Yi(k)  ya(k)

B ‘ (A1 —ag)pr(k) (A2 — ag)p2(k) ’ B ‘ Ar(k) - Aya(k) ’ '
]

Corollary 7.2 (Discrete Green formula). Under the assumptions of Proposition 7.1,

¢ _ 1 Gi(d)  a(d) ¥1(0) ¥2(0)
2 kpalh) = {bd Prld+1) ba(d+1) i) (1) ‘}

Remark 7.3. The Christoffel-Darboux formula (Proposition 4.6) as well as the formula
(5.6) are special cases of Corollary 7.2, whereas (4.7) follows directly from Proposi-
tion 7.1.

-

7.1 Connection to spectral theory

Define a semiinfinite matrix
aq bo 0 0 0
bop a1 b1 0 O
J = 0 b1 al b2 0

It is called a Jacobi matrix. Then (%), with the initial condition

A (0) = boto(1) 4 aoyh(0)

looks like an eigenvector equation: Jiy = A1), and A becomes the spectral parameter.
The matrix J is symmetric, so we would expect a nice spectral theorem such as in
Section 3.2. We would of course like the spectrum to be real. However:

Ezxercise 7.4. Let ar, = 0 and by, = k! Prove that, for any z € C\R, there exists a solution
Y € by to Jip = 2.

This is a sign that we have not imposed proper boundary conditions at infinity. Indeed,
the problem for a finite interval:

Mp(k) =brp(k+ 1) + app(k) + bp—19p(k—1), 1<k<d-1
is well-posed only with boundary conditions at both edges. The eigenvalues of

agn bg 0 0 0
b() al bl 0 0
0 bl al b2 0
Jay1=1 . . . :
bg—2 aq-1 bg—1
0 0o . 0 bd_1 aq
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correspond to the Dirichlet boundary conditions

Ap(0) = boyp(1) + aop(0) , (7.2)
A(d) = agp(d) + ba1p(d — 1) . (7.3)

However, aq may be chosen arbitrarily, therefore there is in fact a one-parametric family
of good (self-adjoint) boundary conditions corresponding to different choices of aq4. If

the sequences (aj) and (by) are bounded, the matrix J defines a bounded self-adjoint
operator with real spectrum, hence a situation such as in Exercise 7.4 can not occur.
That is, in this case there is no need for any boundary conditions at infinity. As we shall
see, this is a reflection of the following fact: the solutions corresponding to different
choices of a4 coalesce in the limit d — oo.

We turn to the following question: given (ax) and (by), when is there need for boundary
conditions at infinity? To answer this question, consider the matrices

ap bo 0 0 0
bo aj b1 0 0
0 b1 al b2 0 cee
Jap1(7) = S . , TeER.

bg—2 ag—1  bg—1
0 0 0 bd,1 CLd—de

The spectral measure of Jy11(7) corresponding to the vector &y is given by

d+1

i =Y 17O . i (B) =) 4] (0)1, (7.4)
j=1

€7€B

where 7 are the eigenvalues of Jq(1), and Y7 are the associated eigenvalues. The
similarity in notation to (4.10) is of course not coincidental.

Definition 7.5. We say that a Jacobi matriz J is of type D if there exists a probability
measure [ such that for any choice of 13 € R

py — pin weak topology .
d—00

Otherwise, we say that J is of type C.

7.2 Connection to the moment problem
In the sequel we assume that by > 0. This does not entail a loss of generality (why?).

