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4 Species and exponential generating functions
We now consider labelled structures: when these are of “size” n, there is an under-
lying set of “labels” of size n. We usually take this set of labels to be [n]. As such,
a particular kind of labelled structure A is specified by giving the set of structures
labelled by [n], for each n ∈ N.

But it is better for the notion to capture more structure, namely to capture what
it means for there to be a set of labels, and the possibility of relabelling structures
by changing this set, i.e. by replacing this set with another with which it is in
bijection. In 1980 André Joyal introduced the notion of a (combinatorial) species
for this. A species A is a functor from the category of finite sets with bijections
(sometimes called Core(FinSet)) to itself. That is, it assigns to each finite set S a
finite set A (S), the set of S-labelled structures, and to each bijection f : S ∼→ T
of finite sets a corresponding bijection A ( f ) : A (S) ∼→ A (T ). These bijections
must respect identities and composition in Core(FinSet): so A (idS) = idA (S) and
A ( f ◦g) = A ( f )◦A (g).

We continue to allow ourselves the shorthand An = A ([n]), and write an =
|An|. The right generating function to use for species is the exponential generating
function,

A(x) = ∑
n≥0

an
xn

n!
.

Here are some first examples of species:

• The “atomic” species Z , with Z1 = {◦} and Zn empty for n 6= 1, so that
Z(x) = x.

• The species Set of sets. This is the species that imposes no extra structure:
the only set “labelled” by a set S is just S itself. So |Setn|= 1 for all n, and
the generating function is ex.

• The species Tot of total orders. Since a total order on a finite set can be
specified by simply listing the elements from least to greatest, we counted
these in Corollary 2.2, getting |Totn| = n!. So the generating function is
1/(1− x).
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• The species Perm of permutations. A permutation of a set S is a bijection
σ : S→ S. When S = [n] these can also be encoded as lists σ(1), · · · ,σ(n)
of all the elements of S, so again |Permn| = n! and the generating function
is 1/(1− x).

The descriptions of these species are somewhat informal, in that they omit
the bijections A (F). These are supposed to be obvious from the naı̈ve idea of
relabelling structures, and we will continue to pass over them in our definitions of
operations. But they are an important part of the data.

For instance, although the species of total orders and permutations are equinu-
merous, they are not isomorphic species because relabelling acts differently (i.e.
there is no invertible natural transformation between them). Relabelling a permu-
tation acts on both the domain and codomain copies of S, so amounts to conju-
gation: if f : S ∼→ T then Perm( f ) maps σ : S→ S to f ◦σ ◦ f−1. On the other
hand, relabelling a partial order acts “on only one side”. If < is a partial order
on S and f : S ∼→ T then f (a) Tot( f )(<) f (b) iff a < b; the copy of [n], as it were,
that “labels” the position in the ordered list above is unaffected. To see that these
are indeed different, note that the action of a nonidentity permutation f : S→ S
may fix some permutations but can never fix a partial order.

On the other hand, the species Seq of sequences containing each element of a
set once is isomorphic to Tot.

4.1 Operations on exponential generating functions
Let A and B be species. The analogues of our sum and product rules for combi-
natorial classes from the last section are these. (We now use · for multiplication
for conformance with the literature.)

Let A + B be the species which associates to any set S the disjoint union
A (S) ∪̇B(S). That is, an A +B structure is either an A structure or a B struc-
ture.

Proposition 4.1 The generating function of A +B is A(x)+B(x).

Let A ·B be the species given by

(A ·B)(S) =
⋃

T⊆S

A (T )×B(S\T ).

That is, to put an A ·B structure on S, one takes a set partition of S into two parts,
and puts an A structure on one part and a B structure on the other part.

Proposition 4.2 The generating function of A ·B is A(x)B(x).
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Proof If we write cn for (A ·B)n, then

cn = ∑
k

(
n
k

)
akbn−k.

So
cn

n!
= ∑

k

ak

k!
bn−k

(n− k)!

which is the coefficient of xn in A(x)B(x).

