Stochastic Calculus and Black-Scholes Theory MTH772P Exercises – Sheet 1

1. For ξ_1, ξ_2, \cdots i.i.d. with $\mathbb{P}(\xi_i = \pm 1) = 1/2$ define the discrete-time random walk

$$W_0 = 0, \quad W_n = \xi_1 + \ldots + \xi_n.$$

- (i) Formulate and prove the property of independence of increments of $(W_n, n \ge 0)$.
- (ii) Show that $(W_n, n \ge 0)$ is a discrete-time Markov chain.
- (iii) Show that $(W_n, n \ge 0)$ is a discrete-time martingale.
- (iv) Calculate the covariance $Cov(W_i, W_j)$.
- (v) Find the limit distribution of $W_{|nt|}/\sqrt{n}$ as $n \to \infty$, for t > 0.

2. Let $B = (B(t), t \ge 0)$ be a standard Brownian motion. Show that the following processes are standard BM:

- (i) X(t) = B(t+s) B(s), where $s \ge 0$ is constant.
- (ii) $X(t) = B(ct)/\sqrt{c}$, for any c > 0,
- (iii) X(t) = B(1-t) B(1), where $t \in [0, 1]$ (this BM is defined on [0, 1]).
- 3. For X a random variable with density function f consider the event $A = \{X \leq 0\}$.
 - (i) Define \mathcal{G} to be the σ -algebra generated by A (i.e. the smallest σ -algebra containing event A). Write down the list of all elements of the σ -algebra \mathcal{G} .
 - (ii) In terms of integrals with density f, describe the random variable $\mathbb{E}(X^3|\mathcal{G})$.
- (iii) Using the formulas you derived in (ii) show explicitly that $\mathbb{E}(\mathbb{E}(X^3|\mathcal{G})) = \mathbb{E}(X^3)$.
- (iv) Make the calculations for (ii), (iii) assuming that X has $\mathcal{N}(0,1)$ distribution.

4. Let $(\mathcal{F}_t, t \ge 0)$ be a filtration for BM. That means that $\{\omega \in \Omega : B(s) \le x\} \in \mathcal{F}_t$ for $s \le t$ and $x \in \mathbb{R}$, and that the increments of BM after t are independent of \mathcal{F}_t . For 0 < a < b < c show that B(c) - B(b) is independent of \mathcal{F}_a .

5. (BM with drift) Let $X(t) = B(t) + t\mu$. Show that $(X(t), t \ge 0)$ is a Markov process and find its transition density. Is the process a martingale?

6. (Geometric BM) Let $S(t) = S(0) \exp(\nu t + B(t))$, where $S(0), \sigma, \nu$ are positive constants. Show that $(S(t), t \ge 0)$ is a Markov process and find its transition density.

7. (Black-Scholes formula) Let $S(t) = S(0) \exp((r - \sigma^2/2)t + B(t))$, where $S(0), \sigma, r$ are positive constants. For K > 0 and T > 0 show that

$$\mathbb{E}[e^{-rT}(S(T) - K)^+] = S(0)\Phi(d_+(T, S(0))) - Ke^{-rT}\Phi(d_-(T, S(0))),$$

where Φ is the standard normal distribution function, and

$$d_{\pm}(T, S(0)) = \frac{1}{\sigma\sqrt{T}} \left(\log \frac{S(0)}{K} + (r \pm \frac{\sigma^2}{2})T \right).$$