
1 Brownian motion

Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as
he observed a chaotic motion of particles suspended in water. The rigorous mathematical
model of BM was introduced by Norbert Wiener, who also gave the first proof that BM
(i.e. a stochastic process satisfying formal conditions) exists. In recognition of Wiener’s
contribution the BM is sometimes called the Wiener process.

In this section we discuss properties of the Brownian motion, which is the basic building
block in stochastic analysis and its applications to financial mathematics and other fields.
The geometric Brownian motion, often used to model the stock prices, is easily constructed
from the BM.

1.1 Definition of BM and its finite-dimensional distributions

Preliminaries Events, random variables and stochastic processes will be defined on
some underlying probability space (Ω,F ,P), where Ω is the set of elementary outcomes
and F is a σ-algebra1 of events A ⊂ Ω to which probability P(A) can be assigned. We may
think of ω as a complete description of a random experiment, and interpret the relation
ω ∈ A as ‘the event A occurs’.

The set Ω may be chosen finite if a random experiment has finitely many outcomes
(e.g. tossing two dice); in this situation we usually take for F the power set 2Ω. If the
experiment is complex, like observation of stock prices in continuous time, we may choose
for Ω a space of functions (then for measure-theoretic reasons the probability cannot be
assigned to every subset of Ω). For most considerations, however, the nature of Ω is not
important, provided Ω is rich enough to accomodate all random objects with desirable
properties.

Unless otherwise specified, under a stochastic process we shall mean a random real-
valued function (X(t), t ≥ 0) of a continuous time parameter t, where t takes values in
some finite or infinite interval, like [0, T ] or [0,∞).

For every n and times t1 < · · · < tn the random variables X(t1), . . . , X(tn) have some
joint probability distribution with distribution function

FX(t1),...,X(tn)(x1, . . . , xn) = P(X(t1) ≤ x1, . . . , X(tn) ≤ xn).

These multivariate distributions are called finite-dimensional distributions of the process
(X(t), t ≥ 0). If there exists a joint density fX(t1),...,X(tn)(x1, . . . , xn) we can also represent
the joint distribution as

FX(t1),...,X(tn)(x1, . . . , xn) =

∫ x1

−∞

. . .

∫ xn

−∞

fX(t1),...,X(tn)(y1, . . . , yn)dy1 . . . dyn.

More generally, for D ⊂ R
n

P((X1, . . . , Xn) ∈ D) =

∫

D

fX(t1),...,X(tn)(x1, . . . , xn)dx1 . . . dxn

1This means that F is closed under set-theoretic operations ∩,∪,c performed on countably many sets
Ai ∈ F . A minimal system of axioms of σ-algebra is (i) Ω ∈ F ; (ii) A ∈ F implies Ac ∈ F ; (iii) Ai ∈ F
for i = 1, 2, . . . implies ∪iAi ∈ F .
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(n-dimensional integral).

Definition 1.1. A stochastic process B = (B(t), t ≥ 0) is called a (standard) Brownian
motion if it has the following properties:

(i) B(0) = 0.

(ii) B(t) is a continuous function of t.

(iii) For 0 ≤ s < t the increment B(t)− B(s) has normal distribution N (0, t− s).

(iv) For any finite set of times 0 = t0 < t1 < · · · < tn the increments

B(t1)− B(t0), B(t2)− B(t1), . . . , B(tn)− B(tn−1)

are independent.

For every fixed t, B(t) is not a number rather a random variable, so the full notation
indicating the dependence on the elementary outcome ω ∈ Ω would be B(t, ω). For
fixed ω, the function t 7→ B(t, ω) is often called a path or trajectory of the process. The
continuity of paths is required in the sense ‘almost surely’ (abbreviated a.s.), meaning
that property (ii) must hold for all ω with exception of an event of probability zero.

There are various explicit constructions of the BM via approximation by simpler pro-
cesses. In particular, the BM can be obtained as a limit of scaled discrete-time random
walks. The symmetric random walk starts at 0 and moves by steps ±1 with equal prob-
abilities at times 1, 2, . . . . If we modify the random walk by scaling the steps as ±1/

√
n

and let the moves occur at times i/n (i = 1, 2, . . .), then for large n the increments will
be approximately as in (iii), by independence of jumps and the central limit theorem.
The latter suggests to think of BM as a continuous-time random walk of a particle which
undergoes many small dislocations in every time interval.

