Stochastic Calculus and Black-Scholes Theory MTH772P Exercises – Sheet 4 (solutions)

1. Let $\tau = \min\{t : B(t) = a, \text{ or } B(t) = -b\}$ for a, b > 0. Note that $B(t) \notin [-b, a]$ implies $\tau < t$. Using this show that $\tau < \infty$ a.s. (that is $\mathbb{P}(\tau < \infty) = 1$).

Solution. If B(t) > a then by continuity B(s) = a for some s < t, hence $\tau \le s < t$. Similarly for B(t) < -b. Using the scaling property $B(t) =_d t^{1/2}B(1)$,

$$\mathbb{P}(B(t) \notin [-b,a]) = \mathbb{P}(B(1) \notin [-bt^{-1/2}, at^{-1/2}]) = \frac{1}{\sqrt{2\pi}} \int_{x \notin [-bt^{-1/2}, at^{-1/2}]} e^{-x^2/2} dx,$$

which is arbitrarily close to 1 for large t. Hence $\mathbb{P}(\tau > t) \leq \mathbb{P}(B(t) \notin [-b, a]) \to 0$ as $t \to \infty$, so $\tau < \infty$ a.s.

2. Show that for every fixed t > 0 and $x \in \mathbb{R}$ there exists stopping time τ such that $\tau > t$ and $B(\tau) = x$.

Solution. Just take $\tau = \min\{s : s > t, B(s) = x\}$. By the Markov property $\widetilde{B}(u) := B(t+u) - B(t)$ is a BM independent of \mathcal{F}_t . Given $B(t) = y, \tau$ has the same distribution as the first passage time τ_{x-y} , which is finite almost surely (see the lectures).

- **3.** Let $\widetilde{B}(t) = t B(1/t)$. Show that \widetilde{B} is a BM by following the steps:
 - (i) B is a Gaussian process,
 - (ii) \tilde{B} has the mean value and covariance functions like that of a BM,
- (iii) \tilde{B} has continuous paths. Check continuity at t = 0 using the law of large numbers.

Solution. The BM is the unique Gaussian process with continuous paths and the covariance function $\rho(s, t=s \wedge t)$.

The vector $t_1 \tilde{B}(1/t_1), \ldots, t_k \tilde{B}(1/t_k)$ has multivariate normal distribution, because it is a linear transform of $\tilde{B}(1/t_1), \ldots, \tilde{B}(1/t_k)$, which is normal because the BM is Gaussian.

Calculating the covariance function: $\operatorname{Cov}(\widetilde{B}(s), \widetilde{B}(t)) = \operatorname{Cov}(sB(1/s), tB(1/t)) = st\operatorname{Cov}(B(1/s), B(1/t)) = st(1/s \wedge 1/t) = s \wedge t.$

It remains to check the continuity. The only troublesome point is t = 0. We need to show that $tB(1/t) \to 0$ as $t \to 0$. Set u = 1/t. By the strong law of large numbers $B(\lfloor u \rfloor)/u \to 0$ for $u \to \infty$ since B(k) is a sum of k iid increments B(i) - B(i-1)with mean zero.

Let $k = \lfloor u \rfloor$. Then $|B(u) - B(k)|/u < \xi_k$ where $\xi_k = \max_{u \in [k,k+1]} |B(u) - B(k)|$. We have $\mathbb{E}\xi_k < \infty$, because $\max_{s \in [0,1]} B(s) =_d |B(1)|$. The random variables ξ_k 's are iid. From this $\lim_{k \to \infty} \xi_k/k = 0$, or $(B(u) - B(\lfloor u \rfloor)]/u \to 0$ as $u \to \infty$. Thus $B(u)/u = [B(\lfloor u \rfloor) + (B(u) - B(\lfloor u \rfloor)]/u \to 0$ as $u \to \infty$.

4. Find for which values σ and μ the geometric Brownian motion

$$S(t) = \exp\left(\mu B(t) - \frac{\sigma^2}{2}t\right), \ t \ge 0,$$

is a martingale.

Solution. Calculating the Ito differential,

$$dS = \mu S dB - \frac{\sigma^2}{2} S dt + \frac{\mu^2}{2} S dt = \mu S dB + \left(\frac{\mu^2}{2} - \frac{\sigma^2}{2}\right) S dt.$$

For S to be a martingale the 'dt' term must be zero, so the condition is $\mu^2 = \sigma^2$, or $|\mu| = |\sigma|$.