
Stochastic Calculus and Black-Scholes Theory MTH772P
Exercises – Sheet 1

1. For ξ1, ξ2, · · · i.i.d. with P(ξi = ±1) = 1/2 define the discrete-time random walk

W0 = 0, Wn = ξ1 + . . .+ ξn.

(i) Formulate and prove the property of independence of increments of (Wn, n ≥ 0).

(ii) Show that (Wn, n ≥ 0) is a discrete-time Markov chain.

(iii) Show that (Wn, n ≥ 0) is a discrete-time martingale.

(iv) Calculate the covariance Cov(Wi,Wj).

(v) Find the limit distribution of Wbntc/
√
n as n→∞, for t > 0.

Solution (i) For any integer times 0 = j0 < j1 < . . . < jk the increments Wj1−Wj0 =
ξ1 + . . .+ ξj1 , . . . ,Wjk−Wjk−1

= ξjk−1+1 + . . .+ ξjk are independent. Because ξ1, ξ2, . . .
are independent by the assumption, the vectors (ξ1, . . . , ξj1), . . . , (ξjk−1+1, . . . , ξjk) are
independent, hence the increments are independent as functions of the independent
random vectors.

(ii) For any possible path w0, . . . , wn of the random walk we have

P(Wn = wn|Wn−1 = wn−1,Wn−2 = wn−2, . . . ,W0 = w0) =

P(Wn −Wn−1 = wn − wn−1|Wn−1 = wn−1,Wn−2 = wn−2, . . . ,W0 = w0).

In this conditional probability the event {Wn −Wn−1 = wn − wn−1} is the same as
{ξn = wn − wn−1}, while the event {Wn−1 = wn−1,Wn−2 = wn−2, . . . ,W0 = w0} can
be written in terms of ξ1, . . . , ξn−1. It follows from the independence of ξi’s that

P(Wn = wn|Wn−1 = wn−1,Wn−2 = wn−2, . . . ,W0 = w0) =

P(Wn −Wn−1 = wn − wn−1) = P(Wn −Wn−1 = wn − wn−1|Wn−1 = wn−1) =

P(Wn = wn|Wn−1 = wn−1),

which is the Markov property for discrete-time processes.
(iii) We have using rules for conditional expectations

E(Wn+1|W1, . . . ,Wn) = E(Wn + ξn+1|W1, . . . ,Wn) =

E(Wn|W1, . . . ,Wn) + E(ξn+1|W1, . . . ,Wn) = Wn + Eξn+1.

Note that we could also write the conditional expectation E(Wn+1|W1, . . . ,Wn) as
E(Wn+1|Fn), where Fn is the σ-algebra generated by the events {W1 = w1, . . . ,Wn =
wn} with arbitrary w1, . . . , wn. Also, Fn is the σ-algebra generated by the random
variables ξ1, . . . , ξn.

(iv) Assume i ≤ j. Since EWi = 0 we have Cov(Wi,Wj) = E(WiWj) = E(Wi(Wi+
(Wj−Wi)) = E(W 2

i )+E(Wi)E(Wj−Wi) = Var(Wi) = iVarξ1 = i. Thus Cov(Wi,Wj) =
i ∧ j for any i, j ≥ 0.

(v) The limit distribution of (ξ1 + . . . + ξbntc)/
√
bntc (for every fixed t > 0 and

n→∞) is N (0, 1) by the central limit theorem. From this, the limit distribution of
Wbntc/

√
n is N (0, t).



2. Let B = (B(t), t ≥ 0) be a standard Brownian motion. Show that the following
processes are standard BM:

(i) X(t) = B(t+ s)−B(s), where s ≥ 0 is constant.

(ii) X(t) = B(ct)/
√
c, for any c > 0,

(iii) X(t) = B(1− t)−B(1), where t ∈ [0, 1] (this BM is defined on [0, 1]).

Solution (i) The process has continuous paths and X(0) = 0. The increments of
X(ti+1)−X(ti) over intervals of partition 0 = t0 < t1 < . . . < tn are the increments
of the BM over the intervals between times s < t1 + s < . . . < tn + s, hence they are
independent and N (0, (ti+1 − ti))-distributed.

