
6 Stopping times and the first passage

Definition 6.1. Let (Ft, t ≥ 0) be a filtration of σ-algebras. Stopping time is a random
variable τ with values in [0,∞] and such that {τ ≤ t} ∈ Ft for t ≥ 0.

We can think of stopping time τ as a strategy which at every time t decides to stop or
not (until stopping decision is made) on base of the information available so far. For this
reason τ is called a ‘nonanticipating’, ‘online’, or ‘real-time’ strategy. ‘Markov time’ is
another name for stopping time. In financial mathematics stopping times may constitute
a part of investor’s policy. For instance, a holder of option of the American type faces the
problem of choosing the moment to exercise the option.

The definition of τ says that the information available at time t determines if stopping
has occured not later than t. But this implies that the decisiion to stop exactly at time t
is also determined by the same information. Formally {τ > t} ∈ Ft, because the event is
complementary to {τ ≤ t}. Observing that {τ = t} = {τ ≤ t} ∩ (∩∞k=1{τ > t− 1/k}), we
have here {τ > t− 1/k} ∈ Ft−1/k ⊂ Ft for every k. Now it follows from the properties of
σ-algebras that also {τ = t} ∈ Ft.

Example 6.2. Our main example of stopping time is the first passage time for BM. For
any ‘level’ x, define

τx = min{t ≥ 0 : B(t) = x},
where min∅ =∞. This is a stopping time w.r.t. the natural filtration (FB

t , t ≥ 0) of the
BM (or any larger filtration).

Let M(t) := maxs∈[0,t] B(s) be the ‘running maximum’ of BM on [0, t]. It is useful to
note that for x > 0 by the continuity of BM we have

{τx ≤ t} = {M(t) ≥ x}. (35)

The relation actually proves that τx is a stopping time, since M(t) is a function of
(B(s), s ∈ [0, t]) (i.e. the random variable M(t) is FB

t -measurable).

6.1 Stopped martingales

Let (X(t), t ≥ 0) be a random process, τ a stopping time. The stopped process is defined

as X̃(t) = X(τ ∧ t), t ≥ 0. On the event {τ <∞} the stopped process becomes frozen at
time τ , i.e. does not change value.

Theorem 6.3. If (X(t), t ≥ 0) is a martingale, then the stopped process is also a mar-

tingale, whicnever the stopping time τ .

Proof. We will give a complete proof under the assumption that τ assumes values in the
countable set {0, 1, 2, . . . ,∞}. We have

X(τ ∧ n) =
n−1∑

k=0

X(k)1(τ = k) +X(n)1(τ = n) +X(n)1(τ > n),

X(τ ∧ (n+ 1)) =
n−1∑

k=0

X(k)1(τ = k) +X(n)1(τ = n) +X(n+ 1)1(τ > n).
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In the second formula X(τ ∧ (n + 1)) =
∑n−1

k=0 X(k)1(τ = k) + X(n)1(τ = n) is Fn-
measurable, thus conditioning has no effect:

E

[
n−1∑

k=0

X(k)1(τ = k) +X(n)1(τ = n)|Fn

]
=

n−1∑

k=0

X(k)1(τ = k) +X(n)1(τ > n).

From this

E[X(τ ∧ (n+ 1))|Fn]−X(τ ∧ n) = E[X(n+ 1)1(τ > n)|Fn]−X(n)1(τ > n) =

1(τ > n)E[X(n+ 1)|Fn]− 1(τ > n)Xn = 1(τ > n)(E[X(n+ 1)|Fn]−X(n)) = 0,

where we used that {τ > n} ∈ Fn and that X is a martingale.
The proof is literally the same for the case when τ takes values {0, 1/n, 2/n, . . . ,∞},

where n is a fixed integer. The case of arbitrary τ follows by an approximation argument,
which we omit.

This result must be clear intuitively. The idea of a martingal is that of a gambler’s cap-
ital in fair game. The theorem says that the game remains fair whichever nonanticipating
strategy to exit the game.

For stopped martingale we have EX(τ ∧ t) = EX(0) for every t. Sending t → ∞ we
have τ ∧ t→∞, so passing to limit one might expect that EX(τ ∧ t) = EX(0), but this
is not always true.

Theorem 6.4. (Optional sampling theorem.) Let martingale X and stopping time τ
satisfy the conditions

(i) τ is finite a.s., that is P(τ <∞) = 1,

(ii) EX(τ) <∞,

(iii) limt→∞ E(X(t)1(τ > t)) = 0.

