
5 Stochastic differential equations

The stochastic differential equation (SDE) we shall discuss has the form

dX(t) = α(X(t), t)dt+ β(t,X(t))dB(t), X(0) = x0, (28)

where the coefficients α : R+ × R → R, β : R+ × R → R are two given functions, x0
is a given initial value, and B is a Brownian motion defined on some probability space
(Ω,F ,P). A solution to the SDE is a random process X which satisfies (28) for t assuming
values in a given interval [0, T ) or [0,∞). The form (28) is a shorthand notation for the
equation

X(t) = x0 +

∫ t

0

α(u,X(u))du+

∫ t

0

β(u,X(u))dB(u),

which involves the Ito integral.
We stress that the source of randomness of the solution if the BM B, but not the

coefficients. A consequence of this is the Markov property:

Theorem 5.1. The solution to (28) is a Markov process.

While the proof is technical, the intuitive content of the theorem must be clear. Given
X(t) = x, the increment of X over a small time interval is determined by α(t, x), β(t, x)
and the Brownian increment which does not depend on the history prior to time t.

5.1 Examples of SDE’s

Like for ordinary DE’s, solution to SDE’s is rarely available as a closed analytic expression
via α, β and B. We shall consider some special cases, where a solution can be found
explicitly by simple manipulations with the Ito formula.

Example 5.2. Central for the Black-Scholes theory is the SDE

dX(t) = µX(t)dt+ σX(t)dB(t), X0 = x0, (29)

with x0 > 0. Although we know that the solution is a geometric BM, we will employ this
instance to introduce a new technique.

Let us try to find solution to (29) in the form X(t) = f(t, B(t)) with some to be
determined fuinction f . Applying Ito’s formula

df(t, B(t)) =

(
ft(t, B(t)) +

1

2
fxx(t, B(t))

)
dt+ fx(t, B(t))dB(t).

On the other hand, substituting X(t) = f(t, B(t)) in (29) we obtain

dX(t) = µf(t, B(t))dt+ σf(t, B(t))dB(t),

whence
(
ft(t, B(t)) +

1

2
fxx(t, B(t))

)
dt+ fx(t, B(t))dB(t) = µf(t, B(t)dt+ σf(t, B(t))dB(t),
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or in simplified notation

(
ft +

1

2
fxx

)
dt+ fxdB = µfdt+ σfdB.

To find f we need to match the ‘dt’ and ‘dB’ coefficients:

µf = ft +
1

2
fxx, σf = fx.

Keeping t as parameter, the second equation fx/f = σ is an ODE in the variable x.
Since fx/f = ∂ log f/∂x, the general solution is

f(t, x) = eσx+g(t),

where g(t) is an arbitrary ‘constant’ of integration depending on t. Substituting this in
the first equation µf = ft+

1
2
fxx and cancelling common factors results in g′(t) = µ− 1

2
σ2,

therefore g(t) = (µ− 1
2
σ2)t+c. To meet X(0) = x0 we should take the integration constant

c = log x0. It follows that the solution is the gBM

X(t) = x0 exp

(
(µ− 1

2
σ2)t+ σB(t)

)
,

as anticipated.

Basics of Gaussian processes We call process (Y (t), t ≥ 0) Gaussian if the joint
distribution of Y (t1), . . . , Y (tk) is a multivariate normal distribution for any choice of
k and t1 < · · · < tk. We know that a multivariate normal distribution (recall Sec-
tion 1) is characterised by the mean vector and the covariance matrix. Likewise, the
finite-dimensional distributions of a Gaussian process are uniquely determined by the
mean function m(t) = EY (t) and the covariance function r(s, t) = Cov(Y (s), Y (t)).
In particular, the Brownian motion can be characterised as the Gaussian process with
m(t) = 0, r(s, t) = s∧ t (where s, t ≥ 0) 3. The processes with m(t) = 0 for all t are called
centered.