Finite-dimensional distributions From Definition 1.1 we can easily derive the finite-
dimensional distributions of BM, which is the joint distribution of random variables
B(t1), B(t2), . . . , B(tn) for arbitrary choice of n and the times t1 < · · · < tn.

The one-dimensional distributions are obvious. By (i) and (ii) B(t) = B(t)−B(0) has
N (0, t) distribution with density

fB(t)(x) =
1√
2πt

exp

(

−x2

2t

)

, x ∈ R.

To obtain the general finite-dimensional distributions of BM we need to recall some
facts about the multivariate normal distribution. A n-dimensional random vector V

(written as a row) is said to have the multivariate normal distribution N (µ, Λ) with
mean vector µ and covariance matrix Λ, if the density of V is given by

fV (x) = (2π detΛ)−n/2 exp

(

−1

2
(x− µ)Λ−1(x− µ)T

)

, x ∈ R
n.
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A special property of the multivariate normal distribution is that the components of V
are independent if and only if they are uncorrelated (then Λ is a diagonal matrix). If V
has distribution N (µ, Λ), then for fixed vector w and fixed n× n matrix M the random
vector W = w + V M has a multivariate normal distribution N (µ+wM,MΛMT ).

For 0 ≤ s < t the covariance of B(s) and B(t) is computed as

Cov(B(s), B(t)) = E[B(s)B(t)] = E[B(s)(B(t)− B(s)) + B2(s)] =

E[B(s)]E[(B(t)− B(s))] + E[B2(s)] = 0 + Var[B(s)] = s,

where (iii) and (iv) were used. For general s, t the covariance is Cov(B(s), B(t)) = s ∧ t,
where s ∧ t is a shorthand notation for min(s, t).

Proposition 1.2. For any 0 = t0 < t1 < · · · < tn the joint distribution of B(t1), B(t2), . . . , B(tn)
is multivariate normal with mean vector zero and the covariance matrix with coefficients
ti ∧ tj (for 1 ≤ i, j ≤ n).

Proof. We will use the linear transformation property of multivariate normal distributions.
First note that the joint distribution of the incrementsB(t1)−B(t0), B(t2)−B(t1), . . . , B(tn)−

B(tn−1) is a multivariate normal distribution, because each B(ti) − B(ti−1) has a one-
dimensional normal distribution N (0, ti−ti−1) and the increments are independent. Then
observe that we can pass from the vector of increments to the vector (B(t1), B(t2), . . . , B(tn))
by a linear transformation

B(ti) = [B(ti)− B(ti−1)] + [B(ti−1)− B(ti−2)] + · · ·+ [B(t1)− B(t0)], i = 1, . . . , n,

hence the joint distribution of (B(t1), B(t2), . . . , B(tn)) is normal.

Transition probabiliities We have seen that the vectors

(B(t1), B(t2), . . . , B(tn)) and (B(t1)− B(t0), B(t2)− B(t1), . . . , B(tn)− B(tn−1))

(where 0 = t0 < t1 < · · · < tn ) contain the same information, for if we know one of them
we can compute the other. This observation is often helpful for various computations
related to the BM. In particular, we can calculate the transition probabilities:

P(B(tn) ≤ xn|B(ti) = xi, 1 ≤ i ≤ n− 1) =

P(B(tn)− B(tn−1) ≤ xn − xn−1|B(ti)− B(ti−1) = xi − xi−1, 1 ≤ i ≤ n− 1) = (1)

P(B(tn)− B(tn−1) ≤ xn − xn−1) =
∫ xn−xn−1

−∞

1
√

2π(tn − tn−1)
exp

(

− y2

2(tn − tn−1)

)

dy

Let us think of given s > 0 as present time, and assume that the BM is in state
B(s) = x. Changing in (1) notation as t = tn, s = tn−1, x = xn−1, y = xn, k = n − 2, the
computation (1) shows that the conditional density of a future state B(t), t > s, given
any past states B(t1) = x1, . . . , B(tk) = xk at times t1 < · · · < tk < s and given the
present state B(s) = x, does not depend on these past states:

fB(t)|B(s)=x(y) = fB(t)|B(s)=x,B(t1)=x1,...,B(tk)=xk
(y), s < t. (2)
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This conditional density fB(t)|B(s)=x(y) depends on t, s through the difference τ := t − s,
and is called the transition density

p(τ, x, y) =
1

√

2π(τ)
exp

(

−(x− y)2

2τ

)

. (3)

The probability that the BM moves in time τ from state x to some point in the interval
[a, b] is obtained by integration

P(B(t+ τ) ∈ [a, b]|B(t) = x) =

∫ b

a

p(τ, x, y)dy,

and this probability is not affected by conditioning on the states passed (i.e. values
assumed) by the BM before time t.

