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The perceptron: Neural net. Gardner (partly with Derrida) 1987-88 had results on

the memory capacity, based on non-rigorous replica computations. The simplest case:
H;,1 < k < M, random half spaces in RN

H; = {:c e RN Z  Tidi 2> 0}, J;1. indep. standard Gaussians

For a > 0, they obtained a formula for

f(a):= I|m —Iog'ﬂM o

Soft version: wu : R — R

_ alN _ N
INua = 2 2 NeXp[ k:lu(N l/zzizlaijik)]’

O'EZN

>y = {-1,1}".

1
fu(a) = I|m NlogZNua

For the random half spaces: u (x) = —ocol, .



Theorem (Talagrand, Shcherbina-Tirozzi). For v : R — RU{—o0}, bounded above,
and « small enough

1
N log ZN y,0 — RS (o, u), as.

with
RS (a,u) := —g (1 — q)+FE, logcosh (\/oer)—l—ozEZ log £ ,1u (\/§Z + 1 — qZ’) :

where Z, Z' are standard Gaussians, and » = 7 (a, u) and ¢ = q (a, u) solve

¢ = Etanh? (VarZ), r = Ev3 (\/4Z), g (z) = 1 EZexplu(z+IT=q2)]

VI—q Eexplu(e+ I gZ)

Aim: Give a proof based on the Thouless-Anderson-Palmer approach (originally pro-
posed for SK).



Background: Curie-Weiss

2—N B <N N
IBB — N 0 . :
GIBBSg h,N (9) ZN,8,h =P 2 2ij=1%195 thD g Jz]
2—N N 1
= exp NBa2 | hN&] == o
ZN,B.h N —=1

Pcoin toss (5. ~ x) = exp [—NI (CU)] )

and then
lim 1 log Zpnr = sup <§x2 + hz — I(x)) :
N r \2

N —o0

The sup is attained at an x = m which solves

m = tanh (Bm + h).
For h #£ 0 and for h = 0, 8 < 1: Unique maximizer m and GIBBS (6 ~ m) ~ 1.



SK-Model with external field: Random Gibbs measure

—N 3 N
exp \/T Z Jij0i0j+hzgi ,
1<

<i<j<N i=1

GIBBS (o) := -
N,B3,h

J;; 1.1.d. standard Gaussians, defined on (€2, F,P), o € {1, 1}N, h € R.

TAP equations for the Gibbs expectation m; := (o;)

m; =~ tanh | h + — Z 52 1—q)mz , Jij = Jji, Jiig =0

Onsager ‘correction

with g the unique fixed point of

q=q(B,h) = E tanh? (h++/qBZ), Z standard Gaussian

Mathematical proofs for high temperature: Talagrand, Chatterjee. Low temperature
recently by Auffinger-Jagannath.



Heuristic derivation by belief propagation: /f the model would be defined on a tree

graph (instead of the complete graph):
Equation for the marginals v;

v; (0;) ~ Z exp [hai +BO-Z\/_Z]€(9?, Z]a]] H cht i (a])

(Gj)jeai JEOI

where ~ means equality up to normalization, and V?“t * the j-th marginal cutting the

connection with 2. Therefore
sinh (h + BN™ 1/2 2_jcdi JZ]JJ) H]Ef% psut ! (Jj)
cosh (h + BN~ 1/2 >jcdi Jzy“y) H]E(‘?z psut (Uj)

(o)),
Y owi(o) = )0

o=+1 (7)1

By a CLT, if |9l is large, for Y jcp; Jijo; under [Tjc; v5t (o), this is

~ 1/2 cut ¢ cut 7 .__ ,
m,; =~ tanh <h + BN~ / Z] ]#Z M ) , M = <O']>untz-

J



The argument is that the formula is true at high temperature (as N — o0), and
also, by more complicated arguments in MPV, at low temperature if m; is the mean

inside a “pure state”. Expanding the difference of m; — m;?“t ’ leads to the Onsager-

correction — (32 (1 — g) m;, and the final form

m; = tanh (h + \/’% Z] ‘]ijj — 62 (1—gq) mz> .

In contrast to standard mean-field models, it was considered to be difficult to construct
directly solutions even in high temperature: Bray and Moore 1979-1982, Nemoto-
Takayama 1985, but the iterations behaved badly (see also the discussion in Mézard-
Parisi-Virasoro).



Iterative construction: (B. CMP 2014): Define m\", 1< i < N, k > O:

O

’l] 7

m,EkJrl] := tanh (h—I—BN_l/zz J; m[k] 5 (1—q)m [k 1])7 k> 1.

Theorem
1 N

2
lim |lim — Z <m,£k] — m,[b-l]> =0, a.s.

k,l—oo N—oo N i—1

holds if and only if the de Almeida—Thouless condition holds:

BzE cosh™* (h+ Bv/qZ) <1, Z standard Gauss.