(ii) B(ct) is N (0, ct)-distributed, hence B(ct)/
√
c is N (0, t)-distributed (check the

mean and the variance). We have X(0) = 0. The increments of X over the intervals
of partition 0 = t0 < t1 < . . . < tn are the increments of BM over the intervals of
partition 0 = ct0 < ct1 < . . . < ctn, hence the X-increments are independent.

(iii) The increments of X(tj+1) − X(tj) over 0 = t0 < t1 < . . . < tn = 1 are
the increments of the BM over the intervals of partition 1 − tn < . . . < 1 − t0. The
independence of increments follows. The rest is obvious.

3. For X a random variable with density function f consider the event A = {X ≤ 0}.

(i) Define G to be the σ-algebra generated by A (i.e. the smallest σ-algebra con-
taining event A). Write down the list of all elements of the σ-algebra G.

(ii) In terms of integrals with density f , describe the random variable E(X3|G).

(iii) Using the formulas you derived in (ii) show explicitly that E(E(X3|G)) = E(X3).

(iv) Make the calculations for (ii), (iii) assuming that X has N (0, 1) distribution.

Solution (i) G = {∅,Ω, {X ≤ 0}, {X > 0}}.
(ii) The events {X ≤ 0}, {X > 0} are disjoint and their union is Ω. Hence we can

write
E(X3|G) = E(X3|X ≥ 0)1(X ≥ 0) + E(X3|X ≥ 0)1(X < 0),

where 1(· · ·) is the indicator random variable. In particular, E(X3|G) may take two
values, depending on whether X ≥ 0 or X < 0. In terms of the density, these values
are

E(X3|X ≥ 0) =

∫∞
0
x3f(x)dx∫∞

0
f(x)dx

, E(X3|X < 0) =

∫ 0

−∞ x
3f(x)dx∫ 0

−∞ f(x)dx
.

4. Let (Ft, t ≥ 0) be a filtration for BM. That means that {ω ∈ Ω : B(s) ≤ x} ∈ Ft
for s ≤ t and x ∈ R, and that the increments of BM after t are independent of Ft.
For 0 < a < b < c show that B(c)−B(b) is independent of Fa.

Solution We have B(c) − B(b) independent of Fb, which means that any event
{B(c) − B(a) < x} is independent of any event A ∈ Fb. But Fa ⊂ Fb, hence
B(c)−B(b) is also independent of Fa.

5. (BM with drift) Let X(t) = B(t) + tµ. Show that (X(t), t ≥ 0) is a Markov
process and find its transition density. Is the process a martingale?
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Solution Let (Ft, t ≥ 0) be a filtration for the BM. The Markov property of the
BM itself means that for s < t

E(f(B(t))|Fs) = E(f(B(t))|B(s))

for any function f . (Note that if we take f(x) = 1(x ≤ a) the conditional expectation
becomes the conditional probability E[1(B(t) ≤ a)|Fs] = P[B(t) ≤ a|Fs]).

Thus from the Markov property of BM

E(f(X(t))|Fs) = E(f(B(t) + tµ)|Fs) = E(f(B(t) + tµ)|B(s)).

But conditioning on B(s) is the same as conditioning on X(s) = B(s) + sµ, because
X(s) and B(s) uniquely determine one another. Hence the above becomes

E(f(B(t) + tµ)|B(s)) = E(f(B(t) + tµ)|X(s)) = E(f(X(t))|X(s)),

and so
E(f(X(t))|Fs) = E(f(X(t))|X(s)),

which is the Markov property for (X(t), t ≥ 0).
To compute the transition probability function of X we should reduce to the BM,

and there are various equivalent ways to do that. The probability that X moves from
X(s) = x to some value X(t) ≤ y is

P(X(t) ≤ y|X(s) = x) = P(B(t) + tµ ≤ y|B(s) = x− sµ) =

P(B(t) ≤ y − tµ|B(s) = x− sµ) = P(B(t)−B(s) ≤ y − x− (t− s)µ|B(s) = x− sµ) =

P(B(t)−B(s) ≤ y − x− µ(t− s)) =
1√

2π(t− s)

∫ y−x−(t−s)µ

−∞
exp{−u2/(2t− 2s)}du

The transition density from x to y in time t − s is obtained by differentiating this
(conditional distribution function) in y

p̃(t− s, x, y) =
e−(y−x−(t−s)µ)

2/(2t−2s)√
2π(t− s)

