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5 Posets and Möbius inversion
Möbius inversion can be viewed as a generalisation of the inclusion-exclusion
principle with an apparatus to keep track of how the conditions intersect, as an
apparatus to reduce the number of terms. The apparatus, that of partial orders,
turns out to be of great combinatorial utility in its own right.

5.1 The inclusion-exclusion principle
Often we are in the situation where we have a number of conditions on a set
of combinatorial objects, and we have information about the number of objects
which satisfy various combinations of these conditions (inclusion), while we want
to count the objects satisfying none of the conditions (exclusion), or perhaps satis-
fying some but not others. What is known as the sieve method is of general use in
this situation: overcount the objects satisfying the conditions, and then make cor-
rections and subtract off elements that have been multiply counted, and so forth.
The sieve of Eratosthenes gave its name to the class (although, alone, it’s not es-
pecially helpful for the enumeration of primes): the primes are the integers which
satify none of the conditions of having the forms 2n,3n,5n,7n, . . . for n≥ 2.

Let A1, ...,An be subsets of a finite set X . For any non-empty subset J of the
index set [n], we put

AJ =
⋂
j∈J

A j,

and take A /0 = X by convention.

Theorem 5.1 (Inclusion-Exclusion Principle) The number of elements of X ly-
ing in none of the sets Ai is equal to

∑
J⊆[n]

(−1)|J||AJ|.

Proof The expression in the theorem is a linear combination of the cardinalities
of the sets AJ , and so we can calculate it by working out, for each x ∈ X , the
contribution of x to the sum. If K is the set of all indices j for which x ∈ A j, then
x contributes to the terms involving sets J ⊆ K, and the contribution is

∑
J⊆K

(−1)|J|.
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Just as in Proposition 2.3, this is the sum of the terms encountered when expanding
the product

∏
k∈K

(1−1) =

{
1 |K|= 0
0 otherwise.

So the points with K = /0 (those lying in no set Ai) each contribute 1 to the sum,
and the remaining points contribute nothing. So the theorem is proved.

Here are some examples.

(1) In section 2.4 we counted the surjective functions from [n] to [k], obtaining
the number k!S(n,k). We can also apply inclusion-exclusion. Let X be the
set of all functions f : [n]→ [k], and Ai the set of functions whose range
does not include the point i. Then AJ is the set of functions whose range
includes none of the points of J, that is, functions from [n] to [k] \ J; so
|AJ| = (k− j)m when |J| = j. A function is a surjection if and only if it
lies in none of the sets Ai. Collapsing together all the terms with |J|= j for
each j, the inclusion-exclusion formula for the number of surjections is

∑
j
(−1) j

(
k
j

)
(k− j)n.

We thus get an alternating sum for the Stirling number of the second kind,

S(n,k) =
n

∑
j=0

(−1) j(k− j)n

j!(k− j)!
.

(2) We can count derangements similarly. Let X be the set of all permutations
of [n], and Ai the set of permutations fixing i. Then A j is the set of per-
mutations fixing every point in J; so |AJ| = (n− j)! when |J| = j. The
permutations lying in none of the sets Ai are the derangements, and so their
number is

∑
j
(−1) j

(
n
j

)
(n− j)! = n!

n

∑
j=0

(−1) j

j!
,

agreeing with example (6) of Section 4.

(3) Number theory was one of the first subjects in which Möbius inversion,
to be discussed below, found application. The formula for Euler’s totient
function,

φ(n) = #{k ∈ Z : 0≤ k < n,gcd(k,n) = 1},
can be seen in this light. Let n = pa1

1 · · · pae
e be the prime factorisation of n,

so that gcd(k,n) = 1 iff no pi divides n.
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Hence take Ai to be the set of nonmultiples of p in X = {0, . . . ,n−1}. The
elements of AJ for J ⊆ [e] are the multiples of ∏ j∈J pJ , of which there are
n/∏ j∈J pJ . Hence

φ(n) = ∑
J⊆[e]

(−1)|J|
n

∏ j∈J pJ

= n
(

1− 1
p1

)
· · ·
(

1− 1
pe

)
.