Suppose now the species A has A ( /0) = /0. The analogue of the free monoid
construction on the formula level is Seq(A ) := ∑k≥0 A k, where A k again abbre-
viates A · · · · ·A︸ ︷︷ ︸

k

, with A 0 = 1, the species assigning a singleton {ε} to the empty

set and empty sets otherwise. Putting a Seq(A ) structure on S entails taking an
ordered set partition of S into k parts (for whichever k ≥ 0), where the parts need
not be empty, and then putting a A structure on each part.

We might also want to do an unordered set partition of S, where the parts still
need not be empty, and then put some structure A on each part. We’ll call the
corresponding species Set(A ).

Proposition 4.3 The generating function of Seq(A ) is 1/(1−A(x)).

Proposition 4.4 The generating function of Set(A ) is eA(x).

The former of these follows from Proposition 4.2, and the latter by introducing
factors of 1/k!.

Let us analyse some familiar species into these operations.

(1) A total order on S is a totally ordered sequence of elements of S; that is, we
put an ordered set partition on S and then put the structure on the parts that
insists that they be of size 1. So Tot ∼= Seq(Z ), with generating function
1/(1− x), as just above.

Of course, Seq ∼= Seq(Z ) shares this generating function. Likewise, the
species Set is isomorphic to Set(Z ).

(2) The species of set partitions is almost Set(Set): set partitions are set parti-
tions with no extra structure on the parts. But we must disallow empty parts;
so in fact set partitions are Set(Set>0), where the species Set>0 is like Set
except in assigning the empty set to the empty set. That is, Set = 1+Set>0.
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So the exponential generating function for Set>0 is ex− 1, and that for set
partitions is

∑
n≥0

Bn
xn

n!
= eex−1,

where the coefficients are the Bell numbers.

In the same vein, the species of ordered set partitions is Seq(Set>0), so its
egf is

1
1− (ex−1)

=
1

2− ex .

(3) As in Section 2.5, a permutation decomposes into a union of disjoint cycles.
So if Cycle is the species of permutations consisting of a single cycle, then
Perm ∼= Set(Cycle). Writing C(x) for the exponential generating function
of cycles, we have

1
1− x

= eC(x),

i.e.

C(x) =− log(1− x) = ∑
k≥1

xk

k
.

Therefore the number of cycles on k elements is k!/k = (k−1)!. We could
also get this number directly, by bijective considerations: if σ is a cycle
on [k], then the values taken on by σ i(k) as i ranges from 1 to k−1 are the
elements of [k−1] in some order, and there are (k−1)! of these.

The last example shows how to enumerate the connected components of a
known structure: if B = Set(A ), then A(x) = logB(x).

(4) There are 2(n
2) graphs on n vertices, since a graph is simply a subset of

the
(n

2

)
edges of the complete graph. Therefore the exponential generating

function for connected graphs on n vertices is

log ∑
n≥0

2(n
2) zn

n!
,

for which I know of no particularly nice closed form.

Moreover, it is easy to refine the enumeration of B-structures by their number
of components.
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Corollary 4.5 Let B = Set(A ), and let bn,k be the number of B-structures on [n]
with k components, i.e. the nth coefficient of A k. Then

∑
n,k

bn,k
xn

n!
yk = eyA(x) = B(x)y.

The proofs can be seen as a first application of the theory of multisort species,
species on tuples of sets (S1, . . . ,S`) which enter into the structure differently.
These have a generating function theory in an `-variable formal power series ring,
the exponents in each monomial encoding the cardinalities of the underlying sets.
We focus on Corollary 4.5. Take each A -structure to be labelled with elements
of S1 in the usual way and also bear a singleton label from S2. The reason the
yk variable appears without a k! at denominator is that we don’t wish to distin-
guish B-structures in which the different elements of S2 are allotted to different
components.

This applies in example (3) above. Recall that the signless Stirling number of
the first kind, |s(n,k)| = (−1)n−ks(n,k), is the number of permutations of n with
k cycles. By Corollary 4.5, these have a bivariate generating function

∑
k,n
|s(n,k)|x

n

n!
yk =

(
1

1− x

)y

= (1− x)−y

= ∑
n

(
−y
n

)
(−x)n

= ∑
n

y(y+1) · · ·(y+n−1)
xn

n!

= ∑
n

(−1)n(−y)n
xn

n!
.