Let ψ be a nonrandom function. The stochastic integral Y (t) =
∫ t

0
ψ(u)dB(u), con-

sidered as a random function of the upper limit t ≥ 0, is a Gaussian process. To see
this, choose a partition 0 = t0 < t1 < · · · < tk. The increment Y (ti+1) − Y (ti) =∫ ti+1

ti
ψ(u)dB(u) is determined by (B(t) − B(ti), t ∈ [ti, ti+1]); this is obvious if ψ is a

piecewise-constant nonrandom function, and follows by an approximation of ψ in general.
By the independence of increments of the BM, the ‘pieces’ (B(t) − B(ti), t ∈ [ti, ti+1])
are idependent for distinct i, hence the increments Y (ti+1)− Y (ti) are also independent.
Again by the definition of the Ito integral, the increments Y (ti+1) − Y (ti) have normal
distribution (this is first shown for piecewise-constant ψ, then extended to the general ψ).

3The independence of increments and their normal distribution follow easily, but the continuity of
paths needs further comment. We say that two processes with the same finite-dimensional distributions
are versions of the same process. For the Gaussian process with m(t) = 0, r(s, t) = s ∧ t there exists a
version with continuous paths; this continuous version is the standard Brownian motion.
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Together with the independence, the latter implies that the increments Y (ti+1) − Y (ti),
i < k, are jointly normal, but then also Y (t1), . . . , Y (tk) are jointly normal, as linear
combinations of the increments. Since Y (t) =

∫ t

0
ψ(u)dB(u) is a martingale, the process

is centered. To compute the covariance function we assume first that s < t, then

Cov(Y (s), Y (t)) = Cov

(∫ s

0

ψ(u)dB(u),

∫ t

0

ψ(u)dB(u)

)
=

E

(∫ s

0

ψ(u)dB(u)

∫ t

0

ψ(u)dB(u)

)
=

E

(∫ s

0

ψ(u)dB(u)

[∫ s

0

ψ(u)dB(u) +

∫ t

s

ψ(u)dB(u)

])
=

Var

(∫ s

0

ψ(u)dB(u)

)
=

∫ s

0

ψ2(u)du,

where we used the Ito isometry and the relation called ‘the orthogonality of increments’:

E

(∫ s

0

ψ(u)dB(u)

∫ t

s

ψ(u)dB(u)

)
= E(Y (s)(Y (t)−Y (s)) = E(Y (s))E(Y (t)−Y (s)) = 0.

For arbitrary s, t ≥ 0 the covariance function is

Cov(Y (s), Y (t)) = Var(Y (s ∧ t)) =
∫ s∧t

0

ψ2(u)du.

Finally, note that if (X(t), t ≥ 0) is a Gaussian process, then also (g(t)X(t), t ≥ 0) is
Gaussian for arbitrary nonrandom function g (left as an exercise).

Example 5.3. Ornstein-Uhlenbeck process is defined as the solution to the SDE

dX(t) = −αX(t)dt+ σdB(t), X0 = x0, (30)

where α, σ are positive constants. Without the diffusion term the equation is the ODE
dX(t) = −αX(t)dt with solution x0e

−αt converging to 0 as t→∞. Thus it is natural to
expect that the distribution of X(t) will converge to some limit as t→∞.

The solution of SDE cannot be found in the form X(t) = f(t, B(t)). We leave checking
this as an exercise.

Let us try to find a solution in the form

X(t) = a(t)

(
x0 +

∫ t

0

b(u)dB(u)

)
, (31)

where a(t), b(t) two smooth functions, a(0) = 1. The RHS of (31) is a Gaussian process,
because the functions a(t), b(t) are nonrandom (see the above remarks on the Gaussian
processes).

The product rule applies in the classical form, because dtdB(t) = 0, and it yields

dX(t) = a′(t)

(
x0 +

∫ t

0

b(u)dB(u)

)
dt+ a(t)b(t)dB(t),
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which in the view of (31) can be written as

dX(t) =
a′(t)

a(t)
X(t)dt+ a(t)b(t)dB(t).