Independence of the future B(t) on the past states B(t1), · · · , B(tk), given the present
state B(s) = x (where t1 < · · · < tk < s < t) (as formally expressed in (2)) is the
pattern of Markov property of BM. We shall return to this property after a more rigorous
definition of the ‘past’ of BM prior to some given time.

Markov property allows us to to write the joint probability density of B(t1), . . . , B(tn)
in terms of the transition density (3) as the product

fB(t1),...,B(tn)(x1, . . . , xn) =
n
∏

i=1

p(ti − ti−1, xi−1, xi).

Note that p(t, 0, x) is the density function of B(t) (the normal N (0, t)-density ).

1.2 Filtration for Brownian motion

Elements of the basic σ-algebra F are events A, to which probability P(A) can be assigned.
We may interpret F as all thinkable events A about which we can say, in principle, whether
A occurs (ω ∈ A) or not (ω /∈ A). To organise information about stages of a random
experiment it is often important to consider sub σ-algebras G ⊂ F which record some
restricted or partial information. For instance, in the experiment of rolling two dice, the
information about the first roll corresponds to a sub σ-algebra. The larger G, the more
information we have, i.e. the larger the class of events about which we can say that they
occur or not.

In the theory of random processes we consider increasing families of σ-algebras (sub σ-
algebras of F), to capture the idea of accumulation of information as the time progresses.

A family (Ft, t ≥ 0) of sub σ-algebras of F is called a filtration if Fs ⊂ Ft whenever
s ≤ t. Intuitively, Ft is all information gained by the observer prior to time t, for instance
the historical stock prices up to date.

Terminology: we say that event A is Ft-measurable if A ∈ Ft; and that a random
variable ξ is Ft-measurable if the event {ω ∈ Ω : ξ(ω) ∈ [a, b]} is Ft-measurable for every
interval [a, b] ⊂ R.

Definition 1.3. We say that a stochastic process X = (X(t), t ≥ 0) is adapted to the
filtration (Ft, t ≥ 0) if the random variable X(t) is Ft-measurable for each t ≥ 0.
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That is to say, the information available at time t is sufficient to evaluate X(t).
With every stochastic process X = (X(t), t ≥ 0) one can always associate the nat-

ural filtration (FX
t , t ≥ 0), which records the past behaviour of X, but bears no extra

information. This is the filtration in which Ft is the smallest σ-algebra containing the
events {X(s) ∈ [a, b]} for s ≤ t and [a, b] ⊂ R. If A ∈ FX

t this means that based on the
observation of the piece of the path (X(s), 0 ≤ s ≤ t) it is possible to find out whether A
has occured or not.

A filtration is often included in the definition of a stochastic process (adapted to the
filtration). If this is not specified, the the natural filtration is meant.

Definition 1.4. We say that (Ft, t ≥ 0) is a filtration for the Brownian motion B =
(Bt, t ≥ 0) if

(i) The BM is adapted, that is B(t) is Ft-measurable for each t ≥ 0.

(ii) The increment B(t)− B(s) is independent of Fs for 0 ≤ s < t.

The natural filtration (FB
t , t ≥ 0) of the BM is an example. But sometimes richer filtra-

tions are needed, e.g. when we consider another stochastic processes or random variables
which are not just computable from the BM (e.g. independent of BM). The additional
information (above that in FB

t ) is not allowed to give clues about the future behaviour of
the BM (property (ii)).

Example 1.5. Let M(2) = max{B(t), t ≤ 2} be the largest value of BM on the time
interval [0, 2]. The event {M(2) > 5} is F3-measurable, because once we know the path
before t = 3, we can determine if M(2) > 5 or not. The event {M(2) > 5} is not
F1-measurable.