Then EX(τ) = EX(0).

There are simpler conditions for EX(τ) = EX(0) to hold. It is enough to require that
τ be bounded, that is P(τ < K) = 1 for some K > 0. Another sufficient condition is the
uniform integrability of the martingale6.

Example 6.5. Let a, b ≥ 0. The first time the BM exits the interval [−b, a] is τ = min{t :
B(t) = a, or B(t) = −b}. The exit through a (respectively −b) may be interpreted
as ruin of a gambler playing a ‘continuous head-or-tail’ game with the initial capital a
(respectively b). Let p = P(B(τ) = a), q = P(B(τ) = −b). It can be shown that p+q = 1,
that is P(τ <∞) = 1. By the optional sampling theorem 0 = EB(0) = EB(τ) = ap− bq.
Along with p+ q = 1 we have

p =
b

a+ b
, q =

a

a+ b
,

6Random variables X(t), t ≥ 0, are uniformly integrable if for every ǫ > 0 there exists K > 0 such
that E[|X(t)| 1(|X(t)| > K)] < ǫ.
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which is a classical fact.
Proving that τ <∞ is easy by looking at the distribution of B(t) for large t. We leave

details as an exercise.

Fix x > 0. The BM exits the interval [−b, x] through point x with probability b/(x+b).
If the event occurs, the first passage time τx is finite. Letting b→∞,

P(τx <∞) ≥ b

x+ b
→ 1,

so τx is finite a.s. By symmetry this holds also for x < 0.
The optional sampling theorem has a kind of converse.

Theorem 6.6. Suppose random process (X(t), t ≥ 0) satisfies EX(τ) <∞ and EX(τ) =
EX(0) for all bounded stopping times. The the process is a martingale.

6.2 σ-algebra Fτ , martingales and strong Markov processes

Under mild conditions, the martingale and Markov properties of random processes can
be strengthened by replacing fixed times by (random) stopping times.

Definition 6.7. Let τ be a stopping time w.r.t. filtration (Ft, t ≥ 0). The σ-algebra Fτ

is the collection of events A such that A ∩ {τ ≤ t} ∈ Ft for every t ≥ 0.

If τ is thought of as a moment when observation of a random process stopped, Fτ is
interpreted as the collection of events observed before τ . For instance, {B(τ/2) > 1} ∈
FB

τ , but {B(τ + 1) > 1} /∈ FB
τ .

Recall that the martingale property is E[X(t2)|Ft1 ] = X(t1), t1 ≤ t2 for fixed t1 ≤ t2.

Theorem 6.8. Let X be a uniformly integrable martingale and τ1 ≤ τ2 ≤ ∞ be two

stopping times. Then

E[X(τ2)|Fτ1 ] = X(τ1).

Recall further that (X(t), t ≥ 0) is a Markov process if for arbitrary fixed t, s ≥ 0
holds P(X(t+ s) ≤ y|Ft) = P(X(t+ s) ≤ y|X(t)) (for y ∈ R).

Definition 6.9. Random process (X(t), t ≥ 0) adapted to filtration (Ft, t ≥ 0) has the
strong Markov property if for every finite stopping time τ and s ≥ 0

P(X(τ + s) ≤ y|Fτ ) = P(X(τ + s) ≤ y|X(τ)).

Solutions to SDE’s are strong Markov processes (i.e. have the strong Markov prop-
erty).

In particular, the Brownian motion is a strong Markov process. For the BM the strong
Markov property means that for every finite stopping time τ the process

B̃(t) := B(τ + t)− B(τ), t ≥ 0

is a Brownian motion independent of Fτ .
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The first passage time as a random process We may consider (τx, x ≥ 0) as a
random process, with parameter x playing the role of ‘time’. By the strong Markov
property, the BM B̃(t) = B(τx+ t)−B(τx), t ≥ 0, is independent of the history Fτx before

hitting level x. For y > 0, the first passage of B̃ through level y is the first passage of B
through level x + y. It follows that τx+y can be represented as τx+y = τx + τ ′y, where τx
and τ ′y are independent, and τ ′y has the same distribution as τy.

This argument shows that the first passage process (τx, x ≥ 0) has the property of
independence of increments, like the BM. However, despite this similarity, the process is
very different from the BM. Firstly, τx is nondecreasing in x, while the BM fluctuates.
Secondly, (τx, x ≥ 0) has discontinuous paths7.