Matching the coefficients with (30) results in

a′(t)

a(t)
= −α, a(t)b(t) = σ.

Recalling a(0) = 1 we solve these as

a(t) = e−αt, b(t) = σeαt.

Whence

X(t) = e−αt
(
x0 + σ

∫ t

0

eαudB(u)

)
= x0e

−αt + σ

∫ t

0

e−α(t−u)dB(u).

The distribution of X(t) is normal, with

EX(t) = x0e
−αt → 0 as t→∞,

VarX(t) = σ2

∫ t

0

e−2α(t−udu =
σ2

2α
(1− e−2αt)→ σ2

2α
as t→∞.

From the limits of the mean and the variance, the limit distribution of X(t) is normal,

that is X(t)
d→ N (0, σ

2

2α
), as expected.

Example 5.4. The Brownian bridge (BB) on [0, 1] is the Brownian motion ‘forced to
visit 0 at time 1’. Literally this means conditioning the BM (B(t), t ∈ [0, 1]) on the event
{B(1) = 0}, but care is necessary because the conditioning is on the event of probability
P(B(1) = 0) = 0. A way to deal with the difficulty is to introduce the BB as a limit of
the processes obtained by conditioning the BB on the event {|B(1)| < ǫ}, while sending
ǫ→ 0.

A classical direct construction defines the BB as B◦(t) = B(t)− tB(1), t ∈ [0, 1]. It is
not hard to see that B◦(t) is a Gaussian process with EB◦(t) = 0 and Cov(B◦(s), B◦(t)) =
s(1− t) for 0 ≤ s ≤ t ≤ 1. One disadvantage of this definition is that B◦ is not adapted to
the natural filtration of the BM. For instance, at time t = 1/2 the observer of BM cannot
calculate B◦(1/2), since B(1) is yet unknown.

We aim at an alternative construction of the BB as an Ito process that drifts towards
0. When the position at time t < 1 is x it is most natural to drift at rate −x/(1 − t),
where 1− t is the remaining time. On this way we arrive at the SDE

dX(t) = −X(t)

1− t
dt+ dB(t). (32)

We can solve the SDE in the form (31) like in the previous example, we find

a′(t)

a(t)
= − 1

1− t
, a(t)b(t) = 1.
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Solving for a, b

a(t) = 1− t, b(t) =
1

1− t
,

we find the solution

X(t) = (1− t)

∫ t

0

1

1− u
dB(u), t ∈ [0, 1].

The integrand is nonrandom, hence X is a centered Gaussian process. The covariance
function is, for s < t

E[X(s)X(t)] = E

[
(1− t)(1− s)

∫ s

0

1

1− u
dB(u) ·

∫ t

0

1

1− u
dB(u)

]
=

(1− s)(1− t)Var

∫ s

0

1

1− u
dB(u) =

(1− s)(1− t)

∫ s

0

1

(1− u)2
du = (1− s)(1− t)s/(1− s) = s(1− t).

Comparing with the mean and covariance function of B◦, we see that X is a BB. In
constrast to B◦(t) = B(t) − tB(1), however, the process X is adapted to the natural
filtration of the BM B.

SDE with coefficients depending linearly on x. The last three examples are special
cases of the SDE

dX(t) = [p1(t) + p2(t)X(t)]dt+ [q1(t) + q2(t)X(t)]dB(t).

It can be shown that the solution is X(t) = Y (t)Z(t), where

Z(t) = exp

(∫
q2(u)dB(u) +

∫ t

0

(p2(u)−
1

2
q22(u))du

)

is a generalised gBM and

Y (t) = x0 +

∫ t

0

p1(u)− q1(u)q2(u)

Z(u)
du+

∫ t

0

q1(u)

Z(u)
dB(u).

