
4 Risk-neutral pricing

We start by discussing the idea of risk-neutral pricing in the framework of the elementary
one-step binomial model. Suppose there are two times t = 0 and t = 1. At time 0 the stock
has value S(0) and at time 1 either goes up to S(1) = uS(0) or down to S(1) = dS(0),
where 0 < d < 1 + r < u and r the riskless return rate in the money market. A pound
invested at time 0 grows to 1 + r at time 1. Suppose an option pays V (S(1)) at time 1.

To hedge the option we need a portfolio comprised of

∆(0) =
V (uS(0))− V (dS(0))

uS(0)− dS(0)

shares of stock and a bank investment, so that the total value of the portfolio at time 0 is

X(0) =
1

1 + r
[p̃V (uS(0)) + q̃V (dS(0))],

where p̃ = (1 + r − d)/(u− d), q̃ = 1− p̃. This is readily checked by elementary algebra.
For the purpose of hedging, leading to the no-arbitrage valuation of the option, it does

not matter what is the ‘market measure’ = the chances that stock moves up/down 2. We

may, however, introduce an auxiliary risk-neutral measure P̃ with chances p̃ respectively q̃
for ‘up’ and ‘down’, and write the no-arbitrage price of the option as discounted expected
value

X(0) =
1

1 + r
ẼV,

where and henceforth the expectation Ẽ refers to the probability P̃. If the stock process
were driven by the RN measure, investment in the stock would bring the same mean rate
of return r as the money market.

If P is a ‘market measure’ under which the stock goes up and down with probabilities
p, respectively q = 1− p, then in terms of P we could also write

X(0) =
1

1 + r
E(ZV ),

where Z is a random variable equal to p̃/p if the stock goes up and equal to q̃/q is the

stock goes down. This manipulation of P and P̃ is called the change of measure. Note
that rv Z needed to pass from P to P̃ is well defined when p > 0, q > 0.

Under the measure P̃ the discounted stock price is a martingale, which amounts to
the simple relation

Ẽ

(
1

r + 1
S(1)

)
= S(0),

and means that in the Ẽ-average the stock behaves like the riskless bond growing from
S(0) to (1 + r)S(0) in unit time.

In continuous time model, suppose that the interest on money investment is contin-
uously compounded at rate r. The idea of risk-neutral pricing in continuous time is, in

2It is only important that going both ways occurs with nonzero probability.
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principle, the same as in the elementary binomial model: we look for a probability mea-
sure P̃ such that the discounted stock price e−rtS(t) under P̃ is a martingale. Consider a
European type derivative security which pays V (T ) at time T , and let X(t) be the value
of hedging portfolio, so X(T ) = V (T ). For any self-financing portfolio its discounted

value is a P̃-martingale, because the mean rate of return is the same for both money and
stock, thus

e−rtX(t) = Ẽ
(
e−rTX(T )|Ft

)
= Ẽ

(
e−rTV (T )|Ft

)
.

Practically that means that the no-arbitrage option price is computable as a conditional
expectation of the terminal payoff.

4.1 Girsanov’s theorem

We have seen in our discussion of the BSM formula that the price of a European call is an
expected value calculated for some gBM, but not the original gBM describing the stock
price. The expected value refers to the risk-neutral measure, which is a probability law
of the stock price process, under which (on the average) the investor cannot outperform
the riskless money market (bonds). The relation between two probability laws can be
described using the change of measure technique.

For given probability space (Ω,F ,P) and a nonnegative random variable Z with EZ =

1 a new probability measure P̃ is defined by

P̃(A) = E(Z · 1A), A ∈ F ,
where 1A is the indicator of the event A. We say that Z is a Radon-Nikodym density (or

derivative) of P̃ with respect to P and we write

Z =
dP̃

dP
.

If P(Z > 0) = 1 then the measures are equivalent: P(A) = 0 iff P̃(A) = 0 for A ∈ F .
In this case passing in the inverse direction, from P̃ to P requires the Radon-Nikodym
derivative Z−1 = dP/dP̃, so that P(A) = Ẽ(Z−1 · 1A).

If P(ω) > 0 for elementary event ω ∈ Ω, then P̃(ω) = Z(ω)P(ω). This describes
completely the relation between the measures if Ω is a discrete sampling space. We
encountered this situation in the above 1-step binomial model example, where we could
take a two-element sampling space Ω = {up, down} and define the random variable S(1)
as S(1, up) = uS(0), S(1, down) = dS(0). But if Ω is not discrete the relation between
the measures on Ω cannot be expressed through probabilities of the elementary events, as
typically P(ω) = 0 for each ω ∈ Ω. The Radon-Nikodym derivative in the continuous case
is analogous to the concept of density of a random variable in one or many dimensions.