Theorem 7.6 (Perron). For every recurrence of the form (%) with by > 0 there ex-
ists a unique moment sequence sg = 1,81, -+ such that the corresponding orthogonal
polynomials Py(\) satisfy (%) with the initial conditions

)\—a()
bo
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Proof. Define a sequence of polynomials Pj(A) that satisfy (%), with the initial con-
ditions (7.5). This sequence forms a (linear-algebraic) basis in C[)\], and LC(Fy) > 0.
Define an inner product (-, ) on C[\J:

<Z ci P, Z C;CP]C> = Z CjE;- .
J k J
It is obviously positive-definite. Let us show that there is a (unique) sequence (sx) such
that '
<Z N, Z GNP = Z CjChSith -
j7k

By Exercise 4.1, it suffices to show that

(AR(A), S(A)) = (R(A), AS (X))
for any pair of polynomials R, S. It suffices to consider the case R = P;, S = P;. Then

(AP;(A), Pe(A)) = (bjPj41 + a; Py + bj—1 Pj1, Py)

= bj5j+17k + ajéj,k + bj_léj_l’k = bk_lfsj’k_1 + ak(Sng + bkéj,k-H
= (Pj,bp—1Px—1 + ap Py + bpPrr1 = (Pj(A), APx(N))

The sequence (si) which we have constructed is a moment sequence, and the associated
orthogonal polynomials are exactly the polynomials Pj. O

Theorem 7.7. Let J be a Jacobi matriz with by, > 0. Then J is of type D if and only
if the corresponding moment problem is determinate.

Lemma 7.8. det(z — Jgq(7)) =bo - - - bg—1P] (2).
Proof. 1t suffices to prove the proposition for 7 = 0, since
P, =P;—7P;1, det(Jy(r)—2) =det(Jqg— 2z) — Tbg—1 det(Jg—1 — 2) .

For d = 1 the identity follows from (7.5). The induction step follows from the recurrent
relation (x),. O

Lemma 7.9. Let J be a Jacobi matriz with by, > 0. The measures p, defined in (7.4)
coincide with those defined in (4.10) for the associated moment problem.

Proof. In this proof, let us denote the measure defined in (7.4) by f;. Observe that for
0<k<2d—2
seliig) = (Ja()")oo = (J*)oo = [A*] ;

using this equality for 0 < k < d — 1 completes the proof. O
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Proof of Theorem 7.7. A sequence of probability measures (v4) is weakly convergent if
and only if the sequence of Stieltjes transforms converges pointwise in C \ R. If the
moment problem is determinate, the sequence (1) converges to a 7-independent limit,
therefore the geometric locus of the values of w7 (z) shrinks to a point for every z € C\R.
Hence J is of type D.

Vice versa, if J is of type D, the geometric locus of the values of w,(z) as u ranges
over the collection of solutions to the moment problem degenerates to a point for any
z € C\ R, hence the moment problem is determinate. ]

7.3 Inclusion in the general framework

Let J be a Jacobi matrix with b, > 0. It defines an operator acting on the space of
finitely-supported sequences in fo; this operator is symmetric:

(Ju,v) = (u, Jv) (7.6)

for such u, v.

Recall several constructions and facts from spectral theory (see Akhiezer and Glazman
[1993]). Let T be an operator defined on a dense subspace D of a Hilbert space H.
Consider the set of pairs

F:{(u,u/)GHXHlflunED:un—wL,Tunﬁu/} )

If T is symmetric, i.e.
(T'w,v) = (u,Tv) ,
then I' is a graph of an operator T which is called the closure of T. Also consider the

collection
I'* = {(v,v') €e Hx H|Vu € D (Tu,v) = (u,v')} .

Without any assumptions, I'* is the graph of an operator 7™, called the adjoint operator;
it is always closed (i.e. its closure coincides with itself). If T is symmetric, T* = T* and
T** = T. A symmetric operator T is called self-adjoint if 7% = T and essentially
self-adjoint if T* = T.

Self-adjoint operators admit a spectral theorem similar to Theorem 3.9. On the other
hand, symmetric operators that are not self-adjoint do not admit a natural spectral
decomposition.