To count the elements of X in exactly a given collection of the sets Ak, those
with k ∈ K, we apply the inclusion-exclusion principle taking AK for X .

Corollary 5.2 The number of elements of X lying in exactly the sets Ak for k ∈ K
but no others is

∑
K⊆J⊆[n]

(−1)|J|−|K||AJ|.

Since this can be done for each K, the corollary can be interpreted as giving a
change of basis between the set of indicator functions of the AJ and the set of
indicator functions of the sets of elements in exactly the sets Ak but none of the
remaining ones. The components of the vectors being transformed need not be
natural numbers for the linear algebra to go through:

Proposition 5.3 Let elements aJ and bJ of an abelian group (G,+) be given for
each subset J of [n]. Then the following are equivalent:

(a) aJ = ∑
J⊆I⊆[n]

bI for all J ⊆ [n];

(b) bJ = ∑
J⊆I⊆[n]

(−1)|I|−|J|aI for all J ⊆ [n].

By taking aJ to depend only on |J|, we recover the change-of-basis result for
binomial coefficients at the end of Section 2.3.2.

5.2 Posets
A partial order on a set X is a binary relation≤ on X which satisfies the following
conditions:

• reflexivity: x≤ x;

• antisymmetry: if x≤ y and y≤ x then x = y;
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• transitivity: if x≤ y and y≤ z then x≤ z.

A set bearing a partial order is very frequently called a poset, for “partially ordered
set”.

We use other inequality symbols for relations based on ≤ in the obvious way:
so x ≥ y means y ≤ x, and x < y means x ≤ y and x 6= y. Note that there may be
incomparable pairs of elements in a poset, that is pairs x and y with neither x≤ y
nor x ≥ y; as such, x < y does not mean x 6≥ y. A total order is a partial order in
which every pair of elements is comparable.

We say x covers y, and write x l y, if x < y and there exists no z ∈ X such
that x < z < y. A poset X is conventionally drawn as a Hasse diagram, which is a
graph-type picture with a vertex for each element of X and an edge going up from
x to y for each covering relation x l y. The figure below is a Hasse diagram for a
poset on [7], under which for example 3 < 2 but 3 is incomparable to 4, and 7 is
not comparable to any other element.

1

2
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5

4

6

7

An interval in a poset X is a subset of form

[x,y] := {z ∈ X : x≤ z≤ y}

for x,y∈X . This interval is itself a poset, and one that contains a unique minimum
x and a unique maximum y. We often use the name 0̂ for the unique minimum el-
ement of any poset that has one, and 1̂ for the unique maximum element likewise.

Some standard examples of posets are:

(1) For n ∈ N, the poset n is the set [n] with the usual partial order on integers.
This is in fact a total order. So are N and Z with their usual order.

(2) The Boolean lattice Bn is the poset of subsets of [n] ordered by containment,
S≤ T iff S⊆ T .

(3) The partition lattice Πn is the poset of set partitions of [n] ordered by re-
finement, i.e. π ≤ ρ iff every part of the partition π is a subset of some part
of the partition ρ .
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An isomorphism f : P ∼→ Q of posets is a bijection of the underlying sets
preserving the order, i.e. x≤ y if and only if f (x)≤ f (y).

Given two posets P and Q, their product P×Q is the poset whose underlying
set is the Cartesian product P×Q, with (p,q)≤ (p′,q′) iff p≤ p′ and p≤ q′. For
example, Bn is isomorphic to the n-fold product of 2.

(4) For n a positive integer, the poset Dn of positive divisors of n bears the
order by divisibility, a≤ b iff a | b. If n = pa1

1 · · · pae
e is the prime factorisa-

tion of n, then Dn is isomorphic to b1×·· ·×be, where bi = ai + 1 (due to
typographical awkwardness).