The process X(t) = B(t/2) is adapted to (FB
t , t ≥ 0) (at every time t we know

(B(s), 0 ≤ s ≤ t) and B(t/2) in particular), while Y (t) = B(2t) not.

1.3 Martingale property

The standard BM starts with B(0) = 0 and on the average stays at 0, because EB(t) = 0.
Similarly, given B(s) = x at future times t > s BM will stay on the average at x, whichever
the past. Such processes which tend to go neither up nor down are called martingales.

Definition 1.6. Let X = (X(t), t ≥ 0) be a stochastic process adapted to filtration
(Ft, t ≥ 0) and satisfying the integrability condition E|X(t)| < ∞. We call X a martingale
if for all 0 ≤ s < t

E(X(t)|Fs) = X(s) a.s.

The conditional expectation E(X(t)|Fs) is the mean value ofX(t) given all information
available at time s. We always have E(X(s)|Fs) = X(s) (which is a generalisation of the
identity E(ξ|ξ) = ξ for a random variable ξ).

Theorem 1.7. Brownian motion is a martingale.
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Proof. For 0 ≤ s < t, by the independence of increments and adaptedness

E(B(t)|Fs) = E((B(t)− B(s)) + B(s)|Fs) =

E(B(t)− B(s)|Fs) + E(B(s)|Fs) =

E(B(t)− B(s)) + B(s) = B(s).

1.4 BM as a Markov process

For Markov process the future behaviour depends on the information accumulated by
time s only through the state at time s. We encountered this property when discussing
the transition probabilities of BM.

Definition 1.8. Let (X(t), t ≥ 0) be a stochastic process adapted to filtration (Ft, t ≥ 0).
We say that (X(t), t ≥ 0) is a Markov process if for all 0 ≤ s < t

P(X(t) ∈ [a, b]|Fs) = P(X(t) ∈ [a, b]|X(s)) a.s., for [a, b] ⊂ R. (4)

If (Ft, t ≥ 0) = (FX
t , t ≥ 0) is the natural σ-algebra of X, the definition is equivalent

to any of the following conditions

• in terms of the conditional distribution function of X(t): for t1 < · · · < tk < s < t

FX(t)|X(s)=x,X(t1)=x1,...,X(tk)=xk
(y) = FX(t)|X(s)=x,X(t1)=x1,...,X(tk)=xk

(y),

• in terms of the conditional density function of X(t): for t1 < · · · < tk < s < t

fX(t)|X(s)=x,X(t1)=x1,...,X(tk)=xk
(y) = fX(t)|X(s)=x,X(t1)=x1,...,X(tk)=xk

(y).

It will be convenient to re-formulate (4) as the equivalent condition

E(f(X(t))|Fs) = E(f(X(t))|X(s)) a.s. (5)

which must hold for all functions f(x) (for which expectations make sense). Note that
(4) is a special case of (5), corresponding to the indicator function f(x) = 1(x ∈ [a, b]).
Here and throughout 1(· · · ) = 1 when · · · is true, and 1(· · · ) = 0 when · · · is false.

To work with conditional expectations we need a lemma.

Lemma 1.9. Let G be a σ-algebra and let X, Y be two random variables such that X is
G-measurable, and Y is independent of G. Let f(x, y) be a function and define g(x) :=
Ef(x, Y ). Then

E(f(X, Y )|G) = g(X).

The intuitive idea here is that the information in G is sufficient to evaluate X, thus X can
be treated as nonrandom constant when computing E(f(X, Y )|G). On the other hand,
E(f(x, Y )|G) = E(f(x, Y ) because Y is independent of G.
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Example 1.10. Consider the function f(x, y) = xy. We have E(XY |G) = XE(Y |G) =
X EY , because X is G-measurable and acts like a constant in E(XY |G), and by indepen-
dence of Y from G. On the other hand, g(x) = E(xY ) = xEY , whence subsititung X for
dummy variable x yields g(X) = XEY .

Proof. We shall consider only the simplest case G = σ(X), of the σ-algebra generated
by X. Recall that the conditional expectation E(· · · |X) is a random variable (a function
of X), determined as follows: we first calculate E(· · · |X = x) thus obtaining a function
of x, then substitute X in this function instead of the dummy variable x. For instance,
E(eX |X) = eX .