Basis of the proof: Structure theorem for the iterations

m£k+1] ~ tanh (h + n[k] + 52 1 %{[T]) , N large,

k] . gkl K]
m; ' \/_ Z —1 7,9 j

where the rv §[T], the random matrices J[k], and v, € RT are recursively defined,

1 _
= n-125
e The &'s don't change with the iteration.
[k—1]

e The §[1] NS ,n,E | are independent (asymptotically as N — o0),

e 1l and nl*+1 are independent.



Key: lterative construction of the JIEL First steps:

m,Ez] = tanh (h + [3\/657[;10 , Where §£1] — N—1/2 > Jij- In

m£3] — tanh (h -+ \/’% Zj Jijmgz] — B/ (1 — Q)>

we make J independent of ml2 je independent off[l] by JZ-[JZ-] = J;;—lin comb of &rs.

m£3] ~ tanh (h + \/L% Z] ij]m£2] + 7157[;1]>

For m[4l one does J — JI2I — B3I, After the first: N—1/2 Zj J[z] [ ] g2l — jl3l

is done conditionally on g[ll, so that J[3] becomes conditionally mdependent of ml3l.
This lead to

m£4] ~ tanh (h—l—\/’%z J[3] [3] + 1 5[1] + v5 5[2]>



Miraculously J — -+ — JIk cancels Onsager, provided it comes with a shift two.
The size of ngk] .= N—1/2 >j Jgﬁ]mgk] can be computed, and it disappears (N — oo

first, then k — oo) iff the AT-condition holds.

In the low temperature region, n[k] stabilizes as £ — oo in distribution, but behaves
chaotic with £k — k + 1.

Free energy:

N —o0

: 1 _ 1
f(ﬁ,h) — ]VllnooﬁlogZN’B’h = lim NEIOgZNﬁ;h'
For h =0 and 8 < 1 (Aizenman-Lebowitz-Ruelle, Frohlich-Zegarlinski):

: 1 32
f(8,0) = fann (8,0) := Jim — logEiZy 5, =",



and can be proved by a second moment method. For h £ 0, and all 8 > 0

f(B,h) # fann (B, h).
However, take (m;) from TAP, m; = tanh (h;), put p (o) :=[1; p; (0;), p;(o;) =
%exp [h;o;] / cosh (h;),

Zy =Y 2Nexp[] = [Tcosh (h;) >-p (o) exp =Y hioy.

7

ZN
The first part is easy (quenched). For Zn do a conditional quenched=annealed
argument, i.e. analyze [ (ZN‘ .7—") , F:=o0 (5[1], ¢l2l ) . For E(exp[]| F), one
has to do the shift J — J[k], k large. By a second moment method, one gets

_ _ 6% (1 - q)
f(B,h) =RS(B,h) := Elogcosh (h+ B+/qZ) + . .
Unfortunately, the conditional second moment method does not work up to the AT-

line.




Back to the perceptron which has the (non-Gaussian!) Hamiltonian

M N

S u(Sk), k=N o0y

k=1 1=1
The key point for TAP equations (Mézard 1988, 2017 for the Hopfield model): Use a
bipartite structure (0;);<ny S (Sk)k<an - With m; := (03), py, := (v’ (S)) -

_ M=aN
<Ui> = :m; = tanh (N 1/2 Zk:la Jzkpk — QE@DZI (\/GZ) mz)

P = Yy (N_1/2 Zf\il m;Ji — (1 —q) Pk) :
with
1 EZexplu(z++/1—qZ)]
V1—q Eexplu(z++/1—qZ)]

by (z) =

Remark: 1), for ¢ <1 is smooth without u being smooth!



For the iteration, take m,EO]

=0, m = /4, p[o]—O p[l]. \/r, and
mi™ = anh (V7172 ZZZ Ta) = ml" byl (vaz)).
= v, (N 2y w1 - Q))

The iterations lead to a similar structure theorem as in the SK case:

e _ tanh( PELA )
an+1] — ( —1/2 Zz 1‘]2[17;] [n]—l—ﬁ 77[1] 4 By 1 ['n, 1])

The iterates converge if and only if

1
cosh? (\/72)

E [, (vaz)]” <

ol



provided that the fixed point equations for (7, q) have a unique solution, which is easy
for small a (Talagrand).

The “transformation of measure argument” with a conditional second moment argu-
ment leads to the Gardner formula (work in progress).

Summary:

e The iterative scheme for TAP type equations can be widely applied. This is also
investigated by Mézard (2017) for the Hopfield model, and multi-layer percep-
trons.

e It seems to identify precisely the high-temperature region for many models.



e For the free energy, it is less satisfactory, as a conditional second moment method

does not work in the full high-temperature region.

e Main open problem: Extend the method to low temperature. SK is probably not

the ideal model to try first.



Happy birthday, llya!



