
(and how to tame them...)

By Aryan Ghobadi

Nature
Mathematical Model

- Mathematical results might not solve the big problem at first but add to overall Mathematical knowledge
- Good mathematics should connect with other good mathematics!

What are Knots?

What are Knots?

- A closed "line" in 3 dimensional space, without intersection

What are Knots?

- A closed "line" in 3 dimensional space, without intersection

(a) Unknot

(b) Trefoil

(c) Figure eight

What are Knots?

- A closed "line" in 3 dimensional space, without intersection

(a) Unknot

(b) Trefoil

(c) Figure eight
- More formally:

A "smooth" function $f:[0,1] \rightarrow \mathbb{R}^{3}$ such that $f(0)=f(1)$ and that's the only case where $f(x)=f(y)$, for $x \neq y$.

How do we look at Knots?

How do we look at Knots?

- As 2 dimensional diagrams

(a) Unknot

(b) Trefoil

(c) Figure eight

How do we look at Knots?

- As 2 dimensional diagrams

How do we look at Knots?

- As 2 dimensional diagrams

How do we look at Knots?

- As 2 dimensional diagrams

- Crossing behind and in front in 3 dimensional space are represented as

Topological View

Topological View

- We care about the "Topology" of Knots.
- Bending, stretching, squeezing, moving in 3 dimensions does not matter

Topological View

- We care about the "Topology" of Knots.
- Bending, stretching, squeezing, moving in 3 dimensions does not matter

Topological View

- We care about the "Topology" of Knots.
- Bending, stretching, squeezing, moving in 3 dimensions does not matter

Topological View

- We care about the "Topology" of Knots.
- Bending, stretching, squeezing, moving in 3 dimensions does not matter

Topological View

- We care about the "Topology" of Knots.
- Bending, stretching, squeezing, moving in 3 dimensions does not matter
- More formally: (Ambient Isotopy)

Given two knots $k, \bar{k}:[0,1] \rightarrow \mathbb{R}^{3}$, there exists a continuous map

$$
F: \mathbb{R}^{3} \times[0,1] \rightarrow \mathbb{R}^{3}
$$

Such that $F(k(x), 0)=k(x)$ and $F(k(x), 1)=\bar{k}(x)$.

How to tell Knots apart?

How to tell Knots apart?

- One Knot has INFINITELY many equivalent Diagrams.
- Mathematical idea: Find least Crucial Moves

How to tell Knots apart?

- One Knot has INFINITELY many equivalent Diagrams.
- Mathematical idea: Find least Crucial Moves

Reidmeister Moves

Reidmeister Moves
(I) $\rho \leftrightarrow \mid \longleftrightarrow \rho \quad$ (III
"将

Reidmeister Moves

- More formally: (Reidmeister's Theorem, 1927)

Given two knots $k, \bar{k}:[0,1] \rightarrow \mathbb{R}^{3}$, they are equivalent if and only if one can be transformed to the other by finitely many Reidmeister moves.

Reidmeister Moves

- More formally: (Reidmeister's Theorem, 1927)

Given two knots $k, \bar{k}:[0,1] \rightarrow \mathbb{R}^{3}$, they are equivalent if and only if one can be transformed to the other by finitely many Reidmeister moves.

Do all possible (I) moves at least!

Reidmeister Moves

Do all possible (I) moves at least!

Reidmeister Moves
(I) $\rho \leftrightarrow \mid \longleftrightarrow \rho \quad$ (III
"将

$$
\begin{aligned}
& \text { Reidmeister Moves } \\
& \text { (I) } \quad \supset \leftrightarrow \mid \longleftrightarrow \rho \quad \text { (III) } \\
& x^{x}-x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \because 4-1+n
\end{aligned}
$$

How to tell Knots apart?

```
Diagrams
    for the }\sum\mathrm{ Reidmesiter }\\mathrm{ Same Knot
same knot
```

How do we tell if knot diagrams are definitely different

How to tell Knots apart?

