
Stochastic Calculus and Black-Scholes Theory MTH772P
Solutions Exercises – Sheet 3

1. A k-dimensional Brownian motion is a random vector-function (B1(t), . . . , Bk(t)),
whereBi are k independent (standard) BM. For smooth function f of the k-dimensional
BM the stochastic differential is

df(B1(t), . . . , Bk(t)) =
k∑
i=1

fxi(B1(t), . . . , Bk(t))dBi(t)+
1

2

k∑
i=1

fxi,xi(B1(t), . . . , Bk(t))dt.

(This follows by taking the Taylor expansion up to the second order terms and using
the rules (dBi)

2 = dt, dBidBj = 0 for i 6= j).

The Bessel process with parameter k is defined as X(t) =
√∑k

i=1B
2
i (t), which is

the ‘radial part’ of the k-dimensional BM.

(a) Show that X satisfies the stochastic differential equation

dX(t) =
k∑
i=1

Bi(t)

X(t)
dBi(t) +

n− 1

X(t)
dt

(b) Show that X satisfies the stochastic differential equation with single BM B

dX(t) = dB(t) +
n− 1

X(t)
dt.

Hint: use Lévy’s theorem which states that a continuous martingale M(t) with
quadratic variation 〈M〉(t) = t is a BM.

(a) Let f =
√∑n

i=1 x
2
i . Then

fxi =
xi
f
, fxi,xi =

−x2i
f 3

+
1

f
.

So we have (we write X for X(t) etc)

dX =
n∑
i=1

BidBi

X
+

n∑
i=1

(
B2
i

X3
+

1

X

)
dt =

n∑
i=1

BidBi

X
−X

2

X3
+
n

X
=

n∑
i=1

Bi(t)

X(t)
dBi+

n− 1

X(t)
dt.

With respect to the filtration generated by B1, . . . , Bn the process

Bi(t)

X(t)
dBi

is a martingale with continuous paths, hence also the process Y with

dY (t) =
n∑
i=1

Bi(t)

X(t)
dBi

is a martingale with continuous paths. Squaring and using the stated rule for dBidBj

we get

(dY )2 =
n∑
i=1

B2
i

X2
dt = dt.



It follows that the quadratic variation is 〈Y 〉(t) = t. By Lévys theorem Y is a BM,
hence X satisfies

dX(t) = dY (t) +
n− 1

X(t)
dt,

with Y a BM.

2. Let X(t) = B(t) + tµ be a BM with dift. Use Girsanov’s theorem to derive the
joint density of X(t1), X(t2), X(t3) for t1 < t2 < t3.

Let fµ(x1, x2, x3) be the joint density of of X(t1), X(t2), X(t3) when the drift coeffi-
cient is µ.

Suppose first that µ = 0; then we deal with the BM. We know that X(t3) −
X(t2), X(t2) − X(t1), X(t1) are independent mean-value normal random variables,
with variances t3− t2, t2− t1, t1. The Jacobian for transition from X(t1), X(t2), X(t3)
to X(t1), X(t2)−X(t1), X(t3)−X(t2) equals 1, because the transition matrix 1 0 0

−1 1 0
0 −1 1


has determinant 1. Thus the joint density of X(t1), X(t2), X(t3) (assuming µ = 0) is

f0(x1, x2, x3) = ce−x
2
1/2e−(x2−x1)

2/(t2−t1)e−(x3−x2)
2/(t3−t2)

where

c =
1

(2π)3/2
√
t1(t2 − t1)(t3 − t2)

.

Changing the measure from P̃ to P with the Radon-Nikodym derivative dP̃/dP =
Z, where

Z = e−µB(t3)−µ2t3/2 = e−µ(X(t3)−µt3)−µ2t3/2,

we achieve that (X(t), t ∈ [0, t3]) is a BM (Girsanov’s theorem). Conversely, to pass

from P to P̃ we need the Radon-Nikodym derivative Z−1. To obtain fµ we just need
to multiply f0 with Z−1, the latter considered as a function of x3

fµ(x1, x2, x3) = f0(x1, x2, x3) exp(µ(x3 − µt3) + µ2t3/2) =

f0(x1, x2, x3) exp(µx3 − µ2t3/2)

Re-combining the exponents

− x
2
1

2t1
− (x2 − x1)2

2(t2 − t1)
− (x3 − x2)2

2(t3 − t3)
+ µx3 − µ2t3/2 =

−(x1 − µt1)2

2t1
− (x2 − x1 − µ(t2 − t1))2

2(t2 − t1)
− (x3 − x2 − µ(t3 − t2))2

2(t3 − t2)

we obtain

fµ(x1, x2, x3) =

c exp

(
−(x1 − µt1)2

2t1
− (x2 − x1 − µ(t2 − t1))2

2(t2 − t1)
− (x3 − x2 − µ(t3 − t2))2

2(t3 − t2)

)
2



which can be written as

c

2∏
j=0

exp

(
−(xj+1 − xj − µ(tj+1 − tj))2

2(tj+1 − tj)

)
,

where t0 = x0 = 0.
Comment: the same could be derived more directly by inspecting the increments

of the BM with drift.

3. For which constant σ, µ the process S(t) = exp(σB(t) + µt) is a martingale?

We compute using Ito formula

dS = σSdB + µSdt+
1

2
σ2Sdt.

The dt terms vanishes if µ = σ2/2, hence under this condition we get a martingale.

4. Show that the Ornstein-Uhlenbeck process

X(t) = e−αtx+ e−αt
∫ t

0

eαsdB(s)

satisfies the SDE
dX(t) = −αX(t)dt+ dB(t).

Compute the differential

dX = −αe−αtx− αe−αt
∫ t

0

eαsdB(s) + e−αteαtdB(t) = −αX(t)dt+ dB(t).

5. Calculate the quadratic variation 〈X〉(t) for X(t) = eB
2(t).

We have dX = 2BeB
2
dB plus a dt term, so

〈X〉(T ) = E
∫ T

0

4B2(t)e2B
2(t)dt =

∫ t

0

E[4B2(t)e2B
2(t)]dt.

The expectation is

E[4B2(u)e2B
2(u)] =

1√
2πT

∫ ∞
−∞

e−x
2/(2t)4x2e2x

2

dx.

If t > 1/4 the integral is infinite, therefore 〈X〉(T ) =∞ for T ≥ 1/4. For T < 1/4

〈X〉(T ) =

∫ T

0

4

t1/2(t−1 − 2)3/2
dt

3