Let T be a symmetric operator defined on a dense subspace D of a Hilbert space H.
The invariability theorem asserts that the functions

z +— dim Ker(T™ — z)

are constant in C; and in C_. The numbers ny(7) = dim Ker(T™* F i) are called the
deficiency indices of T'. The operator T is self-adjoint if and only if its deficiency indices
are (0,0). The operator T" admits a self-adjoint extension T : H — M if and only if its
deficiency indices are equal. If the deficiency indices are (ny(T"),n_(T)), the self-adjoint
extensions are parametrised by unitary bijections

U :Ker(T* —i) «—— Ker(T" +1) .
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Theorem 7.10. Let J be a Jacobi matriz with by, > 0. If J is of type D, the correspond-
ing operator J is essentially self-adjoint. If J is of type C, the deficiency indices of the
corresponding operator are (1,1). The spectral measures of the self-adjoint extensions
(with respect to the vector &y) are exactly the N-extreme solutions (Definition 6.3) to the
moment problem.

Exercise 7.11. Let H be a separable Hilbert space, and let T' : H — H be a bounded
self-adjoint operator with a cyclic vector v1. There exists an orthonormal basis (v;)72,
of H in which T is represented by a Jacobi matrix.

8 The multidimensional moment problem*

The two-dimensional counterpart of the map S from the introduction takes a measure
w on R? to the array (sg[p])er>o of its moments

sealil = [ XASduy)
Similarly to the one-dimensional case, any element of the image satisfies

_ 72
Z Sot etk 2ok 20 e >0, (zep) € C7F . (8.1)
00 >0

However, unlike the one-dimensional case, this condition is necessary but not sufficient.

8.1 Existence

Proposition 8.1 (Hilbert). There exists P € R[\, k] which can not be represented as a
sum of squares.

Hilbert’s proof was not constructive; the first example (which we reproduce below)
was constructed in the 1960-s by Motzkin [1967].

Proof. Let
M\ K) = M2+ X261+ 1 - 3022

By the arithmetic-geometric mean inequality
M\ k) > 3VA0Kk6 —3X262 =0 .

Assume that M is a sum of squares: M =3, h?, hj € R[A1, A2]. Denote the coefficients
of h; as follows:
hj(A\ k) = AjA3 + BiANk + CiAk? + Djk?
+E;) + Fjdk + Gjr?
+HjA+ Ik
+Jj .
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Comparing the highest-degree coefficients, we consecutively prove that

A =D =0, E,=Gr=0, Hp=I11=0.
From the equalities M (+1,+1) = 0 we obtain that hx(£1,£1) =0, i.e.
By+Cy+Fy+Jy =By, —Cy,—Fy+Jy=—Bp+Cr—Fp+Jy = —Bp,—Crp+Fp+ J, =0
whence B, = C), = F), = J,. = 0. ]

Using a Hahn-Banach argument in an appropriate topology, this can be shown to
imply (see Berg [1987] and references therein):

Theorem 8.2. There exists an array (s¢x) satisfying (8.1) which is not a moment array,
i.e. it does not admit a representation

Sk = Sﬁ,kz[ﬂ] , L,kE>0
with a positive measure p.

See also Friedrich [1985] for an explicit construction of such an array (s ).

Thus, Hamburger’s theorem fails in two dimensions. On the other hand, Hausdorff’s
theorem can be extended:

Ezercise 8.3. Let @ : C[\, k] — C. The following are equivalent:

1. there exists a measure u supported on the simplex {\,x > 0, A + xk < 1} such that

B[E] —/Rdu, ReC A ;

2. ®NKF(1— X — k)™ >0 for any £,m, k > 0.

More generally, let K C R? be a convex body (a compact convex set with non-empty
interior); then

K= ) {AeR*| (N <1},

xeK°

where

K°={¢(eR*|VAEK (M) <1} .
Ezercise 8.4 (Maserick). Let ® : C[\, k] — C. The following are equivalent:

1. there exists a measure p supported on K such that

@[R]Z/Rd,u, R € C[\ K] ;

2. ¢ [R2 [ee=(§ )\)} > 0 for any finite Z C K° and any R € C[\, &].
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Remark 8.5. The following generalisation, due to Schmiidgen [1991], requires arguments
from real algebraic geometry. Let B C R[\, k], and let

K= (){P=0}.

pPep
Let @ : C[\,x] — C. If K is compact, the following are equivalent:

1. there exists a measure p supported on K such that

@[R]:/Rd,u, R e C[\ K] ;

2. ® [R?[[pe= P| > 0 for any finite £ C P and any R € C[\, x].