The expected values of a random variable ξ under P and P̃ are connected as

Ẽξ = E(ξZ),

and if P(Z > 0) = 1 also as Eξ = Ẽ(ξZ−1). In particular, Ẽ1 = EZ = 1, i.e. P̃ is indeed

a probability measure (the total probability rule holds: P̃(Ω) = 1).

Under P and P̃, the same random variable has typically different distributions.
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Example 4.1. Suppose under a random variable ξ, defined on some probability space

(Ω,F ,P) has standard normal distribution: ξ
d
= N (0, 1). This means that

Ef(ξ) =
1√
2π

∫
∞

−∞

f(x)e−x
2/2dx

for all functions f (for which the integral makes sense). Let Z = exp(−θξ− 1
2
θ2) = dP̃/dP

be a Radon-Nikodym derivative. We have

Ẽf(ξ) = E(f(ξ)Z) =
1√
2π

∫
∞

−∞

f(x)e−x
2/2e−θx−

1

2
θ2dx =

1√
2π

∫
∞

−∞

f(x)e−(x+θ)2/2dx,

where the last integral involves the N (−θ, 0)-density. Thus under P̃ the distribution of ξ

is N (−θ, 0). Equivalently, ξ + θ under P̃ is standard normal. To justify that Z is indeed

a Radon-Nikodym derivative we note that z ≥ 0 and Ẽξ = 1 (take f = 1 to see this).

The example showed that via changing measure we could shift the expectation of a
normal variable. We wish to do a similar change of measure to shift the expectation for
a whole random process of Brownian motion with drift.

Let Z be a random variable with P(Z > 0) = 1 and EZ = 1, and let (Ft, t ∈ [0, T ])
be a filtration of σ-agebras. Define the conditional expectation

Z(t) = E[Z|Ft], 0 ≤ t ≤ T,

which considered as a random process is called the Radon-Nikodym derivative process.
By the ‘tower property’ of conditional expectations, for 0 ≤ s ≤ t ≤ T

E[Z(t)|Fs] = E[E[Z|Ft]Fs] = E[Z|Fs] = Z(s),

so (Z(t), t ∈ [0, T ]) is a martingale.

Lemma 4.2. For Ft-measurable random variable Y it holds

(i) ẼY = E(Y Z(t)),

(ii) Ẽ[Y |Fs] =
1

Z(s)
E[Y Z(t)|Fs], 0 ≤ s ≤ t ≤ T.

Proof. (i) By the definition of Ẽ and since Y is Ft-measurable

ẼY = E[Y Z] = E[E[Y Z|Ft]] = E[Y E[Z|Ft]] = E[Y Z(t)].

(ii) By definition of the conditional expectation, Ẽ[Y |Fs] is a Fs-measurable random
variable with the property that

Ẽ(1A · Ẽ[Y |Fs]) = Ẽ[1AY ], for all A ∈ Fs.

Using the relation Ẽξ = E(Zξ), that Z(s), 1A are Fs-measurable and the definition of
E(· · · |Fs)

Ẽ

(
1A

1

Z(s)
E[Y Z(t)|Fs]

)
= E (1AE[Y Z(t)|Fs]) =

E (E[1AY Z(t)|Fs]) = E[1AY Z(t)] = Ẽ[1AY ],
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where the last step follows from (i), and because the indicator 1A is Fs- hence also Ft-
measurable.

In the sequel we shall be using the Leibnitz rule for stochastic differentials of the
product of two Ito processes

d(X(t)Y (t)) = Y (t)dX(t) +X(t)dY (t) + dX(t)dY (t).

This can be derived (somewhat heuristically) by expanding (X(t)+dX(t))(Y (t)+dY (t))−
X(t)Y (t) and using that both (dX(t))2 and (dY (t))2 are of the order of dt.

The change of measure technique allows us to transform a BM with drift in the stan-
dard BM.

Theorem 4.3. (Girsanov’s Theorem) Suppose B defined on some probability space

(Ω,F ,P) is a BM with filtration (Ft, t ≥ 0), and let (µ(t), t ≥ 0) be an adapted process.

Define

B̃(t) := B(t) +

∫ t

0

µ(u)du

and

Z(t) := exp

(
−

∫ t

0

µ(u)dB(u)− 1

2

∫ t

0

µ2(u)du

)
, Z := Z(T ). (21)

Suppose that

E

∫ T

0

µ2(t)Z2(t)dt <∞.

Then under the probability measure P̃ with the Radon-Nikodym density dP̃/dP = Z the

process (B̃(t), t ∈ [0, T ]) is a standard BM.