6.3 Distribution of the first passage time

Perhaps, the most striking feature of the first passage time τx is that Eτx =∞. The BM
(starting at 0) needs, on the average, infinite time to hit any fixed level, no matter how
small |x|.

Throughout we shall consider x > 0. One approach to the distribution of τx exploits
the gBM Z(t) = exp(σB(t)−σ2t/2) with σ > 0. By Theorem 6.3 Z(τx∧t) is a martingale,
and

1 = Z(0) = EZ(τx ∧ t) = E

[
exp

(
σB(τx ∧ t)− 1

2
σ2(τx ∧ t)

)]
.

We’ve seen already that τx < ∞ a.s., but let us derive this anew. On the event
{τ <∞} we have B(τx ∧ t) = x for t > τx, thus

exp

(
σB(τx ∧ t)− 1

2
σ2(τx ∧ t)

)
→ exp

(
σx− 1

2
σ2τx

)
, as t→∞.

On the event {τx =∞} we have B(τx ∧ t) < x, thus

exp

(
σB(τx ∧ t)− 1

2
σ2(τx ∧ t)

)
≤ exp

(
σx− 1

2
σ2t

)
→ 0, as t→∞.

Both cases can be captured by writing

exp

(
σB(τx ∧ t)− 1

2
σ2(τx ∧ t)

)
→ 1(τx <∞) exp

(
σx− 1

2
σ2τx

)
, as t→∞.

The LHS is bounded by eσx, which by the virtue of the dominated convergence theorem
justifies applying E on both sides to obtain

1 = E

[
1(τx <∞) exp

(
σx− 1

2
σ2τx

)]
. (36)

Using dominated convergence once again (say with the bound e2x for σ < 2), we let σ → 0
to obtain

1 = E[1(τx <∞)] = P(τx <∞),

7If x occurs to be a local maximum of the BM, then τx has a jump at x, with the jump-size equal to
the time elapsed after τx needed for the BM to return to the level x.
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which means that τx is finite.
Re-writing (36) as

E

[
exp

(
−1

2
σ2τx

)]
= e−σx,

and introducing variable λ = σ2/2 we obtain the Laplace transform8 of τx

Ee−λτx = e−x
√
2λ, λ > 0, (37)

for x > 0. By symmetry of the BM for arbitrary x

Ee−λτx = e−|x|
√
2λ, x ∈ R, λ > 0.

Differentiating the Laplace transform at 0 we obtain Eτx = ∞: the time for BM to
hit level x 6= 0 has infinite mean. The distribution of τx can be obtained by inverting the
Laplace transform. We prefer, however, a more instructive way based on the reflection
principle.

Consider a path of BM on [0, t], that crosses level x (in which case τx ≤ t) and
ends below y at time t (that is B(t) ≤ y) for some given y ≤ x. Let us reflect the
part of this path on [τx, t] about the horizontal line at level x. This yields another path
which terminates at time t above the level 2x− y (the new path crosses level x, because
B(0) = 0 < x ≤ 2x − y). The reflection principle says that this operation preserves the
probability:

P(τx ≤ t, B(t) ≤ y) = P(B(t) ≥ 2x− y), x > 0, y ≤ x. (38)

Theorem 6.10. The density of τx is

fτx(t) =
|x|

t3/2
√
2π

e−x
2/(2t). (39)

Proof. Fix x > 0, and use (38) with x = y

P(τx ≤ t, B(t) ≤ x) = P(B(t) ≥ x) = P(B(t) ≥ x, τ ≤ t),

where the last equality holds since B(t) ≥ x implies τx ≤ t. Changing the sides in the
second equality and adding with the first yields

P(τx ≤ t) = 2P(B(t) ≥ x) =
2√
2πt

∫ ∞

x

e−y
2/(2t)dy =

2√
2π

∫ ∞

x/
√
t

e−z
2/2dz, (40)

the last by the change of variable z = y/
√
t. It remains to differentiate in t to obtain the

density.

It should be stressed that x in (39) is a parameter. The distribution with density (39)
is called stable 9.

8Another name for the Laplace transform of a random variable is the ‘moment generating function.
9Also known as 1/2-stable. The square root function appears as

√
λ in the Laplace transform (37).
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6.4 Running maximum of the BM

Let M(t) = maxs∈[0,t] B(s) be the running maximum of BM, and τx the first passage over
level x > 0. Since τx ≤ t holds exactly when M(t) ≥ x, from (40) follows

P(M(t) ≥ x) = 2P(B(t) ≥ x) =
2√
2πt

∫ ∞

x

e−y
2/(2t)dy.