Extracting coefficients of xn/n! yields the generating function of Proposition 2.13
with the signs altered to make the count signless.

By manipulating the cycle types available, we can count other sets of permu-
tations.

(5) A permutation σ is an involution, i.e. satisfies σ = σ−1, if and only if all
cycles in σ are of lengths 1 or 2. The egf for these cycles is simply x+x2/2,
so the egf for involutions is ex+x2/2.

(6) A derangement is a permutation with no fixed points, i.e. no cycles of
length 1. The egf for cycles that are not fixed points is − log(1− x)− x,
so the generating function for derangements is

∑
n

dn
xn

n!
= e− log(1−x)−x =

e−x

1− x
= e−x + xe−x + x2e−x + · · · ,
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using dn for the number of derangements on [n]. Expanding and extracting
coefficients of xn gives

dn

n!
=

(−1)n

n!
+

(−1)n−1

(n−1)!
+ · · ·+ (−1)0

0!

i.e.

dn = n!
(

1
0!
− 1

1!
+ · · ·± 1

n!

)
∼ n!

e
.

In fact dn is the nearest integer to n!/e for n ≥ 1, the difference being
bounded by the next term 1/(n+1).

We can also easily derive a recurrence for the dn from the above expansion:
since only the last term has no counterpart in dn−1, we get

dn = ndn−1 +(−1)n.

This is simpler than, though easily obtained from, the recurrence

dn = (n−1)(dn−1 +dn−2)

which arises from the usual technique of deleting n from the structure and
relating the result to a smaller structure.

Propositions 4.3 and 4.4, together with the commentary at the end of exam-
ple (1), presage our next operation on exponential generating functions. Let A
and B be species with B0 = /0. Define their composition to be the species which
assigns to S the set

(A ◦B)(S) = ∑

(
A (P)×∏

Si∈P
B(Si)

)
where the sum ranges over set partitions P = {S1, . . . ,Sr} of S. That is, an A ◦
B structure on S is an A -structure whose labels are B-structures, with S com-
prising the totality of the labels of the B-structures.

For example, if A is the species Set, the definition boils down to Set ◦B =
Set(B). Similarly Seq ◦B = Seq(B). As such, we have seen several examples
of composition of species above.

Proposition 4.6 The generating function of A ◦B is A(B(x)).

Proof Letting Setn(B) denote the subspecies of Set(B) where the “outer” set
partition has n parts, we have

A(B(x)) = ∑
n

an
B(x)n

n!
= ∑

n
an Setn(B)

where the nth term counts A ◦B-structures with the A -structure having size n.
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The next corollary generalises Corollary 4.5.

Corollary 4.7 The exponential generating function of (A ◦B)-structures in the
indeterminate x, weighted by yk where k is the size of the A -structure, is A(yB(x)).

Since our earlier operations Seq(B) and Set(B) are now unmasked as compo-
sitions, there are many examples of compositions above. As a further illustration
we give one more.

(7) A preorder is a reflexive and transitive relation, and a partial order is an
antisymmetric preorder.

Given any preorder ≺ on a set X , the relation ∼ such that x∼ y if and only
if x≺ y and y≺ x is an equivalence relation. Moreover, ≺ induces a partial
order on the quotient X/∼. Conversely, any partial order on the (nonempty)
sets of a set partition of X can be extended naturally to a preorder ≺ on X ,
by taking x≺ y iff the part of the partition containing x is less than or equal
to that containing y. This shows that, if Preord is the species of preorders
and PO the species of partial orders, then

Preord = PO◦Set>0.

A formula for either of the generating functions involved is still, to my
knowledge, an open question.

Exercise The n-cube is the undirected graph whose vertices are binary words
of length n, with edges between pairs of words differing in just one position.
Let W (n,m) be the set of walks on the n-cube of length m beginning and ending
at 000 · · ·0. Describe the species W with W ([m]) =

⋃
nW (n,m) as (isomorphic

to) a composition. Using Corollary 4.7, give a bivariate generating function for
|W (n,m)|, and a formula for this number.

Given a species A , let A ′ be the species such that A ′(S) = A (S ∪̇ {◦}): that
is, an A ′ structure on S is a A -structure on the set obtained by adding a new
distinguished element ◦ to S. Sometimes the extra element is thought of as a
“hole” in the structure, and A ′ as arising from “puncturing” A .

