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(and how to tame them...)

Knots

By Aryan Ghobadi
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* Mathematical results might not solve the big problem at first but add to
overall Mathematical knowledge

« Good mathematics should connect with other good mathematics!
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What are Knots?

A closed “line” in 3 dimensional space, without intersection

(a) Unknot

 More formally:

A “smooth” function f:[0,1] » R3 such that f(0) = f(1) and that’s
the only case where f(x) = f(y), for x # y.
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« As 2 dimensional diagrams

OV®

* Crossing behind and in front in 3 dimensional space are

represented as
K X
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Topological View

We care about the “Topology” of Knots.

Bending, stretching, squeezing, moving in 3
dimensions does not matter

 More formally: (Ambient Isotopy)

Given two knots k, k:[0,1] —» R3 , there exists a continuous map
F:R3x[0,1] » R3

Such that F(k(x),0) = k(x) and F(k(x),1) = k(x).
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« Equivalent knots get the same number

Then, if two knots get different numbers, then they’re not
equivalent.




How to tell Knots apart?

How do we tell

Diagrams if knot
for the Same Knot diagrams are
same knot definitely
different

Answer: (Invariance)
Assign a “number” to each Knot called it’s invariant so that
« Equivalent knots get the same number

Then, if two knots get different numbers, then they’re not
equivalent.

« No guarantee that an assignment tells apart all Knots
« The more it does so, the better (a more coarse invariant)
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 For a better invariant we need to work with more
complicated numbers than N = {1,2,3,4, ...}
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For example 5t3 + 8t% — 2, 3t7 + 4¢3
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Alexander Polynomial

First Choose an orientation

(Euler’s Theorem) A knot diagram with n crossings,
divides plane into n+2 regions

Name your regions (7,15, , Ttp )

and crossings (¢q,cy,++, ¢, )

Draw a Matrix with n rows and
n+2 columns

rn T T3 Ty Tg

C1 C3
M =C; (
C3
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« Fill Matrix: For each crossing c;, (row i)
- use the following pictures to fill the columns of its 4
neighboring regions

- and 0 in all other entries
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WARNING!

Crossing with 3 different regions
(2 out of 4 regions are connected)

a hidden (I) move:
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WARNING!

Crossing with 3 different regions
(2 out of 4 regions are connected)

a hidden (I) move:

Put the SUM of
numbers for that
region,

l.e. —t—1

N

Same Region
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Alexander Polynomial

 You should have a matrix like this:
—t t 1 -1 0
M=|-t 1 0 -1 t
—t 0 t -1 1

« Choose two neighboring regions, for example r,, =

« Delete their columns, to get a square matrix

—t t 1
M'=—t10
—t 0 t
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« The final step is to calculate the determinant of this
matrix

« Open https://www.wolframalpha.com/

¥ WolframAlpha

Enter what you want to calculate or know about:

[ determinant of { {-t,t,1}, {-t,1,0}, {-t.0t } } E }
A P

o
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 Now you should have a polynomial, for example
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Alexander Polynomial

 Now you should have a polynomial, for example
dettM) =t3—t?+t=t(t?—-t+1)
« We made a lot of choice (which regions to delete )

« In my example det(M') =¢t3 —t? +t
U

p(t) =t*—t+1

(Alexanders’s Theorem, 1928)
The procedure described above gives Knot Invariants
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« First Choose an orientation

* (Euler’s Theorem) A knot diagram with n crossings,
divides plane into n+2 regions

« Name your regions ( r, 75, -+, Thio )
and crossings (c¢q,cy, -+, ¢, )

« Draw a Matrix with n rows and n+2 columns
rn T T3 T4 T5

C1
M=c2< )
C3
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Invariants:

Assign a “number” to each Knot called it’s invariant so that

« Equivalent knots get the same number

Then, if two knots get different numbers, then they’re not equivalent.

« No guarantee that an assignment tells apart all Knots
« The more it does so, the better (a more coarse invariant)

Number of ...

pa

crossings 2 3 4 5 6 7 8 [9 10 11

knots 0O 1 1 2 3 7 21 [49] 165 552

number of Alexander polynomials 0 1 1 2 3 7 21 |48 150 419
\V

« Tells knots of n <9 crossings apart
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How do we prove Alexander’s
Polynomial is a Knot Invariant?

Invariants:

Equivalent knots get the same number
Reidmeister:

Equivalent knots are connected by finitely

many Reidmeister Moves

L 4

Need to check if Alexander Polynomial doesn’t change
after a Reidmeister move!
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Polynomial is a Knot Invariant?

bl

N\

« This move kills off 2 (columns) and 2 rows (crossings)!
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Knots appear in:

- DNA
« Mixing Liquids
e« Sun’s Corona

f:[0,1] » R3 such
that f£(0) = f(1) and
that’s the only case

where f(x) = f(»),

for x = y.

Such as Alexander’s
Polynomial
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« Good mathematics should

connect with other good

mathematics!

Fox

Calculus

Sophisticated
explanation of
why what we did
works

Producing
new knot
Invariants

Non-commutative

Geometry

Space-time
coordinates
where
Xy # yx

Hopf Algebras

| work somewhere here

Representation

Theory



Slides will be in the “Outreach/Engagement” tab on my
Website: http://maths.gmul.ac.uk/~ghobadi/welcome.html
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Pictures used from

https://en.wikipedia.org/wiki/List_of mathematical knots and_links
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https://wildandnoncompactknots.wordpress.com/
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