Differentiating in t and taking with minus sign, the density of M(t) emerges

fM(t)(x) =
2√
2πt

e−y
2/(2t).

By symmetry of the normal distribution this is also the density of |B(t)|, so remarkably

M(t)
d
= |B(t)|.

The absolute value process (|B(t)|, t ≥ 0) is sometimes called the reflected BM. The
process is Markov (exercise). A deeper connection of the BM, its running maximum and
the absolute value shows the following theorem due to Lévy.

Theorem 6.11. Let X(t) := M(t) − B(t). The process (X(t), t ≥ 0) has the same

distribution as the process (|B(t)|, t ≥ 0).

The idea of the proof
The maximum process (M(t), t ≥ 0) itself is not a Markov process. However, the

inverse function, which we may write as

τx = min{t : M(t) ≥ x}, x ≥ 0,

is the Markov process (with x as ‘time’ parameter). Note that each time interval of
length, say ℓ, where the running maximum is constant, corresponds to a jump of the
inverse process: of limy↓x(τy − τx) = ℓ (where y ↓ x means ‘as y decreases to x’).

Theorem 6.12. The joint density of M(t), B(t) is

fM(t),B(t)(x, y) =
2(2x− y)

t
√
2πt

exp

(
−(2x− y)2

2t

)
, x ≥ y, x ≥ 0. (41)

Proof.

P(M(t) ≥ x,B(t) ≤ y) = P(B(t) ≥ 2x− y) =
1√
2πt

∫ ∞

2x−y
e−z

2/(2t)dz.

Calculating first the partial derivative in x

− ∂

∂x
P(M(t) ≥ x,B(t) ≤ y) =

−2√
2πt

exp

(
−(2x− y)2

2t

)
,

then differentiating in y gives the formula (41).
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6.5 Maximum of the BM with drift

We turn next to the BM with drift B̃(t) = αt + B(t) and its running maximum M̃(t) =

maxs∈[0,t] B̃(t). Clearly, M̃(t) ≥ B̃(0) = 0, therefore the vector (M̃(t), B̃(t)) assumes
values in the set of vectors (x, y) such that x ≥ 0, y ≤ x.

The following result extends Theorem 41

Theorem 6.13. The joint density of (M̃(t), B̃(t)) is

fM̃(t),B̃(t)(x, y) =
2(2x− y)

t
√
2πt

exp

(
αy − 1

2
α2t− 1

2t
(2x− y)2

)
. (42)

Proof. The clue is Girsanov’s Theorem 4.3. Introduce Z(t) = exp(−αB(t) − α2t/2) and

note that in terms of the drifted BM Z(t) = exp(−αB̃(t)+α2t/2) Changing the probability

measure to P̃ with the Radon-Nikodym derivative Z, we achieve that B̃ is the standard
BM under P̃. The expectations under the measures are connected as Eξ = Ẽ[ξ/Z], which
implies

P(M̃(t) ≤ x, B̃(t) ≤ y) = E[1(M̃(t) ≤ x, B̃(t) ≤ y)] =

Ẽ

[
1(M̃(t) ≤ x, B̃(t) ≤ x)

Z(t)

]
= Ẽ

[
1(M̃(t) ≤ x, B̃(t) ≤ x)

exp(−αB̃(t) + α2t/2)

]
=

∫ y

−∞

∫ x

−∞
exp(αv − α2t/2)fM(t),B(t)(u, v)dudv,

where fM(t),B(t) from (41) appears as the joint density of M̃(t), B̃(t) under P̃. Differentiat-

ing in x and y, the desired density of (M̃(t), B̃(t)) under P is exp(αy−α2t/2)fM(t),B(t)(x, y).

Tedious but straightforward calculation (see Shreve’s book pp. 297-299) allows to
evaluate the integral in terms of the normal distribution function Φ:

P(M̃(t) ≤ x) =

∫ x

0

∫ x

−∞
fM̃(t),B̃(t)(u, v)dudv = Φ

(
x− αt√

t

)
− e−2αxΦ

(−x− αt√
t

)
.

Differentiating in x gives the density of M̃(t)

fM̃(t)(x) =
2√
2πt

e−(x−αt)
2/(2t) − 2αe−2αxΦ

(−x− αt√
t

)
.