Diagrams
for the Σ Reidmesiter \quad Same Knot same knot

How do we tell if knot diagrams are definitely different

How to tell Knots apart?

```
Diagrams
    for the }\sum\mathrm{ Reidmesiter }\\mathrm{ Same Knot
same knot
```

How do we tell if knot diagrams are definitely different

How to tell Knots apart?

Diagrams
for the Σ Reidmesiter Same Knot same knot

How do we tell if knot diagrams are definitely different

Answer: (Invariance)

Assign a "number" to each Knot called it's invariant so that

- Equivalent knots get the same number

Then, if two knots get different numbers, then they're not equivalent.

How to tell Knots apart?

Diagrams
for the \sum Reidmesiter Same Knot
same knot

How do we tell
if knot
diagrams are
definitely
different

Answer: (Invariance)

Assign a "number" to each Knot called it's invariant so that

- Equivalent knots get the same number

Then, if two knots get different numbers, then they're not equivalent.

- No guarantee that an assignment tells apart all Knots
- The more it does so, the better (a more coarse invariant)

Ideas for Invariants

Ideas for Invariants

- Crossing Number (not an invariant) - Least Crossing Number (invariant)

Ideas for Invariants

- Crossing Number (not an invariant) - Least Crossing Number (invariant)

Ideas for Invariants

Ideas for Invariants

Ideas for Invariants

76
77

- For a better invariant we need to work with more complicated numbers than $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Assign Polynomials to Knots $\mathbb{Z}[t]$

$$
p(t) \in \mathbb{Z}[t] \Rightarrow p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

For example $5 t^{3}+8 t^{2}-2,3 t^{7}+4 t^{3}$

- For a better invariant we need to work with more complicated numbers than $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Assign Polynomials to Knots $\mathbb{Z}[t]$

$$
p(t) \in \mathbb{Z}[t] \Rightarrow p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

For example $5 t^{3}+8 t^{2}-2,3 t^{7}+4 t^{3}$

- For a better invariant we need to work with more complicated numbers than $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Assign Polynomials to Knots $\mathbb{Z}[t]$

$$
p(t) \in \mathbb{Z}[t] \Rightarrow p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

For example $5 t^{3}+8 t^{2}-2,3 t^{7}+4 t^{3}$

- For a better invariant we need to work with more complicated numbers than $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Assign Polynomials to Knots $\mathbb{Z}[t]$

$$
p(t) \in \mathbb{Z}[t] \Rightarrow p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

For example $5 t^{3}+8 t^{2}-2,3 t^{7}+4 t^{3}$

- For a better invariant we need to work with more complicated numbers than $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Assign Polynomials to Knots $\mathbb{Z}[t]$

$$
p(t) \in \mathbb{Z}[t] \Rightarrow p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

For example $5 t^{3}+8 t^{2}-2,3 t^{7}+4 t^{3}$

- For a better invariant we need to work with more complicated numbers than $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Assign Polynomials to Knots $\mathbb{Z}[t]$

$$
p(t) \in \mathbb{Z}[t] \Rightarrow p(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

For example $5 t^{3}+8 t^{2}-2,3 t^{7}+4 t^{3}$

Alexander Polynomial

Alexander Polynomial

- First Choose an orientation

Alexander Polynomial

- First Choose an orientation

Alexander Polynomial

- First Choose an orientation

Alexander Polynomial

- First Choose an orientation

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$)

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$)

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$)

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$)
and crossings ($c_{1}, c_{2}, \cdots, c_{n}$)

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$)
and crossings ($c_{1}, c_{2}, \cdots, c_{n}$)

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$) and crossings ($c_{1}, c_{2}, \cdots, c_{n}$)
- Draw a Matrix with \underline{n} rows and $\underline{n+2}$ columns

Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$) and crossings ($c_{1}, c_{2}, \cdots, c_{n}$)
- Draw a Matrix with \underline{n} rows and $\underline{n+2}$ columns

$$
M=\begin{array}{lllll}
\\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\left(\begin{array}{lllll}
r_{1} & r_{2} & r_{3} & r_{4} & r_{5} \\
& & & & \\
& & & &
\end{array}\right)
$$

Alexander Polynomial

c_{i}

Alexander Polynomial

- Fill Matrix: For each crossing c_{i}, (row i)
- use the following pictures to fill the columns of its 4 neighboring regions
- and 0 in all other entries

Alexander Polynomial

- Fill Matrix: For each crossing c_{i}, (row i)
- use the following pictures to fill the columns of its 4 neighboring regions
- and 0 in all other entries

Alexander Polynomial

- Fill Matrix: For each crossing c_{i}, (row i)
- use the following pictures to fill the columns of its 4 neighboring regions
- and 0 in all other entries

Alexander Polynomial

WARNING!

Crossing with 3 different regions
 (2 out of 4 regions are connected)

a hidden (I) move:

WARNING!

Crossing with 3 different regions
 (2 out of 4 regions are connected)

a hidden (I) move:

WARNING!

Crossing with 3 different regions
 (2 out of 4 regions are connected)

a hidden (I) move:

WARNING!

Crossing with 3 different regions
 (2 out of 4 regions are connected)

a hidden (I) move:

WARNING!

Crossing with 3 different regions
 (2 out of 4 regions are connected)

a hidden (I) move:

Put the SUM of numbers for that region,
i.e. $-t-1$

Same Region

Alexander Polynomial

Alexander Polynomial

- You should have a matrix like this:

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

- Choose two neighboring regions, for example r_{4}, r_{5}
- Delete their columns, to get a square matrix

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

Alexander Polynomial

- You should have a matrix like this:

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

- Choose two neighboring regions, for example r_{4}, r_{5}
- Delete their columns, to get a square matrix

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

Alexander Polynomial

- You should have a matrix like this:

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

- Choose two neighboring regions, for example r_{4}, r_{5}
- Delete their columns, to get a square matrix

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

Alexander Polynomial

- You should have a matrix like this:

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

- Choose two neighboring regions, for example r_{4}, r_{5}
- Delete their columns, to get a square matrix

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

Alexander Polynomial

- You should have a matrix like this:

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

- Choose two neighboring regions, for example r_{4}, r_{5}
- Delete their columns, to get a square matrix

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

Alexander Polynomial

- You should have a matrix like this:

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 0 \\
-t & 1 & 0 & -1 & t \\
-t & 0 & t & -1 & 1
\end{array}\right)
$$

- Choose two neighboring regions, for example r_{4}, r_{5}
- Delete their columns, to get a square matrix

$$
M=\left(\begin{array}{lllll}
-t & t & 1 & -1 & 1 \\
-t & 1 & 0 & -1 & 1 \\
-t & 0 & t & -1 & 1
\end{array}\right) \quad M^{\prime}=\left(\begin{array}{lll}
-t & t & 1 \\
-t & 1 & 0 \\
-t & 0 & t
\end{array}\right)
$$

Alexander Polynomial

Alexander Polynomial

- The final step is to calculate the determinant of this matrix

Alexander Polynomial

- The final step is to calculate the determinant of this matrix
- Open https://www.wolframalpha.com/

Alexander Polynomial

- The final step is to calculate the determinant of this matrix
- Open https://www.wolframalpha.com/

WolframAlpha

Enter what you want to calculate or know about:

Alexander Polynomial

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow \\
\boldsymbol{p}(\boldsymbol{t})=\boldsymbol{t}^{\mathbf{2}-\boldsymbol{t}+\mathbf{1}}
\end{gathered}
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow \\
\boldsymbol{p}(\boldsymbol{t})=\boldsymbol{t}^{\mathbf{2}-\boldsymbol{t}+\mathbf{1}}
\end{gathered}
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow \\
\boldsymbol{p}(\boldsymbol{t})=\boldsymbol{t}^{\mathbf{2}-\boldsymbol{t}+\mathbf{1}}
\end{gathered}
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow
\end{gathered}
$$

