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• Good mathematics should connect with other good mathematics! 

• Mathematical results might not solve the big problem at first but add to 

overall Mathematical knowledge  
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What are Knots?

• A closed “line” in 3 dimensional space, without intersection 

• More formally: 

A “smooth” function 𝑓: [0,1] → ℝ3
such that 𝑓 0 = 𝑓 1 and that’s 

the only case where 𝑓 𝑥 = 𝑓 𝑦 , for 𝑥 ≠ 𝑦.
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• As 2 dimensional diagrams

• Crossing behind and in front  in 3 dimensional space are 

represented as 
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Topological View

• We care about the “Topology” of Knots. 

• Bending, stretching, squeezing, moving in 3 

dimensions does not matter 

• More formally: (Ambient Isotopy)

Given two knots 𝑘, ത𝑘: [0,1] → ℝ3
, there exists a continuous map

𝐹:ℝ3 × [0,1] → ℝ3

Such that 𝐹 𝑘 𝑥 , 0 = 𝑘 𝑥 and 𝐹 𝑘 𝑥 , 1 = ത𝑘 𝑥 .



How to tell Knots apart?



How to tell Knots apart?

• One Knot has INFINITELY many equivalent 

Diagrams.

• Mathematical idea: Find least Crucial Moves



How to tell Knots apart?

• One Knot has INFINITELY many equivalent 

Diagrams.

• Mathematical idea: Find least Crucial Moves

A lot of difficult moves 

Many repetitions of a few moves we know



A lot of difficult moves 

Many repetitions of a few moves we know





Reidmeister Moves



Reidmeister Moves



• More formally: (Reidmeister’s Theorem, 1927)

Given two knots 𝑘, ത𝑘: 0,1 → ℝ3
, they are equivalent if and only if
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How to tell Knots apart?

Answer: (Invariance)

Assign a “number” to each Knot called it’s invariant so that

• Equivalent knots get the same number 

Then, if two knots get different numbers, then they’re not 

equivalent. 

Diagrams 

for the 

same knot

Reidmesiter Same Knot

How do we tell 

if knot 

diagrams are 

definitely 

different

• No guarantee that an assignment tells apart all Knots 

• The more it does so, the better (a more coarse invariant)
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• For a better invariant we need to work with more 

complicated numbers than ℕ = 1,2,3,4, …

• Assign Polynomials to Knots ℤ[𝑡]

𝑝 𝑡 ∈ ℤ 𝑡 ⇒ 𝑝 𝑡 = 𝑎𝑛𝑡
𝑛 + 𝑎𝑛−1𝑡

𝑛−1 +⋯+ 𝑎1𝑡 + 𝑎0

For example 5𝑡3 + 8𝑡2 − 2, 3𝑡7 + 4𝑡3
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• (Euler’s Theorem) A knot diagram with n crossings, 

divides plane into n+2 regions

• Name your regions ( 𝑟1, 𝑟2, ⋯ , 𝑟𝑛+2 ) 
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𝐫𝟑

𝐫𝟒
𝐫𝟓

and crossings ( 𝑐1, 𝑐2, ⋯ , 𝑐𝑛 ) 

• Draw a Matrix (table) with n

rows and n+2 columns

𝐜𝟏

𝐜𝟐

𝐜𝟑

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

𝑀 =

𝑐1
𝑐2
𝑐3

• First Choose an orientation
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WARNING!

Crossing with 3 different regions

(2 out of 4 regions are connected) 

a hidden (I) move: 

𝒕

−𝒕 −𝟏

𝟏

𝒄𝒊

Same Region 

Put the SUM of 

numbers for that 

region, 

i.e. −𝑡 − 1
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det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏
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⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏• “Normalize” the polynomial: i.e. 

- Divide by the smallest power of 𝑡:
−7𝑡5 − 3𝑡3 + 𝟓𝒕𝟐 = 𝑡2 −7𝑡3 − 3𝑡 + 5
⇒ −7𝑡3 − 3𝑡 + 𝟓

- Make highest power of 𝑡 , have a 

positive coefficient

−7𝑡3 − 3𝑡 + 5 ⇒ ×−1 ⇒ 7𝑡3 + 3𝑡 − 5



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏



Alexander Polynomial

• Now you should have a polynomial, for example

det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡 = 𝑡 𝑡2 − 𝑡 + 1

• We made a lot of choice (which regions to delete )

• In my example det 𝑀′ = 𝑡3 − 𝑡2 + 𝑡
⇓

𝒑(𝒕) = 𝒕𝟐 − 𝒕 + 𝟏

(Alexanders’s Theorem, 1928)

The procedure described above gives Knot Invariants
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Invariants: 

Assign a “number” to each Knot called it’s invariant so that

• Equivalent knots get the same number 

Then, if two knots get different numbers, then they’re not equivalent. 

• No guarantee that an assignment tells apart all Knots 

• The more it does so, the better (a more coarse invariant)

• Tells knots of n <9 crossings apart 
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Invariants: 

Equivalent knots get the same number 

Reidmeister: 

Equivalent knots are connected by finitely               

many Reidmeister Moves

Need to check if Alexander Polynomial doesn’t change 

after a Reidmeister move! 
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Fundamental Group 

𝑓

𝑔

𝑔 ∙ 𝑓

(Associativity) Order doesn’t matter  ℎ ∙ 𝑔 ∙ 𝑓 = ℎ ∙ (𝑔 ∙ 𝑓)
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Theorem. The (isomorphism type) fundamental group 
of a knot, is a knot invariant. 
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Pictures used from
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