We can also define the poset of all positive integers under divisibility. We’d
like to say this is isomorphic to a countable direct product of N. The requi-
site definition cannot quite be made naturally at the level of posets, though,
as we must demand that all but finitely many elements of the factors N are 0,
and the element 0 ∈ N has no distinguished role.

We define a few more items of terminology. The opposite of a poset (X ,≤) is
the poset (X ,≥), that is the poset with the same underlying set but order relations
reversed. A chain in a poset is a sequence of elements x0, . . . ,xk such that

x0 < · · ·< xk;

we also call the set {x0, . . . ,xk} a chain. A multichain is a sequence of elements
x0, . . . ,xk such that

x0 ≤ ·· · ≤ xk.

So a multichain can repeat elements, where a chain cannot; the name is by analogy
to “set” vs. “multiset”. The chain and the multichain above each have length k —
that is, the length is the number of relations, not the number of elements.

We will deal mostly with finite posets here. The class of infinite posets to
which some of our results will extend are those that are locally finite. A partially
ordered set X is locally finite if, for any x,y∈ X , the interval [x,y] is finite. Most of
our above examples of finite posets have locally finite analogues with an infinite
ground set.

5.3 The incidence algebra and Möbius inversion
Let R be a ring; for the purposes of enumeration we will want Z ⊆ R. The inci-
dence algebra I(X) of a finite, or more generally locally finite, partially ordered
set X , over R, is defined to be the set of all functions f : X ×X → R which have
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the property that f (x,y) = 0 unless x ≤ y. The algebra structure is the one given
by regarding these functions as matrices whose (x,y)th entry is f (x,y). That is,

( f +g)(x,y) = f (x,y)+g(x,y),

( f g)(x,y) = ∑
z

f (x,z)g(z,y).

We will nearly always omit the ring R from the notation, as above, but will write
the incidence algebra as IR(X) when we wish to foreground it.

The identity element of the incidence algebra is given by

1(x,y) =

{
1 x = y
0 otherwise.

Proposition 5.4 An element f ∈ I(X) is invertible if and only if each entry I(x,x)
is invertible (on the same side) in R.

In particular, if invertible elements of R have two-sided inverses, then the same is
true of I(X). This proof is much the same as that of Proposition 3.1: the equation
f g = 1 gives a recurrence for entries of g that can be solved on larger and larger
intervals sequentially, and only diagonal entries of f ever need to be inverted.

The zeta function of X is the element ζ ∈ I(X) given by

ζ (x,y) = 1

for all x ≤ y in X . So the zeta function has the largest possible support of any
element of the incidence algebra. We compute

ζ
2(x,y) = ∑

z
ζ (x,z)ζ (z,y) = ∑

x≤z≤y
1 = |[x,y]|

and more generally
ζ

n(x,y) = ∑
x≤z1≤···zn−1≤y

1,

the number of multichains from x to y of length n. Similarly, since

(ζ −1)(x,y) =

{
1 x < y
0 otherwise,

we get that (ζ − 1)n(x,y) is the number of chains from x to y of length n, so the
generating function for chains by their length is the geometric series

1+(ζ −1)t +(ζ −1)2t2 + · · ·= 1
1− t(ζ −1)

, (1)
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written in the indeterminate t. For instance, setting t = 1 shows that 1/(2−ζ ) is
the unweighted enumerator for all chains.

The Möbius function of X is the inverse of the zeta function, which exists by
Proposition 5.4. Due to its importance, we spell the defining recurrence out:

µ(x,y) =

1 x = y
− ∑

x≤z<y
µ(x,z) x < y. (2)

By taking the inverse on the other side, one could also take the sum over x < z≤ y
of µ(z,y). Note that all entries of µ are integers. Indeed, by equation (1) with
t =−1, we have an observation of Philip Hall:

µ(x,y) = c0− c1 + c2− c3 + · · ·

where ci is the number of chains of length i from x to y.