Particularly often useful is the species Z ·A ′. Putting this structure on a
set S corresponds to partitioning S into a singleton {i} (which trivially gets a Z -
structure) and the remainder, which gets a new distinguished element added and
an A -structure imposed. The new element may be identified with i, so the total
effect is to put an A -structure on S while also distinguishing one of its elements.
This is sometimes spoken of as “rooting” the structure1: for instance, if Tree is the
species of trees, then Z ·Tree′ is the species of rooted trees. We will be counting
trees momentarily below.

1but presumably not in Australia!
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Proposition 4.8 The generating function of A ′ is the derivative A′(x).

So the generating function of Z ·A ′ is xA′(x).

(8) Let Cycle be the species of cycles from example (3). A Cycle′-structure
on a set S is a cycle on S and an extra element ◦. But the cycle can be
cut at ◦ and this element discarded, leaving a ordered sequence on S. Thus
Cycle′ ∼= Seq. This agrees with the equation of generating functions

d
dx
− log(1− x) =

1
1− x

.

(9) The species Seq itself satisfies the recurrence Seq′ ∼= Seq×Seq, by the bi-
jection mapping a sequence of the elements of S ∪̇ {◦} to (the subsequence
left of ◦, the subsequence right of ◦).
Writing S(x) for the egf of Seq, we extract the differential equation

S′(x) = S(x)2.

This is separable, and we get

1 =
S′(x)
S(x)2 =−

(
1

S(x)

)′
so 1/S(x) =−x+C and

S(x) =
1

C− x
,

in which the constant C must be 1 to match |Seq0|= 1.

(10) Let us count the orderings (w1, . . . ,wn) of the elements of [n] such that

w1 < w2 > w3 < w4 > · · ·< wn−1 > wn.

When n > 0 this is manifestly only possible for n odd. In conformance we
say there are no such sequences when n = 0. These are generally called odd
alternating permutations (failing to heed the distinction between the species
of permutations and sequences).

We wish to use our trusty recurrence-producing technique of deleting n from
the structure and analysing the result in smaller structures. This is possible,
but there is a technical obstacle. The alternating permutations do not obvi-
ously constitute a species, as the symmetric group Sn does not act on them,
i.e. set automorphisms of the underlying set [n] destroy the structure. To say
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unsatisfyingly little, this can be circumvented by using functors from the
category of totally ordered sets with bijections, in which context our sum
and product and differentiation rules can be parallelly developed.

In any case, denoting this not-a-species by E , we have E ′∼= 1+E ×E , since
if ◦ is taken to be greater than all elements of [n], the bijection mapping an
alternating permutation on [n] ∪̇ {◦} to (the subsequence left of ◦, the sub-
sequence right of ◦) still holds, except that it fails to produce the alternating
permutation of length 1. So its exponential generating function satisfies

E ′(x) = 1+E(x)2,

whose solution is E(x) = tanx.

The reader can check that the even alternating permutations, defined analo-
gously, have exponential generating function secx.

4.1.1 Trees

The last operation we will discuss here is the compositional inverse of a power
series. We pause to build up a setting in which we will use it, the species of trees.

A tree is a connected graph with no cycles. It is straightforward to show that
a tree on n vertices contains n−1 edges, and that there is a unique path between
any two vertices in a tree. Denote the species of trees by Tree. This species has a
simple but unexpected formula for its labelled counting problem:

Theorem 4.9 (Cayley, Sylvester) The number of labelled trees on n vertices is
nn−2.

We will also make heavy use of the species of rooted trees, RTree := Z ·Tree′;
from the theorem it will follow that there are nn−1 of these on n vertices. Our first
proof of Cayley’s theorem 4.9 above is due to Joyal, and features in Aigner and
Ziegler’s Proofs from the Book.

Proof As noted above, the species Seq and Perm, of linear orders and permu-
tations, are quite different but are equicardinal: the numbers of each on a set of
size n are the same, namely n!.

Hence the numbers of structures on any set are also equal for their composi-
tions with the species of rooted trees, Seq◦RTree and Perm◦RTree.