8.2 Carleman'’s criterion

Exercise 8.6. Let (sg)) be a moment array. If
> 1 > 1
20 _ “3% _
Zsze,o = Z S02k =
=0 k=0

then the corresponding moment problem is determinate.

The following theorem, due to Nussbaum [1965], is more surprising.

Theorem 8.7 (Nussbaum). Let (s¢r) be an array satisfying (8.1), and such that
SRS
Z 32% =00 .
=0

Then (s¢) is a moment array.

Proof. Let ® : C[\, k] — C be the linear functional sending A’x* to s, . For any p € C[)]
and g € C[x],
@ [p(N)*q(r)?] >0,

hence for any p there exists a measure 7[p?] such that

B [p(V)2q(r)] = / g(x)drp?)(k) . g€ Cla] .

Observe that

hence
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Therefore 7[p?] is defined uniquely. This crucial property allows us to define 7[p] for all
polynomials p € C[\]. Indeed, any such p can be represented as

p=pi+ps—p3—pi,
and, if we set
7lp] = 7[p] + 7[p3] — 7p3] — 7pdl ,

the value of this expression does not depend on the choice of the decomposition, and,
moreover, depends linearly on p (why?) Consequently,

Bp(\)q(r)] = / a(s) drlp](s) -

Next, 7[p] is monotone in p: if p; < py on R, then 7[p1] < 7[p2]. Indeed, ps — p; is a sum
of squares, and by construction 7 associates a positive measure to each square. Hence
for every B C R there exists a measure op such that

rp)(B) = / p(Ndos(N) | (8.2)

We apply this as follows: on the j-th step, construct ag) which satisfies (8.2) for B of
the form [i/27, (i + 1)/27). If B is a union of such elementary intervals, we define ag)
as the sum of the corresponding measures. If B is a union of dyadic intervals, then,
for sufficiently large j, ag) is a solution to the same moment problem (8.2). The set of
such solutions is precompact in weak topology; choose a sequence (j,)r>1 such that the

(.77'))

sequence (o converges for any (dyadic) B:

Ug") —opB .

Then op is again a solution to the moment problem (8.2), and is, by construction,
monotone non-decreasing as a function of B. Denote

M\ k)= lm oy (—00,A],

k' —k+0

where the limit is taken along &' € |J >0 27J7. Then M is monotone non-decreasing in
both A and k, and

Pp(N)g(k)] = /p(A)Q(ﬂ)dM(A,Fa) :
Thus dM is the requested solution to the moment problem

serlp] =sek, ¢, k>0. O
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Review questions (Please send me the solutions to a few of them before 11.1.2018)
1. For which a € R is the measure e~ M08 (IN+€)g)\ determinate?

2. Let M be a log-convex sequence of positive numbers satisfying (2.4). The class of
C* functions f such that (2.2) holds for all even k is quasianalytic.

3. Prove that the polynomials (P;)N_ defined via Py = 1, Py(A) =

)\Pk()\) =4/ (N — k‘)(k‘ + 1) Pk+1()\) + v (N —k+ 1)]~€P]€_1()\) (1 <k<N-—- 1)

are orthogonal with respect to the measure uy = 2%, Z;V:o (];]) ON—2j.

4. Let p be a determinate measure. Prove that klim ?3:((5)) = —wy,(z) for each z € C\R.
—00
5. Suppose f € Lo(u) lies in the closure of polynomials in Lo(p). If p is indeterminate,
there exists an entire function which coincides p-almost-everywhere with f.

6. (a) If XA in R is not an eigenvalue of J;_1(7), then it is an eigenvalue of Jy(7) for
some 7 € R. (b) Fix A and find max{u{\} | p satisfies (5.1)}.
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