Another possibility is to use the fact that the transition density satisfies

E(f(X(t))|X(s) = x) =

∫ ∞
−∞

p̃(t− s, x, y)f(y)dy

for any function f . Using Lemma 1.9 from the lecture notes

E(f(X(t))|X(s) = x) = E[f((B(t)−B(s)) +B(s) + tµ)|B(s) = x− sµ] =

E[f((B(t)−B(s)) + x− sµ+ tµ] =

∫ ∞
−∞

p(t− s, 0, y)f(u+ x− sµ+ tµ)du =∫ ∞
−∞

p̃(t− s, x, y)f(y)dy,

where the last step used change of variable u + x − sµ + tµ = y and the transition
density p(t− s, 0, y) = exp(−2y2/(2t− 2s))/

√
2π(t− s) of the BM.
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Finally, somewhat heuristic but quick way is as follows. Process X moves from
X(s) = x to X(t) ∈ [y, y + dy] when the BM moves from B(s) = x − sµ to B(t) ∈
[y − tµ, y + dy − tµ]. The latter is an event of probability

p(t− s, x− sµ, y − tµ)dy = p(t− s, 0, y − x− (t− s)µ)dy.

Discarding dy yields the transition density p̃(t− s, x, y) = p(t− s, 0, y− x− (t− s)µ)
for the process X.

6. (Geometric BM) Let S(t) = S(0) exp(νt + σB(t)), where S(0), σ, ν are positive
constants. Show that (S(t), t ≥ 0) is a Markov process and find its transition density.

Solution The Markov property is shown as in Exercise 5: if S(s) = x then
B(s) = (log x

S0
− νt)/σ, so we can compute S(s) from B(s) and vice versa. Let for

shorthand b = (log x
S0
− νt)/σ. We have

E[f(S(t))|S(s) = x] = E[f(S(t))|B(s) = b] = E[f(S(0)eνt+σ(B(t)−B(s))+σB(s))|B(s) = b] =

E[f(S(0)eνt+σ(B(t)−B(s))+σb)] =

∫ ∞
−∞

f(S(0)eνt+σu+σb)
e−u

2/(2t−2s)√
2π(t− s)

du.

Using the change of variable (recall the definition of b)

y = S(0)eνt+σu+σb, u =
log(y/x)− ν(t− s)

σ
, du =

dy

σy

the above integral becomes

∫ ∞
0

f(y)
exp

(
− (log(y/x)−ν(t−s))2

2σ2(t−s)

)
σy
√

2π(t− s)
dy.

Therefore the transition density function of (S(t), t ≥ 0) is

p̂(t− s, x, y) =
exp

(
− (log(y/x)−ν(t−s))2

2σ2(t−s)

)
σy
√

2π(t− s)
.

7. (Black-Scholes formula) Let S(t) = S(0) exp((r − σ2/2)t + σB(t)), where
S(0), σ, r are positive constants. For K > 0 and T > 0 show that

E[e−rT (S(T )−K)+] = S(0)Φ(d+(T, S(0)))−Ke−rTΦ(d−(T, S(0))),

where Φ is the standard normal distribution function, and

d±(T, S(0)) =
1

σ
√
T

(
log

S(0)

K
+ (r ± σ2

2
)T

)
.

Solution We need to compute the integral integrate

E[e−rT (S(T )−K)+] = e−rT
∫ ∞

1
σ
(log(K/S(0))−(r−σ2/2)T )

(
S(0)e(r−σ

2/2)T+σx −K
) e−x2/(2T )√

2πT
dx.
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Substituting y = x/
√
T and using linearity of the integral the above becomes

S(0)e−σ
2T/2

∫ ∞
1

σ
√
T
(log(K/S(0))−(r−σ2/2)T )

1√
2π
e−y

2/2+σ
√
Tydy

−Ke−rT
∫ ∞

1

σ
√
T
(log(K/S(0))−(r−σ2/2)T )

e−y
2/2

√
2π

dy =

S(0)

∫ ∞
1

σ
√
T
(log(K/S(0))−(r−σ2/2)T )−σ

√
T

1√
2π
e−z

2/2dz −Ke−rTΦ(d−(T, S(0)) =

S(0)Φ(d+(T, S(0))−Ke−rTΦ(d−(T, S(0)).
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