Consider an object in (Seq ◦RTree)(S). This consists of a linear ordering
(T1, . . . ,Tr) of rooted trees. I claim that this is equivalent to a tree with two dis-
tinguished vertices: Joyal calls such objects vertebrates, with the distinguished
vertices the head and tail. Let xi be the root of Ti, and augment the collection of
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trees by the edges {xi,xi+1} for i = 1, . . . ,r− 1. The resulting graph is a single
tree, and becomes a vertebrate by deeming x1 its head and xr its tail. Conversely,
given a vertebrate with head and tail x and y, there is a unique path from x to y in
the tree, the backbone, which becomes the linear order, and the remainder of the
tree consists of rooted trees attached to the vertices of the path.

Now consider an object in (Perm ◦RTree)(S). Identify the root of each tree
with the corresponding point of the set on which the permutation acts. The result-
ing structure defines a function f from the point set to itself, where

• if v is a root, then f (v) is the image of v under the permutation;

• if v is not a root, then f (v) is the vertex after v on the unique path from v to
the root of the tree to which it belongs.

Conversely, given a function f : S→ S, the restruction of f to the set Y of
periodic points of f (those points in the image of f ◦n for all n) is a permutation;
the pairs {v, f (v)} for which v is not a periodic point make up the edges of a family
of trees, attached to Y at the point for which the iterated images of v under f first
enter Y , which we declare to be their roots.

So the number of trees with two distinguished points is equal to the number
of functions from the vertex set to itself. Thus, if there are F(n) labelled trees, we
see that

n2F(n) = nn,

from which Cayley’s theorem follows.

The structure RTree is very amenable to recursive description. If we remove
the root from a rooted tree, the result consists of an unordered collection of trees,
each of which has a natural root (at the neighbour of the root of the original tree).
Conversely, given a collection of rooted trees, add a new root, joined to the roots
of all the trees in the collection, to obtain a single rooted tree. So we have

RTree∼= Z · (Set◦RTree).

Hence the exponential generating function R(x) for rooted trees satisfies

R(x) = xeR(x).

This is, formally, a recurrence relation for the coefficients of R(x), and the co-
efficients of R(x) can be computationally evaluated as such. But by rearranging
to

x = R(x)e−R(x)
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we see that R(x) is the inverse under composition of formal power series of the
series xe−x. This inverse can be found systematically with the technique of La-
grange inversion.

We denote by [xa] f (x) the coefficient of xa in a formal power series f (x). This
notation is of principal use when f (x) is built up out of other series and operations,
so that we have no ready-made notation fn for its coefficients. (We let this notation
[xa] bind very loosely in the order of operations sense, so that [xa] f n = [xa]( f n)
and so on.)

Proposition 4.10 (Lagrange inversion) Let f be a formal power series over a
field of characteristic zero, with f (0) = 0 and f ′(0) 6= 0. Then there is a unique
formal power series g such that g( f (x)) = x, given by

n[xn]g(x)k = k[xn−k]
(

x
f (x)

)n

.

An alternate form of the statement is that

[yn]g(y) =
1
n!

[
dn−1

dxn−1

(
x

f (x)

)n]
x=0

.

The general proof of either of these statements takes us far afield, so I will pass
over them here.

Note that also f (g(y)) = y for this inverse g, and in fact the formal power
series of the proposition, with zero constant term and non-zero linear term, form
a group, which has become known as the Nottingham group.

Let’s use this to count trees. Since R(x) is the compositional inverse of xe−x,
we get

n[xn]R(x) = 1 · [xn−1]
( x

xe−x

)
= [xn−1]enx

=
nn−1

(n−1)!

and [xn]R(x) is 1/n! times the number of labelled rooted trees on n vertices. So
these trees number nn−1, and their unrooted analogues nn−2, proving Cayley’s
theorem.

4.2 Counting orbits
Let X be a set, and G a group. An action of G on X is a group homomorphism
φ from G to the symmetric group SX of permutations of X . We suppress the
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name of the action itself and, given g ∈ G and x ∈ X , write g · x, or simply gx,
for φ(g)(x) ∈ X . That is, our actions are left actions (as opposed to right actions,
where g sends x to xg). Explicitly, we have for all g,h ∈ G and x ∈ X ,

• 1x = x, where 1 denotes the identity of G;

• (gh)x = g(hx).

