
2 Stochastic integration

Central for stochastic calculus is the concept of Itô’s integral

∫ T

0

X(t)dB(t), (7)

whose basic ingredients are the Brownian motion with filtration (Ft, t ≥ 0) (which mod-
els the information flow) and a stochastic process (Xt, t ≥ 0) adapted to the filtration.
Although construction of the Itô integral is similar to that from the classical calculus, the
Itô integral is different due to the nontrivial quadratic variation of BM.

2.1 Introductory example

For continuously differentiable function f with f(0) = 0 the integral
∫ T

0
f(t)df(t) is cal-

culated as
∫ T

0

f(t)df(t) =

∫ T

0

f(t)f ′(t)dt =
1

2
f 2

∣

∣

∣

T

0

=
1

2
f 2(T ).

This integral can be defined as a limit of Riemann-Stiltjes integral sums

n−1
∑

i=0

f(ti)(f(ti+1)− f(ti))

as the mesh size |∆| → 0.
Following this line, let us see what happens if we define the integral

∫ T

0

B(t)dB(t).

For simplicity we take the uniform partition of [0, T ] by points ti = T i/n, and we write
Bi := B(ti) for the values of BM at these points. With some algebra we have

1

2

n−1
∑

i=0

(Bi+1 − Bi)
2 =

1

2

n−1
∑

i=0

B2

i+1 −

n−1
∑

i=0

BiBi+1 +
1

2

n−1
∑

i=0

B2

i =

1

2
B2

n +
1

2

n−1
∑

i=0

B2

i −

n−1
∑

i=0

BiBi+1 +
1

2

n−1
∑

i=0

B2

i =
1

2
B2

n +
n−1
∑

i=0

B2

i −

n−1
∑

i=0

BiBi+1 =

1

2
B2

n −
n−1
∑

i=0

Bi(Bi+1 − Bi),

which yields
n−1
∑

i=0

Bi(Bi+1 − Bi) =
1

2
B2

n −
1

2

n−1
∑

i=0

(Bi+1 − Bi)
2.
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That is, the integral sum can be written as

n−1
∑

i=0

B(T i/n)(B(T (i+ 1)/n)− B(T i/n)) =

1

2
B(T )2 −

1

2

n−1
∑

i=0

(B(T (i+ 1)/n)− B(T i/n))2.

Letting n→∞, and understanding the limit as in Theorem 1.13

n−1
∑

i=0

(B(T (i+ 1)/n)− B(T i/n))2 → 〈B〉(T ) = T,

which is the quadratic variation (6). Therefore

n−1
∑

i=0

B(T i/n)(B(T (i+ 1)/n)− B(T i/n))→ B2(T )−
1

2
T.

If B were a smooth function we would get 1

2
B(T ). The extra term 1

2
T comes from the

quadratic variation of BM.

2.2 Simple integrands

Like the classical integrals, the integral (7) is first defined for simple functions, then
extended to a larger class.

Start with the simplest case X(t) = 1(t ∈ [a, b)) of (nonrandom) indicator function of
interval. For the integral – just to justify its name! – we certainly want to have

∫ b

a

dB(t) = B(b)− B(a).

Next by complexity case is X(t) = ξ 1(t ∈ [a, b)) with some Fa-measurable random
variable ξ. Naturally, we want to have the linearity, so we define the integral as

∫ b

a

ξdB(t) = ξ (B(b)− B(a)). (8)

Note that (X(t), t ≥ 0) is an adapted process due to Fa-measurability of ξ. Trivially,
X(t) = 0 for t /∈ [a, b), and for t ∈ [a, b) we have X(t) = ξ hence Ft-measurable, since
Ft ⊃ Fa (information accumulates). Furthermore, with the measurability condition we
achieve that the integral

I(t) =

∫ t

0

ξ 1(u ∈ [a, b))dB(u),

considered as a function of the upper limit of integration t, is a martingale. Let us check
the martingale condition E(I(t)|Fs) = I(s) for a ≤ s < t ≤ b. Using (8) with upper limit
t we compute
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E[I(t)|Fs] = E[ξ(B(t)− B(a))|Fs] = ξE[B(t)− B(a)|Fs] =