Following the recipe, using independence and the definition of g

E(f(X, Y )|X = x) = E(f(x, Y )|X = x) = Ef(x, Y ) = g(x).

Substituting X for x yields E(f(X, Y )|X) = g(X), as claimed in the case G = σ(X).

Theorem 1.11. The Brownian motion with any filtration (Ft, t ≥ 0) for the BM is a
Markov process.

Proof. We wish to check (5). For t > s write

E[f(B(t))|Fs] = E[f(B(s) + (B(t)− B(s)))|Fs],

which is now of the form E[f(X + Y )|Fs] with X := B(s) Fs-measurable and Y :=
B(t)− B(s) independent of Fs. To apply Lemma 1.9 introduce

g(x) := Ef(x+B(t)− B(s)) =

∫ ∞

−∞

f(x+ u)
e−u2/(2t−2s)

√

2π(t− s)
du.

By the lemma
E[f(B(t))|Fs] = g(B(s)).

Conditioning this by B(s) we obtain

E[E[f(B(t))|Fs]|B(s)] = E[g(B(s))|B(s)].

The left-hand side of the last formula is

E[E[f(B(t))|Fs]|B(s)] = E[f(B(t))|B(s)],

because σ(B(s)) ⊂ Fs (B(s) is Fs-measurable, so the σ-algebra generated by B(s) is
smaller than Fs). The right-hand side is E[g(B(s))|B(s)] = g(B(s)). It follows that
E[f(B(t))|Fs] = g(B(s)) = E[f(B(t))|B(s)], which proves the Markov property in the
form (5).
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1.5 Quadratic variation

The Brownian path has no jumps, but it has a highly erratic behaviour in what concerns
the slope of the function at every point. It turns that the path is nowhere differentiable.
Quadratic variation quantifies the irregular fluctuations of the path. We start with re-
viewing a related concept from the classical analysis.

Let f be a function on [0, T ]. The total or first-order variation VT (f) is a measure of
oscillation of the function. If the function is monotone (increasing or decreasing) it is just
the size of the range VT (f) = |f(T )−f(0)|. If the function is piecewise monotone, changing
the direction of monotonicity at points ti, we split [0, T ] at the turning points and sum up
the variation over the resulting subintervals of monotonicity: VT (f) =

∑

i |f(ti+1− f(ti)|.
In general we consider partitions ∆ = {t0, t1, . . . , tn} of [0, T ] by some number of points
0 = t0 < t1 < · · · < tn = T , and define the total variation as a limit (which may or may
not exist)

VT (f) = lim
|∆|→0

n−1
∑

i=0

|f(ti+1)− f(ti)|,

as the ‘mesh size’ |∆| = max0≤i<n(ti+1 − ti) goes to 0.
If the function is differentiable then by the mean value theorem f(ti+1) − f(ti) =

f ′(t∗i )(ti+1 − ti) for some intermediate point t∗i ∈ [ti, ti+1], and
∑n−1

i=0 |f(ti+1 − f(ti)| is a
Riemann sum for the integral of the function |f ′(t)|, therefore

VT (f) =

∫ T

0

|f ′(t)|dt.

It can be shown that for the Brownian motion VT (B) = ∞. Here is a rough idea.
Let us split [0, T ] in n equal pieces at points T i/n, 0 ≤ i ≤ n, thus obtaining a partition
with |∆| = T/n. The expected value of the increment over a generic division interval is
E|B(T (i+ 1)/n)− B(T i/n)| = c/

√
n, where c =

√

2T/π. Adding up over n intervals we
obtain a quantity with expected value nc/

√
n = c

√
n which goes to ∞ as n → ∞.

This ‘back of the envelope’ calculation suggests to look at the sum of squares of the
increments, to obtain a converging quantity as |∆| → 0.

Definition 1.12. For function f defined on [0, T ] the quadratic variation of f up to time
T is

〈f〉(T ) = lim
|∆|→0

n−1
∑

i=0

|f(ti+1)− f(ti)|2,

where ∆ = {t0, t1, . . . , tn} with 0 = t0 < t1 < · · · < tn = T .