Proposition 5.5 (Möbius inversion) Let X be a poset, and f ,g : X→R functions.
The following are equivalent:

• g(y) = ∑
x≤y

f (x) for all y ∈ X;

• f (y) = ∑
x≤y

g(x)µ(x,y) for all y ∈ X;

The proof is a direct consequence of the fact that ζ and µ are inverses. To for-
malise it the machinery we have developed so far, one can give the set RX of
functions X → R the structure of an R-module by the usual matrix-vector multi-
plication.

5.3.1 Linear extensions

A relation σ is an extension of a relation ρ if x ρ y implies x σ y; that is, if ρ is
a subset of σ , regarding a relation in the usual way as a set of ordered pairs. A
linear extension is an extension which is a total order.

Proposition 5.6 Every partial order has a linear extension.

This theorem is easily proved for finite sets: take any element x which is maxi-
mal in the poset, and declare it maximum in the total order. Then delete x from the
poset and recurse onto the remainder, picking from it the second-largest element
in the total order; repeat in this vein until all elements have been chosen. The

7



proof for infinite sets is harder. The Zermelo-Fraenkel axioms of set theory do not
suffice; an additional principle such as the axiom of choice is required.

Note that, if f is an element of the incidence algebra I(X), then its matrix
is lower triangular if the ordering of the rows and columns is given by a linear
extension of X . So the incidence algebra of any finite poset is isomorphic to a
subalgebra of the algebra of upper-triangular matrices. (However, we do not need
to give a special role to any linear extension of X to develop the theory, just as the
matrix algebra can be defined without a distinguished total order on the row and
column positions).

We may wish to count the linear extensions of a finite poset X . Let e(X) be the
number thereof. For example, e(2×n) is the Catalan number Cn =

(2n
n

)
/(n+1).

If m+n is the disjoint union of the posets m and n with no comparability between
elements of the two, then e(m+n) =

(m+n
m

)
.

A recurrence for e(X) is easy to extract from the proof of the last proposition.

Proposition 5.7 Let x1, . . . ,xk be the maximal elements of a finite poset X. Then

e(X) =
k

∑
i=1

e(X \{xi}).

As a base case, the empty poset /0 has e( /0) = 1.
There is another technique necessitating a bit more setup. An order ideal, or

downset, of a poset X is a subset of X “closed under going down”, i.e. such that
if it contains some x ∈ X then it also contains any element less than or equal to x.
The opposite notion, a subset “closed under going up”, is called an order filter or
upset of X .

If X is a poset, the set of all downsets of X is itself a poset under containment,
denoted J(X). In fact, J(X) is a lattice. A poset is a lattice if, given any two of
its elements x and y, there is a unique least upper bound for both, and a unique
greatest lower bound. The least upper bound is denoted x∨y and called the join of
x and y; the greatest lower bound is denoted x∧ y and called their meet. Note that
every finite lattice has a minimum element 0̂, namely the meet of all its elements,
and a maximum element 1̂, the join of all its elements. As other examples, any
total order is trivially a lattice, with x∨ y = max{x,y} and x∧ y = min{x,y}. The
Boolean lattice and the partition lattice are also lattices, as their names suggest.

Proposition 5.8 Let X be a finite poset. Linear extensions of X are in bijection
with chains of maximal length in J(X).

The bijection sends a linear extension � of X to the chain

{ /0}∪{{y ∈ X : y� x} : x ∈ X}

in J(X).
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5.4 Some Möbius functions
Proposition 5.9 Let X and Y be posets. The Möbius function of the direct product
X×Y is given by

µ((x,y),(x′,y′)) = µ(x,x′)µ(y,y′).

Proof It is enough to show that this product satisfies the recurrence it should, i.e.

∑
x≤x′′≤x′,y≤y′′≤y′

µ(x,x′′)µ(y,y′′) = 0.

Now the left-hand side of this expression factorises as(
∑

x≤x′′≤x′
µ(x,x′′)

)(
∑

y≤y′′≤y′
µ(y,y′′)

)

and the inner sum is zero by the recurrence for the Möbius function on X and Y .