This follows by expanding the differentials dY, dZ and using the product rule for d(XY ).

5.2 Existence of solutions

Although explicit solution of SDE is rarely possible, existence and uniqueness of the
solution hold under fairly general assumptions on the coefficients.

Theorem 5.5. Suppose the coefficients of SDE (28) for (t ∈ [0, T ]) satisfy the Lipschitz
condition

|α(t, x)− α(t, y)|+ |β(t, x)− β(t, y)| ≤ K|x− y|
and the growth condition

|α(t, x)|+ |β(t, x)| ≤ K(1 + |x|)2,
with some constant K > 0. Then (28) has a unique solution X(t), t ∈ [0, T ], which is
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(i) continuous,

(ii) adapted to the natural filtration of the BM,

(iii) uniformly bounded in the mean-square sense

sup
t∈[0,T ]

E(X2(t)) <∞.

(The proof, which will not be given here, resembles the Picard method of iterations from
the theory of ODE.)

To appreciate the nature of the conditions on the coefficients, let us look at some
phenomena with ODE’s. Consider the ODE x′ = x2. The growth condition for α(t) = t2

does not hold. The solution x(t) = (1− t)−1 ‘explodes’ at t = 1, so there is no continuous
solution on [0, T ] for T > 1.

For the ODE x′ =
√
x the Lipschitz condition does not hold, because the square root

function has unbounded derivative near 0. One solution is x(t) = 0 and another solution
is x(t) = 1

4
t2. Thus the uniqueness fails.

Example 5.6. A very interesting SDE is the Tanaka equation

dX(t) = sgnX(t) dB(t), (33)

where sgn is the sign function (sgn x = 1 for x ≥ 0, sgn x = −1 for x < 0). The Lipschitz
condition does not hold, because sgn is discontinuous at x = 0, so Theorem 5.5 does not
apply. We will show that there is no solution X adapted to the natural Brownian filtration
FB = (FB

t , t ≥ 0).
Notice first that the process Y (t) =

∫ t

0
Z(u)dB(u) is a BM, provided |Z(t)| = 1 for all

t where Z is an adapted process (possibly, adapted to some filtration for the BM different
from FB). This follows by Lévy’s theorem, since Y is a continuous martingale, with
quadratic variation

〈Y 〉(t) = E

∫ t

0

(Z(u))2du = t.

Suppose X is a solution to (33) adapted to FB. Choosing Z(t) = sgnX(t) we have
|Z(t)| = 1 and by the above X is a BM. On the other hand, multiplying both parts of
(33) by sgnX(t) we get

dB(t) = sgnX(t)dX(t),

or, equivalently,

B(t) =

∫ t

0

sgnX(u)dX(u)

(where both X and B are BM’s).
For a smooth function

∫ t

0
sgnf(u)df(u) = |f(u)| (check this for f(u) = sin u). For the

BM there is an additional term:
∫ t

0

sgnX(u)dX(u) = |X(t)| − L(t),
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where L(t) is the local time at 0 for the BM (X(t), t ∈ [0, T ])4. The local time (L(t), t ≥ 0)

is a process adapted to the filtration F |X| = (F |X|t , t ≥ 0) associated with the absolute
value process |X(t)|. But then also B(t) =

∫ t

0
sgnX(u)dX(u) = |X(t)| − L(t) is adapted

to F |X|. Now, we have X adapted to FB (as solution to (33)), and B adapted to F |X|.
Let FX be the natural filtration of BM X. We have

FX
t ⊂ FB

t ⊂ F |X|t .

But this is a contradiction, because F |X|t is strictly smaller than FX
t . Plainly, the inclusion

FX
t ⊂ F |X|t implies that we could determine the sign sgnX(t) from (|X(u)|, u ≤ t), which

is impossible because the sign of BM at any given time t is independent of the absolute
value (|X(u)|, u ≤ t)5.