Proof. We shall employ a characterisation theorem by Lévy, which asserts that a continuos
martingale starting at 0 and having the quadratic variation equal to t for every t > 0 is a
BM. It is clear that B̃(0) = 0 and that the quadratic variation is 〈B̃〉(t) = t, because the
quadratic variation is a property of the path (and not of the distribution of the process)
and because it is not affected by the drift term.

To apply Lévy’s theorem it remains to show that B̃ is a martingale under P̃.
By definition, Z(t) is a generalised gBM Z(t) = eX(t) where

X(t) = −
∫ t

0

µ(u)dB(u)− 1

2

∫ t

0

µ2(u)du.

By the Ito formula

dZ(t) = deX(t) = eX(t)(−µ(t)dB(t)− 1

2
µ2(t)dt) +

1

2
eX(t)µ2dt = −µ(t)Z(t)dB(t),

which means that Z(t) is a stochastic integral

Z(t) = Z(0)−
∫ t

0

µ(u)Z(u)dB(u),
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hence martingale under P̃. In particular EZ = EZ(T ) = Z(0) = 1. The assumption of
square-integrability has been used to justify that the stochastic integral is well defined.

By the martingale property,

Z(t) = E[Z(T )|Ft] = E[Z|Ft]

is a Radon-Nikodym derivative process.
Applying the product rule d(XY ) = XdY + Y dX + dXdY we obtain

d(B̃(t)Z(t)) = B̃(t)dZ(t) + Z(t)dB̃(t) + dB̃(t)dZ(t) =

−B̃(t)µ(t)Z(t)dB(t) + Z(t)dB(t) + Z(t)µ(t)dt+ (dB(t) + µ(t)dt)(−µ(t)Z(t)dB(t)) =

(−B̃(t)µ(t) + 1)Z(t)dB(t).

There is no drift dt-term, hence B̃(t)Z(t) is a martingale under P.

Finally, using the martingale property of B̃(t)Z(t) under P and using Lemma 4.2 , for
0 ≤ s ≤ t ≤ T we have

Ẽ[B̃(t)|Fs] =
1

Z(s)
E[B̃(t)Z(t)|Fs] =

1

Z(s)
B̃(s)Z(s) = B̃(s),

which is the desired martingale property of B̃ under P̃.

For example, suppose µ is constant. By Girsanov’s theorem, for any fixed t the rv
B̃(t) + µt under P̃ is N (0, t)-distributed, so has zero expectation.

4.2 Stock price under the risk-neutral measure

A general model for the stock price is a generalised gBM with differential

dS(t) = α(t)S(t)dt+ σ(t)S(t)dB(t), t ∈ [0, T ], (22)

where both α(t), σ(t) are adapted processes. In the integral form,

S(t) = S(0) exp

[∫ t

0

σ(u)dB(u) +

∫ t

0

(α(u)− σ2(u)/2)du

]
.

Let the interest rate be another adapted process R(t). The discount process

D(t) = e−
∫
t

0
R(u)du

satisfies
dD(t) = −R(t)D(t)dt, (23)

which is a formula from the ordinary calculus, since we can use d
(∫ t

0
R(u)du

)
= R(t)dt.

One pound invested at time 0 in bank becomes 1/D(t) at time t, or, equivalently, 1 pound
at time t has present (time 0) value D(t).
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For the discounted stock price

D(t)S(t) = S(0) exp

(∫ t

0

σ(u)dB(u) +

∫ t

0

(α(u)−R(u)− 1

2
σ2(u))du

)

we compute

d(D(t)S(t)) = (α(t)−R(t))D(t)S(t)dt+σ(t)D(t)S(t)dB(t) = σ(t)D(t)S(t)(µ(t)dt+dB(t)),
(24)

where

µ(t) :=
α(t)−R(t)

σ(t)

is the ‘market price of risk’. Calculating the differential we have set (dD(t))(dS(t)) = 0
since the product is of the ‘order smaller than dt’ in the view of (23).

With this µ, consider Z as in (21) and B̃(t) = B(t) +
∫ t

0
µ(t)dt. In these terms,

d(D(t)S(t)) = σ(t)D(t)S(t)dB̃(t), (25)

Define measure P̃ with this Radon-Nikodym density Z with respect to P. By Girsanov’s
theorem, B̃ is a BM, hence from

D(t)S(t) = S(0) +

∫ t

0

σ(u)D(u)S(u)dB̃(u)

follows that (D(t)S(t), t ∈ [0, T ]) is a martingale under P̃. For this reason, P̃ is called the
risk-neutral measure. The mean rate of return form the stock investment under the RN
measure is the same as from the bank investment.

For the undiscounted stock price under P̃ we have

dS(t) = R(t)S(t)dt+ σ(t)S(t)dB̃(t),

where the mean rate of return R(t)dt is like in the money market.