The orbits of the action are the equivalence classes of the relation ∼ on X with
x ∼ y if y = gx for some g ∈ G. The set of orbits of G on X is denoted X/G; the
orbit of x is written Gx.

The perspective on algebra which reigned until the middle of the nineteenth
century would have defined a group simply as the image of a group action on a
set (although not in that language!) Now we call such an image, i.e. a subgroup
of SX , a permutation group.

If G is a group acting on a set X , then we can construct actions of G on various
auxiliary sets built from X , for example, the set X×X of ordered pairs of elements
of X , the set of subsets of X , the set of functions from X to another set or from
another set to X . As one example, G acts on X×X by the rule

g(x,y) = (gx,gy)

for x,y ∈ X ,g ∈ G; that is, the element g acts coordinate-wise on ordered pairs,
mapping (x,y) to (gx,gy).

The foundational enumerative fact in this context is the Orbit-Stabiliser The-
orem. The stabiliser Gx of x is the subgroup of all elements of G which fix x.

Theorem 4.11 (Orbit-Stabiliser Theorem) Let G be a group acting on the finite
set X, and x ∈ X. The orbit Gx is in bijection with the set of cosets G/Gx. Thus

|Gx|= |G|/|Gx|.

Proof There is in fact a canonical such bijection, the one hGx 7→ hx between the
image and coimage of the map G→ X , g 7→ gx provided by the first isomorphism
theorem. The result on cardinality follows from Lagrange’s theorem.

The next proposition is often called Burnside’s lemma, though Burnside at-
tributed it not to himself but to Frobenius; it was apparently so well known even
then that he missed giving attribution to Cauchy, who stated it twelve years ear-
lier. Pólya’s name has also been given to the lemma. Given g ∈ G, the symbol Xg

denotes the subset of X fixed by the action of g, i.e. of x ∈ X such that gx = x.
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Proposition 4.12 Let G be a group acting on the finite set X. Then the number of
orbits of G on X is given by the formula

|X/G|= 1
|G| ∑g∈G

|Xg|.

Proof We count in two different ways the pairs (x,g), with x ∈ X , g ∈ G, and
gx = x. Let there be N such pairs. On the one hand, clearly

N = ∑
g∈G
|Xg|.

On the other hand, by the orbit-stabiliser theorem, if Gx is an orbit of size n then
its stabiliser has size |G|/n, so the number of pairs (y,g) with gy = y for which
y lies in Gx is n · |G|/n = |G|. So each orbit contributes |G| to the sum, and so
N = |G|k, where k is the number of orbits. Equating the two values gives the
result.

A first example of standard kind is to count the ways to colour the sides of a
cube with one of n colours, where two colourings count as the same if they’re in
the same orbit under rotations of the cube, i.e. if one colouring can be turned in
R3 to coincide with the other. To use Burnside’s lemma, we have to examine the
24 rotations of the cube and find the number of colourings fixed by each. (The
group of these rotations is the symmetric group S4, which acts as the group of all
permutations on the pairs of opposite vertices of the cube.)

• The identity fixes all n6 colourings.

• There are three axes of rotation through the mid-points of opposite faces. A
rotation through a half-turn about such an axis fixes n4 colourings: we can
choose arbitrarily the colour for the top face, the bottom face, the front and
back faces, and the left and right faces (assuming that the axis is vertical). A
rotation about a quarter turn fixes n3 colourings, since the four faces other
than top and bottom must all have the same colour. There are three half-
turns and six quarter-turns.

• A half-turn about the axis joining the midpoints of opposite edges fixes n3

colourings. There are six such rotations.

• A third-turn about the axis joining opposite vertices fixes n2 colourings.
There are eight such rotations.
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By Burnside’s lemma, the number of orbits of colourings is

1
24

(n6 +3n4 +12n3 +8n2). (1)

A second application is another proof of the generating function for signless
Stirling numbers of the first kind |s(n,k)| in example (3) of Section 4.1. Since the
identity to be proved is between two polynomials in x, we may assume that x is a
positive integer.

