Stochastic Calculus and Black-Scholes Theory MTH772P Exercises – Sheet 4

1. Let $\tau = \min\{t : B(t) = a, \text{ or } B(t) = -b\}$ for a, b > 0. Note that $B(t) \notin [-b, a]$ implies $\tau < t$. Using this show that $\tau < \infty$ a.s. (that is $\mathbb{P}(\tau < \infty) = 1$).

2. Show that for every fixed t>0 and $x\in\mathbb{R}$ there exists stopping time τ such that $\tau>t$ and $B(\tau)=x$.

- 3. Let $\widetilde{B}(t) = t B(1/t)$. Show that \widetilde{B} is a BM by following the steps:
 - (i) \widetilde{B} is a Gaussian process,
 - (ii) \widetilde{B} has the mean value and covariance functions like that of a BM,
- (iii) \widetilde{B} has continuous paths. Check continuity at t = 0 using the law of large numbers.
- 4. Find for which values σ and μ the geometric Brownian motion

$$S(t) = \exp\left(\mu B(t) - \frac{\sigma^2}{2}t\right), \ t \ge 0,$$

is a martingale.