- "Normalize" the polynomial: i.e.
- Take powers of t until a constant appears
$-7 t^{5}-3 t^{3}+5 t^{2}=t^{2}\left(-7 t^{3}-3 t+5\right)$
$\Rightarrow \quad-7 t^{3}-3 t+5$
Make Top power have coefficient positive

$$
-7 t^{3}-3 t+5 \Rightarrow \quad 7 t^{3}+3 t-5
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{gathered}
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
\Downarrow \\
\boldsymbol{p}(\boldsymbol{t})=\boldsymbol{t}^{\mathbf{2}-\boldsymbol{t}+\mathbf{1}}
\end{gathered}
$$

Alexander Polynomial

- Now you should have a polynomial, for example

$$
\operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t=t\left(t^{2}-t+1\right)
$$

- We made a lot of choice (which regions to delete)
- In my example

$$
\begin{aligned}
& \operatorname{det}\left(M^{\prime}\right)=t^{3}-t^{2}+t \\
& \Downarrow \\
& \boldsymbol{p}(\boldsymbol{t})=\boldsymbol{t}^{\mathbf{2}}-\boldsymbol{t}+\mathbf{1}
\end{aligned}
$$

(Alexanders's Theorem, 1928)
The procedure described above gives Knot Invariants

Assumptions for Alexander Polynomial

Assumptions for Alexander Polynomial

- First Choose an orientation

Assumptions for Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions

Assumptions for Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions
- Name your regions ($r_{1}, r_{2}, \cdots, r_{n+2}$) and crossings ($c_{1}, c_{2}, \cdots, c_{n}$)
- Draw a Matrix with \underline{n} rows and $\underline{n+2}$ columns

$$
M=\begin{gathered}
c_{1} \\
c_{2} \\
c_{3}
\end{gathered}(
$$

Assumptions for Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions

Assumptions for Alexander Polynomial

- First Choose an orientation
- (Euler's Theorem) A knot diagram with n crossings, divides plane into $n+2$ regions

Invariants:

Assign a "number" to each Knot called it's invariant so that

- Equivalent knots get the same number

Then, if two knots get different numbers, then they're not equivalent.

- No guarantee that an assignment tells apart all Knots
- The more it does so, the better (a more coarse invariant)

Invariants:

Assign a "number" to each Knot called it's invariant so that

- Equivalent knots get the same number

Then, if two knots get different numbers, then they're not equivalent.

- No guarantee that an assignment tells apart all Knots
- The more it does so, the better (a more coarse invariant)

Number of ...										
crossings	2	3	4	5	6	7	8	9	10	11
knots	0	1	1	2	3	7	21	49	165	552
number of Alexander polynomials	0	1	1	2	3	7	21	48	150	419

Invariants:

Assign a "number" to each Knot called it's invariant so that

- Equivalent knots get the same number

Then, if two knots get different numbers, then they're not equivalent.

- No guarantee that an assignment tells apart all Knots
- The more it does so, the better (a more coarse invariant)

Number of \ldots										
crossings	2	3	4	5	6	7	8	9	10	11
knots	0	1	1	2	3	7	21	49	165	552
number of Alexander polynomials	0	1	1	2	3	7	21	48	150	419

Invariants:

Assign a "number" to each Knot called it's invariant so that

- Equivalent knots get the same number

Then, if two knots get different numbers, then they're not equivalent.

- No guarantee that an assignment tells apart all Knots
- The more it does so, the better (a more coarse invariant)

Number of \ldots										
crossings	2	3	4	5	6	7	8	9	10	11
knots	0	1	1	2	3	7	21	49	165	552
number of Alexander polynomials	0	1	1	2	3	7	21	48	150	419

- Tells knots of $\mathrm{n}<9$ crossings apart

How do we prove Alexander's Polynomial is a Knot Invariant?

