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Getting to the 
heart of random operators

The motion of a quantum particle such 
as an electron is described by the 
Schrödinger equation. It was understood 
by P. W. Anderson in the 1950s that the 
presence of random impurities in the 
medium dramatically affects the 
properties of the solutions. The extreme 
situation is Anderson localisation, in 
which the impurities turn a conducting 
medium into an insulator.

Mathematically rigorous arguments 
appeared in the 1970s, when Goldsheid, 
Molchanov and Pastur proved that 
Anderson localisation always occurs in 
one-dimensional systems. Later, Fröhlich—
Spencer and Aizenman—Molchanov 
proved that it occurs in an arbitrary 
dimension when the density of impurities 
is sufficiently high.

Many questions remain in this area 
however, which researchers in the EC-
backed Spectrum project aim to 
investigate. “What happens when the 
density of impurities is low, and the 
dimension is greater than one, remains 
a mystery. Is a copper plate with 
impurities a conductor?” asks Professor 
Sasha Sodin, the project’s Principal 
Investigator. “The answer should 
depend on two key ingredients: the 
geometry of the problem and the 
randomness of the impurities.”

It is believed that a two-dimensional 
plate becomes an insulator at arbitrarily 
weak density of impurities, whereas a 
three-dimensional bar retains its 
conductance when the impurities are 
sufficiently sparse. “Presumably, the 
difference has to do with the different 

behaviour of classical random walk in two 
and three dimension. However, the 
connection between random walk and 
quantum dynamics in the presence of 
disorder is not well understood,” says 
Professor Sodin.

Some central questions remain open 
even for one-dimensional systems. The 
rigorous results asserting the absence of 
conductance in a wire with arbitrarily 
sparse impurities seems to run contrary 
to our everyday experience. “The results 

of Goldsheid—Molchanov—Pastur, along 
with most of the subsequent work, pertain 
to an infinitely long wire, whereas in 
reality the width of a wire is not negligible 
with respect to its length,” explains 
Professor Sodin. “Theoretical physicists, 
particularly Fyodorov and Mirlin, 
devised several approaches to this 
problem, but so far none of these has been 
mathematically justified.”

Resummation of divergent series
Physicists since Richard Feynman have 
used perturbation theory, in which the 
quantities of interest are expanded in an 
infinite series. The terms are labelled by 
graphs called Feynman diagrams, and 
the sum of the first few terms is considered 
to be an approximation to the exact 
solution. This procedure is very powerful; 
however, it suffers from serious 
drawbacks. “Typically, the answer given 
by perturbation theory is a divergent 

series, such as 1 – 3 + 9 – 27 + 81 - …”, 
says Professor Sodin. “Such an expression 
has no mathematical meaning. By 
analogy with a geometric progression, 
one is tempted to conclude that the sum is 
¼. However, it is not clear that such a 
guess gives the correct answer to the 
initial problem.”

Attaching a mathematical meaning to a 
divergent series is known as resummation. 

An ideal wire is a perfect conductor. What about a material copper wire: how is the 
conductance affected by impurities? What about a copper plate? Researchers in the 
Spectrum project are studying these types of fundamental questions in theoretical physics 
from the mathematical perspective, as Professor Sasha Sodin explains

We aim to understand the basic properties of quantum 
particles moving through a disordered environment. 
We would like to know how the motion is affected by the 
combination of randomness and geometry

Perturbative series in theoretical physics are often labelled by graphs called Feynmann diagrams.



Different resummation procedures may 
lead to different sums, and some divergent 
expansions are not resummable. Therefore 
devising the right resummation procedure 
requires an understanding of the specific 
nature of that problem.

Recently, Offer Kopelevitch, an MSc 
student at Tel Aviv University and a 
member of the Spectrum team, devised a 
rigorous resummation procedure, 
applicable to several spectral problems 
involving randomness. “This first step is 
extremely important,” says Professor 
Sodin. “Previously, it was thought that 
there could be no mathematically consistent 
way to resum divergences of this kind. The 
next step is to tackle the problems with a 
stronger geometric component, such as 
conductance in a wire.”

Gas of hard spheres
The famous Kepler conjecture, going back 
to the seventeenth century and recently 
proved by Hales, asserts that no arrangement 
of non-overlapping unit balls in 3D space 
can occupy more than π/√18 = 0.74… of the 
volume of the space. The bound is achieved 
for the so-called FCC packing, which is the 
one used by costermongers to arrange 
oranges in a box.

From the point of view of mathematical 
physics, it is important to understand the 

properties of a typical configuration chosen 
at random among the arrangements with a 
density below π/√18.  “This model goes 
back to Ludwig Boltzmann, it is called a gas 
of hard spheres,” comments Professor 
Sodin. “It is classical rather than quantum, 
however, the fascinating interplay between 
geometry and randomness makes it related 
to the other problems we study.”

Typical configurations at low density are 
gas-like: moving the balls around in one 
region of space has very weak influence on 
the balls in distant regions. A mathematical 
proof was found by Ruelle in the 1960s. As 
the density gets closer to π/√18, it is expected 
but not proved that the system undergoes a 
phase transition, and typical configurations 
acquire similarity to a lattice.

Significant progress was made by Dr. 
Alexander Magazinov, a postdoctoral 
researcher at Tel Aviv University and a 
member of the Spectrum team, who 
answered a question posed by Bowen—
Lyons—Radin—Winkler. “Suppose the balls 
are 1m wide, and an ant can jump between 
two balls if the distance between them is 
less than 1mm.,” explains Professor Sodin. 
“The result of Magazinov asserts that, if 
the density is sufficiently close to π/√18, a 
typical configuration has an infinite 
cluster of balls such that an ant can reach 
any of them from any other one.”

“Magazinov’s result also holds in two 
dimensions, for configurations of disks, 
but not in one dimension. We do not 
know what happens in dimension four 
and above. The dimension-dependence is 
one of the things that made this problem 
so challenging.”
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The escape of an ant to 
infinity: in a typical 2D 

configuration of 
sufficiently high density, 
there is an infinite path 

avoiding gaps wider than 
0.3mm. Figure courtesy of 

Prof. Dietrich Stoyan.

Offer Kopelevitch 
completed his MSc 

thesis at Tel Aviv 
University in 2016
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