Suppose f is differentiable, with
∫ T

0
|f ′(t)|2dt < ∞. Then using the mean value theo-
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rem, we obtain

〈f〉(T ) = lim
|∆|→0

n−1
∑

i=0

|f(ti+1)− f(ti)|2 = lim
|∆|→0

n−1
∑

i=0

|f(t∗i )|2(ti+1 − ti)
2 ≤

lim
|∆|→0

|∆|
n−1
∑

i=0

|f(t∗i )|2(ti+1 − ti) = lim
|∆|→0

|∆| · lim
|∆|→0

n−1
∑

i=0

|f(t∗i )|2(ti+1 − ti) =

0 ·
∫ T

0

|f ′(t)|2dt = 0.

In particular, 〈f〉(T ) = 0 for every continuously differentiable function. If we under-
stand, intuitively, df(t) as increment of the function f over an ‘infinitesimal’ interval dt,
and if we write (dt)2 = 0 meaning that (dt)2 is a quantity of the order smaller than dt,
then the mnemonic rule to keep in mind for quadratic variation of smooth functions is
(df(t))2 = 0.

In contrast to smooth functions, the BM has nontrivial quadratic variation

〈B〉(T ) = T. (6)

It should be stressed, however, that a care is needed in the interpretation of the formula.
A delicate point is that the sum over partition intervals

Q∆ :=
n−1
∑

i=0

(B(ti+1)− B(ti))
2

is not a fixed numerical value, rather a random variable, that is a function of ω ∈ Ω.
Thus we need to be specific regarding the sense in which of Q∆ approaches T as the mesh
size ∆ goes to 0. In the following theorem the mean-square convergence is asserted.

Theorem 1.13. For Brownian motion B and Q∆ :=
∑n−1

i=0 (B(ti+1)− B(ti))
2

lim
|∆|→0

E(Q∆ − T )2 = 0, T > 0.

Proof. Note that Q∆ is the sum of independent random variables (B(ti+1)−B(ti))
2, with

expected value

E(B(ti+1)− B(ti))
2 = Var(B(ti+1)− B(ti)) = ti+1 − ti.

Summing over i yields

EQ∆ =
n−1
∑

i=0

E(B(ti+1)− B(ti))
2 =

n−1
∑

i=1

= T.

To compute the variance write

Var(B(ti+1)− B(ti))
2 = E[(B(ti+1)− B(ti))

2 − (ti+1 − ti)]
2 =

E(B(ti+1)− B(ti))
4 − 2(ti+1 − ti)E(B(ti+1)− B(ti))

2 + (ti+1 − ti)
2.
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The fourth moment of the standard normal distribution is 3, thus EB(1)4 = 3. On

the other hand, B(t)
d
=

√
tB(1), where

d
= means ‘has the same distribution’. Thus

E[B(t)]4 = E[
√
tB(1)]4 = 3t2. From this

E(B(ti+1)− B(ti))
4 = 3(ti+1 − ti)

2,

whence

Var(B(ti+1)− B(ti))
2 = 3(ti+1 − ti)

2 − 2(ti+1 − ti)
2 + (ti+1 − ti)

2 = 2(ti+1 − ti)
2.

Therefore by independence

Var(Q∆) =
n−1
∑

i=0

Var(B(ti+1)− B(ti))
2 =

n−1
∑

i=0

2(ti+1 − ti)
2 ≤ |∆|

n−1
∑

i=0

2(ti+1 − ti) = 2|∆|T.

Letting ∆ → 0 we have Var(Q∆) → 0, and in the view of EQ∆ = T this exactly means
that

lim
|∆|→0

E(Q∆ − T )2 = 0

The ‘back of the envelope’ computations help to better understand the result. Split
[0, T ] in n equal pieces. The squared increment over the ith subinterval is a random
variable

(B(T (i+ 1)/n)− B(T i/n))2 = TN2
i /n,

where N1, . . . , Nn are independent N (0, 1)-distributed with ENi = 1. Each of N2
i /n

deviate from its mean 1/n, but the
∑

i N
2
i /n converges to EN2

i = 1 by the law of large
numbers. The informal rule to remember is (dB(t))2 = dt, which should not be taken
literally, as it only makes sense when we sum up (i.e. integrate). In the same line,
dB(t)dt = 0, meaning a quantity of the order smaller than dt.
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