ξ{E[B(t)|Fs]− E[B(a)|Fs]} = ξ(B(s)− B(a)) = I(s),

because ξ and B(a) are Fs-measurable and E[B(t)|Fs] = B(s) (BM is a martingale).
Let 0 = t0 < t1 < · · · < tn = T be points dividing [0, T ] is n subintervals [ti, ti+1),

and let ξi be a Fti-measurable random variable with Eξ2i < ∞ for i = 0, . . . , n − 1. The
process

X(t) =
n−1
∑

i=0

ξi1(t ∈ [ti, ti+1))

is called simple. The simple process is

• adapted to (Ft, t ≥ 0),

• piecewise-constant as function of t: X(t) = X(ti) = ξi for t ∈ [ti, ti+1) and 0 ≤ i ≤
n− 1, and X(t) = 0 for t ≥ T .

Definition 2.1. The stochastic integral (the Itô integral) over [0, T ] for simple process is
defined as

I(T ) =

∫ T

0

X(t)dB(t) =
n−1
∑

i=0

ξi (B(ti+1 − B(ti)).

Similarly, the stochastic integral as a function of the upper limit is defined for t ∈ [tk, tk+1),
0 ≤ k ≤ n− 1 as

I(t) =
k−1
∑

i=0

ξi (B(ti+1 − B(ti)) + ξk (B(t)− B(tk))

From the definition easily follows:

• (I(t), t ≥ 0) is an adapted process.

Theorem 2.2. The stochastic integral (I(t), t ≥ 0) of a simple process is a martingale.

In particular, EI(t) = 0.

Proof. Fix s < t. We need to show that E[I(t)|Fs) = I(s). We can always treat t and
s as division points: if t ∈ [tk, tk+1) just replace ξk1(u ∈ [tk, tk+1)) in X(u) by two terms
ξk1(u ∈ [tk, t)) + ξk1(u ∈ [t, tk+1), and do similarly for s. Thus suppose s = ti < tj = t.
We have

I(tj) = I(ti) +

j−1
∑

k=i

ξk(B(tk+1)− B(tk)).

Clearly, E(I(ti)|Fti) = I(ti), since I(ti) is Fti-measurable. We claim that

E[ξk(B(tk+1)− B(tk))|Fti ] = 0, k ≥ i.
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Indeed, since Fti ⊂ Ftk and ξk is Ftk-measurable

E[ξk(B(tk+1)− B(tk))|Fti ] = E{E[ξk(B(tk+1)− B(tk))|Ftk ]|Fti} =

E{ξkE[B(tk+1)− B(tk)|Ftk ]|Fti} = E{ξk · 0|Fti} = 0.

Adding up all calculated terms yields E[I(tj)|Fti) = I(ti), as wanted.

From EI(t) = 0 follows that VarI(t) = EI2(t).

Theorem 2.3. (Itô isometry)

EI2(t) = E

∫ t

0

X2(u)du. (9)

Proof. Treating t ∈ [0, T ] as a division point, we reduce to the case t = T I(T ) is a sum
of terms ξi(B(ti+1) − B(ti)). The squared sum has squares ξ2i (B(ti+1) − B(ti))

2 and the
cross terms 2ξi(B(ti+1)− B(t))ξj(B(tj+1)− B(tj)).

In a cross term B(tj+1)− B(tj) is independent of the other factors, hence

E{ξi(B(ti+1)−B(t))ξj(B(tj+1)−B(tj))} = E{ξi(B(ti+1)−B(t))ξj}E{B(tj+1)−B(tj)} = 0.

In a squared term B(ti+1)− B(ti) is independent of ξi, hence

E{ξ2i (B(ti+1)− B(ti))
2} = Eξ2i E(B(ti+1)− B(ti))

2 = (ti+1 − ti)Eξ
2

i .