Note that there is a natural isomorphism of incidence algebras IR(X ×Y ) ∼=
IIR(X)(Y ).

(1) The Möbius function of a total order, including the posets n and N and Z
with their usual orders, is

µ(x,y) =


1 x = y
−1 x l y
0 otherwise.

(2) The Möbius function of the Boolean lattice Bn is

µ(S,T ) = (−1)|T |−|S|

for all S ⊆ T . For, by Proposition 5.9, µ(S,T ) is equal to the product over
all i ∈ [n] of a Möbius function in B1 ∼= 2, which is −1 if T contains i but S
does not, and 1 otherwise.

Thus we recognise the Inclusion-Exclusion Principle as Möbius inversion
on the Boolean lattice.

(3) In similar fashion, Proposition 5.9 tells us the Möbius function for the pos-
itive integers under divisibility. It is

µ(m,n) =

{
(−1)s if n/m is the product of s distinct primes
0 otherwise.
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Example (3), recast as a function in a single argument n/m, is the classical
Möbius function of number theory, first of that name.

µ(n) =

{
(−1)s if n is the product of s distinct primes
0 otherwise.

This features in classical Möbius inversion:

Corollary 5.10 Let f and g be functions on the positive integers. Then the fol-
lowing are equivalent:

• g(n) = ∑
m|n

f (x);

• f (n) = ∑
m|n

g(m)µ(n/m).

For instance, we have ∑m|n φ(m) = n, since each element of {0, . . . ,n− 1} has
some greatest common divisor with n, which is a divisor m of n; dividing through
by n/m puts these in bijection with the set counted by φ(m). Möbius inversion
then yields

φ(n) = ∑
m|n

mµ(n/m)

which can be unpacked to the formula in example (3) of Section 5.1.
As a longer example of an application, let us count the monic irreducible poly-

nomials over the finite field of order q. To start with, every monic polynomial is
uniquely a product of monic irreducible polynomials. We express that in ordinary
generating function machinery: if the number of monic irreducibles of degree k is
mk, then

1
1−qx

= ∏
k≥1

(1− xk)−mk .

The right side is the EGF of monic polynomials, while when expanding the left
side, we pick a term from one of mk copies of the geometric series

1+ xn + x2k + · · ·
for each k, encoding how many copies of each of the mk monic irreducibles of
degree k we use in the factorisation. Taking logarithms of both sides, we obtain

∑
n≥1

qnxn

n
=

− log(1−qx) = ∑
k≥1
−mk log(1− xk)

= ∑
k≥1

mk ∑
i≥1

xki

i
.
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The coefficient of xn in the last expression is the sum, over all divisors k of n, of
mk/i = kmk/n. This must be equal to the coefficient on the left, which is qn/n.
We conclude that

qn = ∑
k|n

kmk.

We cannot omit mentioning that there is also an algebraic proof of this last equal-
ity, through which it looks more perspicuous: each of the qn elements α of the
field of order qn has a unique minimal polynomial, which is monic of some de-
gree k with k | n, because the field of order qn is an extension of the field generated
by α . A monic polynomial of degree k has k roots, and the equality follows.

At any rate, Möbius inversion can be used on this last equality, giving us the
formula

mn =
1
n ∑

d|n
qd

µ(n/d).

(4) We find the Möbius function of the partition lattice Πn. Note that any inter-
val in Πn is isomorphically a product of smaller partition lattices: to specify
a partition in the interval [π,ρ], for each block R of ρ we must specify how
those blocks of π contained in R are glued together, and to do this is to
choose an element of Π#{P∈π:P⊆R}. So it is enough to find µn := µ(0̂, 1̂) in
Πn, in terms of n.

The result is that
µn = (−1)n−1(n−1)!.