On the other hand, we may consider the first passage time of the drifted BM B̃ over
level x > 0

τ̃x = min{t : B̃(t) = x},
for which {τ̃x ≥ t} = {M̃(t) ≤ x}, so

P(τ̃x ≥ t) = Φ

(
x− αt√

t

)
− e−2αxΦ

(−x− αt√
t

)
.
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Suppose first α < 0, the drift is negative. Then Φ
(
±x−αt√

t

)
→ 1 as t→∞, and

P(τ̃x ≥ t)→ Pτ̃x =∞) = 1− e2αx,

which is the probability that B̃ never passes x. That this probability is positive should
not be surprising: B̃(t) drifts down to −∞ as t → ∞, hence does not reach sufficiently

high levels. In this case the total maximum maxt∈[0,∞) B̃(t) is a random variable with
the exponential distribution of rate 2α. That the distribution of total maximum must be
exponenial, could be guessed from the strong Markov property of B̃ combined with the
memorylessness of the exponential distributions.

In the case α > 0, Φ
(
±x−αt√

t

)
→ 0 as t → ∞, and τ̃x is finite a.s. Differentiating we

obtain the density

fτ̃x(t) =
x√
2πt3

exp

(
−(x− at)2

2t

)
.

The distribution with this density is called inverse Gaussian. For α = 0 we are back to
the 1/2-stable distribution (39) of the BM passage time τx.

6.6 Pricing a barrier option

Up-and-out call option on the stock is an option which pays to the holder at maturity
(S(T ) − K)+ provided the stock price was never above the barrier level L. If S(t) > L
for some t ∈ [0, T ] the option is worthless. The option is of European type. We assume
L > K, as otherwise the option pays zero in any case. Compared with the standard call,
the barrier option sets a bound bounds on the liability of the option seller.

Let P̃ we the risk-neutral probability measure, and consider the stock driven under
this measure by the equation

dS(t) = rS(t)dt+ σS(t)dB(t),

where as usual r is the riskless bank rate, σ is the volatility.
To spare notation, we shall consider the stock with initial price S(0) = 1. This is no

loss of generality, as we can always rescale the strike and the barrier to the values K/S(0)
and L/S(0). The stock price is the gBM

S(t) = eσB̃(t),

with B̃(t) := (r/σ − σ/2)t + B(t). Introducing k = σ−1 logK, b = σ−1 logL, the option
pays at the maturity

V (T ) =
(
eσB̃(T ) −K

)
1(B̃(T ) ≥ k, M̃(T ) ≤ b),

where M̃(t) := maxx∈[0,T ] B(t). The knock out condition amounts to M̃(T ) > b.
The risk-neutral pricing of the option dictates that the price at time t ≤ T should be

V (t) = Ẽ[e−r(T−t)V (T )|Ft],
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so that e−rtV (t) is a martingale. Naturally, V (t) depends on S(t), but not only. The
terminal payoff V (T ) depends on S(T ) and the largest stock price before expiration

exp(σM̃(T )). The pair (S(t), M̃(t)) is a bivariate Markov process, hence the conditional

discounted payoff V (t) can be represented as a function of (S(t), M̃(t)). Furthermore,

if M̃(t) > b (then the running maximum of the stock price is larger L) the option is

worthless and V (t) = 0, while if M̃(t) ≤ b the value of the option is V (t) = v(t, S(t)) for

some function v, because in the latter case M̃(T ) < b is the same as maxu∈[t,T ] S(u) < L.

The two cases are captured by the formula V (t) = v(t, S(t)) 1(M̃(t) ≤ b).
More explicitly, the function v(t, x) is the conditional expectation

v(t, x) = Ẽ

[
e−r(T−t)1( max

u∈[t,T ]
S(u) ≤ L)(S(T )−K)+|S(t) = x

]
, x ∈ [0, L].

The martingale property of V (t), t ∈ [0, T ] implies that the stochastic differential of

V (t) = v(t, S(t)) 1(M̃(t) ≤ b) should have no ‘dt’ term, which allows to conclude10 that
in the domain (t, x) ∈ [0, T ]× [0, L] the function v satisfies the Black-Scholes PDE

vt(t, x) + rxvx(t, x) +
1

2
σ2x2vxx(t, x) = rv(t, x),

which should be complemented by the obvious boundary conditions

v(t, 0) = 0, 0 ≤ t ≤ T,

v(t, B) = 0, 0 ≤ t ≤ T,

v(T, x) = (x−K)+, 0 ≤ x ≤ B.