How do we prove Alexander's Polynomial is a Knot Invariant?

Invariants:
Equivalent knots get the same number

How do we prove Alexander's Polynomial is a Knot Invariant?

Invariants:
Equivalent knots get the same number Reidmeister:

Equivalent knots are connected by finitely many Reidmeister Moves

How do we prove Alexander's Polynomial is a Knot Invariant?

Invariants:
Equivalent knots get the same number Reidmeister:

Equivalent knots are connected by finitely many Reidmeister Moves

Need to check if Alexander Polynomial doesn't change after a Reidmeister move!

How do we prove Alexander's Polynomial is a Knot Invariant?

How do we prove Alexander's Polynomial is a Knot Invariant? (I)

How do we prove Alexander's Polynomial is a Knot Invariant?

- This move kills off 2 (columns) and 2 rows (crossings)!

How do we prove Alexander's Polynomial is a Knot Invariant?

- This move kills off 2 (columns) and 2 rows (crossings)!

Nature

Mathematical Model

Knots appear in:

- DNA
- Mixing Liquids
- Sun's Corona

Mathematical Theory

Mathematical Results

Nature

Mathematical Model

Knots appear in:

- DNA
- Mixing Liquids
- Sun's Corona

Mathematical Theory

Mathematical Results

Nature

Mathematical Model

Knots appear in:

- DNA
- Mixing Liquids
- Sun's Corona

Mathematical Theory

Mathematical Results

Nature

Mathematical Model

Knots appear in:

- DNA
- Mixing Liquids
- Sun's Corona

Mathematical Theory

Mathematical Results

Nature

A "smooth" function $f:[0,1] \rightarrow \mathbb{R}^{3}$ such that $f(0)=f(1)$ and
Knots appear in: that's the only case where $f(x)=f(y)$, for $x \neq y$.

- DNA
- Mixing Liquids
- Sun's Corona
for $x \neq y$.

Mathematical Theory

Mathematical Results

Nature

A "smooth" function

Knots appear in:

- DNA
- Mixing Liquids
- Sun's Corona
$f:[0,1] \rightarrow \mathbb{R}^{3}$ such that $f(0)=f(1)$ and that's the only case
where $f(x)=f(y)$, that's the only cas
where $f(x)=f(y)$, for $x \neq y$.

Mathematical Theory

Such as Alexander's
Polynomial

Mathematical Results

- Good mathematics should connect with other good mathematics!

Knots

- Good mathematics should connect with other good mathematics!

- Good mathematics should connect with other good mathematics!

- Good mathematics should connect with other good mathematics!

- Good mathematics should connect with other good mathematics!

- Good mathematics should connect with other good mathematics!

Slides will be in the "Outreach/Engagement" tab on my Website: http://maths.qmul.ac.uk/~ghobadi/welcome.html

Bibliography and Recommended Texts

- J.W. Alexander, Topological Invariants of Knots and Links, Transactions of the AMS, Vol 30, 1928 p 275-306
- Colin C. Adams, The Knot Book, American Mathematical Society, ISBN-13: 978-0821836781
- Andrew Ranniki's Website has some great links
- Edward Long, Topological Invariants of Knots: Three Routes to Alexander's Polynomial, Manchester University, 2005
- Will Adkison, An Overview of Knot Invariants

Pictures used from

- https://en.wikipedia.org/wiki/List_of_mathematical_knots_and_links
- http://math201s09.wikidot.com/richeson-knot
- http://blog.kleinproject.org/?p=2130
- https://wildandnoncompactknots.wordpress.com/
- https://math.stackexchange.com/questions/1436652/list-of-number-of-knots-distinguished-by-alexander-polynomials?rq=1