4.3 Pricing under the risk-neutral measure

We continue with the general model for stock price (22) with the aim to construct hedg-
ing strategies. The value X(t) of self-financing portfolio with ∆(t) shares of stock has
differential

dX(t) = ∆(t)dS(t)+R(t)(X(t)−∆(t)S(t))dt = R(t)X(t)dt+∆(t)σ(t)S(t)(µ(t)dt+dB(t)).

From (23) and (24)

d(D(t)X(t)) = ∆(t)σ(t)D(t)S(t)[µ(t)dt+ dB(t)] = ∆(t)d(D(t)S(t)),

and further from (25)

d(D(t)X(t)) = ∆(t)σ(t)D(t)S(t)dB̃(t),
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showing that under P̃ the discounted stock portfolio value D(t)X(t) is a martingale,
regardless of how the investor composes the portfolio (in a self-financing manner though).

In Section 3 we derived the BSM formula (20) for the price of European call option,
under the assumption of constant parameters α, r, σ. We shall take now a wider approach,
and consider the more general model for stock price. Another general assumption we make
is that the payoff of a derivative security with maturity T is a F(T )-measurable random
variable V (T ). This could be any exotic option, e.g. with V (T ) = maxt∈[0,T ] S(t) (the
highest stock price) or V (T ) = 1(maxt∈[0,T ] S(t) > b) (one pound if the barrier b was hit).

We postpone discussion of the existence of self-financing portfolio with value (X(t), t ∈
[0, T ]), which hedges the option so that X(T ) = V (T ). For a time being just assume that
there exists a hedging portfolio of the kind. As (D(t)X(t), t ∈ [0, Y ]) is a martingale

under P̃ we have

D(t)X(t) = Ẽ[D(T )X(T )|Ft] = Ẽ[D(T )V (T )|Ft].

To avoid an arbitrage opportunity the value of option at time t should be taken as V (t) =
X(t). Thus we can compute V (t) from the conditional RN-expectation of the terminal
value

D(t)V (t) = Ẽ[D(T )V (T )|Ft], t ∈ [0, T ], (26)

that is
V (t) = Ẽ

[
e−

∫
T

t
R(u)duV (T )|Ft

]
, t ∈ [0, T ].

BSM formula for European call Applying the RN valuation to European call, under
the assumption of constant parameters α, σ, r we are lead to evaluating

Ẽ
[
e−r(T−t)(S(T )−K)+|Ft

]
= S(t) Ẽ

[
e−r(T−t)(S(T )/S(t)−K/S(t))+|Ft

]
,

where under P̃ the gBM is representable as S(u) = S(0) exp(σB(u) + (r − σ2/2)u) with
BM B. The conditional distribution of S(T )/S(t) given Ft is the same as the distribution

of exp(−σ√τξ+(r−σ2/2)τ) where τ = T − t and ξ
d
= N (0, 1). Therefore computing the

conditional expectation reduces to Exercise 7 from sheet 1, with obvious amandments in
the notation.

We return to the question of existence of hedging portfolio for a derivative security
paying V (T ). A general result on martingale processes adapted to the (natural) Brownian
filtration of a BM B says that every such martingale (M(t), t ∈ [0, T ]) has a stochastic
integral representation

M(t) = M(0) +

∫ t

0

λ(u)dB(u), t ∈ [0, T ]

with some adapted process λ(t).
We defineD(t)V (t) as the conditional expectation (26), from which this is a martingale

under the RN-measure P̃ (check this!), so by the representation result

D(t)V (t) = V (0) +

∫ t

0

λ(u)dB̃(u)
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for some adapted process λ(t). On the other hand, for self-financing portfolio the value
X(t) satisfies

d(D(t)X(t)) = ∆(t)σ(t)D(t)S(t)B̃(t),

so to construct a portfolio process with value X(t) = V (t), t ∈ [0, T ], it is enough to take
X(0) = V (0) and choose ∆(t) to achieve

d(D(t)X(t)) = d(D(t)V (t))⇐⇒ ∆(t)σ(t)D(t)S(t)B̃(t) = λ(t),

the latter being equivalent to

∆(t) =
λ(t)

σ(t)D(t)S(t)
. (27)

Starting with the initial investment V (0) = Ẽ[D(T )V (T )] and trading so as to keep
∆(t), t ∈ [0, T ] shares of stock will terminate in time T to a portfolio priced at V (T ),
whichever the stock price development.

Formula (27) presumes that the volatility coefficient σ(t) is nonzero. Under the as-
sumption σ(t) 6= 0, t ∈ [0, T ], the market comprised of two instruments – stock and
bank investments – is complete, meaning that every option with FT -measurable payoff at
maturity T can be hedged by a self-financing stock-money portfolio.
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