To evaluate V (0) = Ẽ[e−rTV (T )] explicitly we need to integrate the discounted payoff

weighted with the joint density (42) of (M̃(T ), B̃(T ))

V (0) = e−rT
∫ b

k

∫ b

y+
(eσy −K)

2(2x− y)

T
√
2πT

exp

(
αy − 1

2
α2T − 1

2T
(2x− y)2

)
dydx

The domain of integration is {(x, y) : y+ ≤ x ≤ b, k ≤ y ≤ b}, where as usual y+ =
max(y, 0). The assumption S(0) = 1 ≤ L means b > 0, but k < 0 is not excluded (the
original stock price S(0) < K).

Introducing

δ±(y) :=
1

σ
√
T
(log y + (r ± 1

2
σ2)T )

the value is (for the chosen case S(0) = 1)

V (0) = [Φ(δ+(K
−1))− Φ(δ+(B

−1)]− e−rTK[Φ(δ−(K
−1))− Φ(δ−(L

−1))]−
L2r/σ2+1[Φ(δ+(L

2K−1))− Φ(δ−(L))] + e−rTKL2r/σ2−1[Φ(δ−(L
2K−1))− Φ(δ−(L))].

We refer to Shreve’s textbook (Section 7.3.3) for details of calculation of the integral.
Scaling properly the variables it is not hard to derive a similar formula for v(t, x).

10A rigorous argument employs the optional sampling theorem.
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6.7 American call option

Option of the American type can be exercised any time t before it expires at given time T .
The investor holding the option faces a problem of choosing the optimal time to exercise
the option. This exercise time is a stopping time in the sense of Definition 6.7. In general,
the American option is more valuable than the analogous European option, since the
strategy of exercising at time T pays the same as the European counterpart.

The American call with strike K pays when the option is exercised the amount (S(t)−
K)+. The problem of finding the optimal stopping time in this case turns very simple: it
is optimal to exercise the option at the maturity time T . Thus the American call brings
no advantage over the European call with the same K,T . A clue to pricing the American
call is convexity.

More generally, let h : R+ → R+ be a nonnegative convex function with h(0) = 0 11.
The convexity means that

h(px+ qy) ≤ ph(x) + qh(y)

for arbitrary nonnegative p, q with p + q = 1. In particular, choosing y = 0 we get
h(px) ≤ ph(x) for 0 ≤ p ≤ 1.

Consider the option which pays h(S(t)) if exercised at time t ≤ T . Assume the stock

under the risk-neutral measure P̃ is driven by a gBM with drift r and volatility σ. Recall
that the discounted stock price e−rtS(t) is a martingale under P̃.

A submartingale is a random process X which tends to increase, that is satisfies
E[X(t)|Fu] ≥ X(u) for u < t. The analogue of Theorem 6.8 holds for submartingales
in the form E[X(τ2)|Fτ1 ] ≥ X(τ2) for two finite stopping times τ1 ≤ τ2.

Lemma 6.14. The discounted intrinsic value process (e−rth(S(t)), t ∈ [0, T ]) is a sub-

martingale:

Ẽ(e−rth(S(t))|Fu) ≥ e−urh(S(u)), 0 ≤ u ≤ t ≤ T.

Proof. For t > u setting p = e−r(t−u) in the above implies

Ẽ[e−r(t−u)h(S(t))|Fu] ≥ Ẽ[h(e−r(t−u)S(t))|Fu].

By convexity of h, Jensen’s inequality applies

Ẽ[h(e−r(t−u)S(t))|Fu] ≥ h
(
Ẽ[(e−r(t−u)S(t))|Fu]

)
=

h
(
eruẼ[(e−rtS(t))|Fu]

)
= h(erue−ruS(u))h(S(u)),

where we used that e−rtS(t), t ≥ 0, is a martingale.

Theorem 6.15. Suppose an option of American type pays at the maturity h(S(T )), where
h is a nonnegative convex function with h(0) = 0. Then the risk-neutral price of the option

is the same as of the analogous European option.

11The condition h(0) = 0 is natural, but not restrictive, since can always be achieved by switching to

ĥ(x) = h(x)− h(0).
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Proof. For every t < T

Ẽ(e−rTh(S(T ))|Ft) ≥ e−rth(S(t)), 0 ≤ u ≤ t ≤ T.

The inequality still holds if the fixed time t is replaced by a random stopping time τ with
values in [0, T ].

The American call option appears as the special case of the result due to convexity of
the functions h(x) = (x−K)+.

The problem of pricing the American put option, with h(x) = (K −x)+ is much more
complicated and has no closed-form solution. The put-call parity, useful for the European
options, does not apply to the American options, because always holding the American
put till expiration of the option is not the optimal strategy.
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