I know no very direct proof of this, but one approach uses Möbius inversion
in a way cooked so that the single value of the Möbius function we want
is easy to isolate. If π is a set partition of [n], how many q-colourings are
there of the blocks of π? Clearly, qπ . On the other hand, we can count them
according to the partition greater than or equal to π induced by merging
all parts of the same colour together, resulting in a partition coloured with
distinct colours. This gives the right side of the formula

q|π| = ∑
ρ≥π

(q)|ρ|.

Möbius inversion, on the oppoite of the interval [π, 1̂], transforms this to

(q)|π| = ∑
π

µ(π,ρ)q|ρ|.

Now compare coefficients of the linear term in q: on the right this is µ(π, 1̂)=
µ|π| since 1̂ = {[n]} is the only set partition with one part, while on the left
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it is (−1)n−1(n−1)! since we must select the constant term in every factor
but the first from the expansion

q · (q−1) · · ·(q− (n−1)).

Finally, we take a peek at the rich field of topological combinatorics by giving
a topological interpretation of the Möbius function. An abstract simplicial com-
plex ∆ on a set X of vertices is a nonempty collection of subsets (called faces) of X
closed under taking subsets. These simplicial complexes can also be regarded as
topological spaces: the space we associate to ∆, called its realisation |∆|, is a
subset of the Euclidean space RX with basis {ex : x ∈ X}, given as

|∆|=
⋃

F∈∆

conv{ex : x ∈ F}.

Given such a simplicial complex ∆, let fi(∆) be the number of faces of X with i+1
elements; the indexing reflects that the topological counterparts of these faces have
dimension i. The reduced Euler characteristic of ∆ is

χ̃(∆) =− f−1(∆)+ f0(∆)− f1(∆)+ · · · ,

agreeing with the reduced Euler characteristic of |∆|. Note that f−1(∆) = 1, be-
cause /0 ∈ ∆.

The order complex ∆(X) of a poset X is the set of all its chains, which is an
abstract simplicial complex. Philip Hall’s identity implies

Proposition 5.11 Let X be a poset, and X̂ the poset obtained by adjoining a new
minimum element 0̂ and a new maximum element 1̂. Then the Möbius function
µ(0̂, 1̂) in X̂ equals χ̃(∆(X)).

It is also possible to pass from abstract simplicial complex to poset: indeed, the
faces of an abstract simplicial complex are themselves a poset, under inclusion.

Proposition 5.12 Let ∆ be an abstract simplicial complex. Then χ̃(∆) equals the
Mobius function µ(0̂, 1̂) in the poset obtained by adding to ∆, with the relation of
inclusion, a new maximal element 1̂ (but using the extant /0 ∈ ∆ as 0̂).

The passages from complex to poset in Proposition 5.12 and from poset to com-
plex in Proposition 5.11 are not exact inverses of one another. However, beginning
with a simplicial complex ∆ and carrying out both translations yields the new sim-
plicial complex known by topologists as the barycentric subdivision of ∆, which
is homeomorphic to ∆.

Proposition 5.12 is easily proved using Rota’s Crosscut Theorem, taking the
Y in the theorem statement to be the set of singletons.
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Theorem 5.13 (Crosscut Theorem) Let X be a finite lattice, and Y a subset of
X \ 0̂ such that every element of X \ 0̂ is greater than or equal to some element
of Y . Then

µ(0̂,x) = ∑
Z⊆Y :

∨
Z=x

(−1)|Z|,

where
∨

Z is short for
∨

z∈Z z.

The proof easiest to state is to observe that the summation at the right hand side
satisfies the recurrence (2) defining µ(0̂,x), because

∑
z≤x

∑
Z⊆Y :

∨
Z=z

(−1)|Z| = ∑
Z⊆Y :

∨
Z≤x

(−1)|Z|

= ∑
Z⊆{y∈Y :y≤x}

(−1)|Z|

= (1+(−1))|{y∈Y :y≤x}|

by the binomial theorem, and this is 1 if x = 0̂ and 0 otherwise.
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