The contradiction shows that (33) has no solution adapted to FB, as in Theorem 5.5.
A solution adapted to FB is called strong. Strong solution presumes that the BM B

is given and X(t) is ‘computable’ from (B(u), u ≤ t). The nonexistence of strong solution
for Tanaka’s equation suggests to relax the adaptedness condition, hence to widen the
concept of solution to SDE. For given coefficients α(t, x), β(t, x) a weak solution to (28) is

a pair of processes (X(t), B̃(t)) which satisfy the SDE, with B̃ being a BM. Weak solution

does not require that X be adapted to the natural filtration of B̃. Of course, each strong
solution is a weak solution.

It is easy to construct a weak solution to Tanaka’s equation. To that end, let X be
any BM, and consider another BM B̃ defined as the stochastic integral

B̃(t) =

∫ t

0

sgnX(u)dX(u).

Then dB̃(t) = sgnX(t)dX(t), whence dX(t) = sgnX(t)dB̃(t) so X is a weak solution to
Tanaka’s equation.

5.3 Feynman-Kac connection

By valuation of the European call option we encountered a partial DE (18) for the price
of the option considered as a function of the current stock value and time. A similar
connection, variation of the Feynman-Kac theorem, appears in the more general context
of SDE’s.

Theorem 5.7. Consider the SDE

dX(t) = α(t,X(t))dt+ β(t,X(t))dB(t),

and let h : R→ R be a function. For fixed r, define the function

g(t, x) = Et,x[e
−r(T−t)h(X(T ))], t ∈ [0, T ]

4The local time of BM X is the limit L(t) = limǫ→0 ǫ
−1

∫
t

0
1(|X(u)| < ǫ/2)du. Thus L is adapted to

F |X|.
5
P(sgnB(t) = ±1) = 1

2
.

42



where the expectation Et,x refers to the solution of SDE with X(t) = x (it is assumed that
the expectation is finite for all t and x). Then g(t, x) satisfies the PDE

gt(t, x) + α(t, x)gx(t, x) +
1

2
β2(t, x)gxx(t, x) = rg(t, x) (34)

and the terminal condition
g(T, x) = h(x).

Proof. By the Markov property of the solution to the SDE, the definition of g can be
written as e−rtg(t,X(t)) = E[e−rTh(X(T ))|Ft], where (Ft) is a background filtration. By
the ‘tower property’ this defines a martingale, whence the SDE follows by equating the
‘dt’ coefficient of the Ito differential to 0:

d(e−rtg(t,X(t)) = e−rt(−rg + gt + αgx +
1

2
β2gxx)dt+ e−rtβgxdB.

5.4 Systems of SDE’s

A k-dimensional BM is a vector-valued process ~B(t) = (B1(t), . . . , Bk(t))
∗ (∗ stays for

transposition), where Bi’s are independent standard BM. In the vector notation, a system
of k SDE’s has the form

~X(t) = ~α(t, ~X(t))dt+ β(t, ~X(t))d ~B(t),

where ~α(t, ~X(t)) = (~α1(t, ~X(t)), · · · , ~αk(t, ~X(t)))∗ and β(t, ~X(t)) = (βij)i,j=1,...,k.

Example 5.8. The complex-valued process eiB(t) can be called the BM on the circle. The
real and imaginary parts are, respectively, X(t) = cosB(t), Y (t) = cosB(t). Calculating
the differentials,

dX(t) = − sinB(t)dB(t)− 1

2
cosB(t)dt = −Y (t)dB(t)− 1

2
X(t)dt

dY (t) = cosB(t)dB(t)− 1

2
sinB(t)dt = X(t)dB(t)− 1

2
Y (t)dt,

which in the vector notation becomes

d

[
X(t)
Y (t)

]
=

1

2

[
X(t)
Y (t)

]
dt+

[
−Y (t) 0
X(t) 0

] [
dB1(t)
dB2(t)

]

The second BM B2 does not affect the solution.
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