Adding up,

EI2(T ) =
n−1
∑

i=1

(ti+1 − ti)Eξ
2

i .

On the other hand, X(u) =
∑n−1

i=0
ξi1(u ∈ [ti, ti+1)) for each u has only one non-

vanishing term, so squaring yields X2(u) =
∑n−1

i=0
ξ2i 1(u ∈ [ti, ti+1)). Integrating the

piecewise-constant function

∫ T

0

X2(u)du =
n−1
∑

i=0

ξ2i (ti+1 − ti),

and finally

E

∫ T

0

X2(u)du =
n−1
∑

i=0

(ti+1 − ti)Eξ
2

i ,

which coincides with EI2(T ) computed above.

Theorem 2.4. The quadratic variation accumulated by the Itô integral I(t) =
∫ t

0
X(u)dB(u)

up to time t is

〈I〉(t) =

∫ t

0

X2(u)du.
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Proof. We first look at the contribution of one partition subinterval [ti, ti+1) of [0, t] ,
where X(u) = ξi (u ∈ [ti, ti+1) is a contant. Splitting the interval by some number of
points sj, then letting maxj |sj+1 − sj| → 0

∑

i

(I(sj+1)− I(sj))
2 = ξ2i

∑

j

(B(sj+1 − B(sj))
2 → ξ2i (ti+1 − ti)

by the formula for the quadratic variation of BM. Summing over the ‘steps’ of X yields

〈I〉(t) =
∑

i

ξ2i (ti+1 − ti) =

∫ t

0

X2(u)du.

The heuristic ‘differential form’ for I(t) =
∫ t

0
X(u) is dI(t) = X(t)dB(t). Analogous

to the Brownian rule (dB(t))2 = dt is the formula

(dI(t))2 = X2(t)dt,

whose precise meaning is revealed by Theorem 2.4: the Itô integral accumulates the
quadratic variation at unit rate.

2.3 General integrands

Let X = (X(t), t ∈ [0, T ]) be a process adapted to the filtration (F(t), t ≥ 0) and such
that

E

∫ T

0

X2(t)dt <∞. (10)

As a function of two variables (t, ω) ∈ [0, T ] × Ω, the process X belongs to the Hilbert
space of functions L2([0, T ] × Ω, dt × dP) with the norm defined by (10). Formula (9)
says that the correspondence X → I(T ) is an isometry into the Hilbert space L2(Ω, dP)
of square-integrable random variables.

In L2([0, T ]×Ω, dt× dP) it is possible to approximate any X by simple processes:

Lemma 2.5. For every adapted process X on [0, T ] satisfying (10) there exists a sequence

of simple processes Xn = (Xn(t), t ∈ [0, T ) such that

lim
n→∞

E

∫ T

0

|Xn(t)−X(t)|2dt = 0.

ForX satisfying (10) we may choose an approximating sequenceXn of simple processes
(as in the lemma), for which the stochastic integrals has been introduced in Definition
2.1. We define the stochastic integral of X as a limit

∫ T

0

X(t)dB(t) := lim
n→∞

∫ T

0

Xn(t)dB(t).

The detailed interpretation of this relation is that the random variables In :=
∫ T

0
Xn(t)dB(t)

in the LHS converge to the random variable I in the RHS in the mean-square sense

15



E(I − In)
2 → 0. The limit I exists, because Xn → X implies that In is (by the isometry)

a Cauchy sequence. The limit does not depend on the approximating sequence Xn, as is
easily seen using the triangle inequality.

The integral for the general processes has the properties which we encountered when
discussing the simple processes:

• I(t) is continuous in t,

• I(t) is Ft-measurable,

• the integral is linear, i.e.
∫ t

0
(X(t) + Y (t))dB(t) =

∫ t

0
X(t)dB(t) +

∫ t

0
Y (t)dB(t),

• (I(t), t ≥ 0) is a martingale, with EI(t) = 0,VarI(t) = E
∫ t

0
X2(u)du,

• 〈I〉(t) =
∫ t

0
X2(u)(du).
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