Consider the set of functions from {1, ...,n} to a set X of cardinality x. There
are xn such functions. Let the symmetric group Sn act on these functions by

σ( f )(i) = f (σ−1(i))

for σ ∈ Sn. The orbits are simply the selections of n things from X , where repeti-
tions are allowed and order is not important. So the number of orbits is(

x+n−1
n

)
=

(−1)n(−x)n

n!
.

We can also count the orbits using Burnside’s Lemma. Let g be a permutation
in Sn having k cycles. How many functions are fixed by g? Clearly a function
f is fixed if and only if it is constant on each cycle of g; its values on the cycles
can be chosen arbitrarily. So there are xk fixed functions. Since the number of
permutations with k cycles is |s(n,k)|, Burnside’s Lemma shows that the number
of orbits is

1
n! ∑

k
|s(n,k)|xk.

Equating the two expressions and multiplying by n! gives the result.
A naı̈ve attempt to count the orbits of a group G on a finite set X might con-

clude that there are |X |/|G| of them. Of course, that count need not even be
an integer; it is only correct when the action is free, i.e. only the identity ele-
ment of G fixes any element of X . There is however a way to save the formula
|X/G|= |X |/|G|, which we will only briefly sketch here. This is done by changing
the meaning of |·| from ordinary set cardinality to a weighted version, weighting
each element by the inverse size of its automorphism group,

“|Y |” := ∑
y∈Y

1
|Aut(y)|

.

For instance, if X is a set of objects labelled by a finite set, reckoned as lacking
automorphisms, then any unlabelled object Gx in X/G, written as the orbit of
some x ∈ X , inherits an automorphism for each element of the stabiliser of x, and
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then Burnside’s lemma reads “|X/G|” = “|X |”/|G|. This new function “|·|” is
formally defined in the setting of groupoids and known as groupoid cardinality.
Some of its many applications are as the “mass” in the Smith-Minkowski-Siegel
mass formulas for lattices, and in probability distributions that arise in natural
situations such as the Cohen-Lenstra heuristics for class groups.

4.2.1 Counting orbits with weights

As we have taken unlabelled structures to be Sn-orbits of labelled structures, Burn-
side’s lemma is a significant tool in counting them. Under the name Pólya theory,
the extension of tools like Burnside’s lemma to structures with a parameter is a
standard topic in enumerative combinatorics. The theory springs from examples
like ours with the cube in the previous section. How would we extend this ex-
ample if we wished to count the colourings weightedly? For instance, we might
wish to subclassify the colourings by their number of white faces. To adjust the
Burnside analyses for these purposes, we would need to track not just how many
orbits each group element has but how large each orbit is, so that it counts with
the necessary weight when coloured white.

The development is most natural in the context of symmetric functions, which I
should have liked to introduce properly if I’d expected to have the time to. Instead
I’ll give a lightning introduction here.

Let R be a divisible ring: Q or C or similar are fine choices. The polyno-
mial ring R[x1, . . . ,xn] bears an action of the symmetric group Sn permuting the
variables. The subring Λn := R[x1, . . . ,xn]Sn of polynomials fixed by all permuta-
tions of the variables, which we call symmetric functions in n variables, is itself a
polynomial ring: one presentation thereof is Λn = R[p1, . . . , pn] where

pk = xk
1 + · · ·+ xk

n.

For notational convenience, we write pk1...ks = pk1 · · · pks . Such products in which
no subscript exceeds n form an R-module basis for Λn.

Note that the polynomials pk with k > n are also in Λn; they merely fail to be
algebraically independent of the generators p1, . . . , pn. Now given naturals m < n,
there is an inclusion of rings ι : Λm ↪→ Λn which sends pk ∈ Λm to pk ∈ Λn for all
k ≤ m. By what we have just noted, this is a funny inclusion in that the image of
pk for k > m is not pk, but it is well-defined nonetheless.

We can also define the ring of symmetric functions Λ to be the direct limit
of the inclusions ι , that is the union of all the Λn identified under our inclu-
sions. More informally, an element of Λ is a symmetric polynomial “in infinitely
many variables”. This Λ is a polynomial ring in countably many generators,
Λ = R[p1, p2, . . .]. The rings Λn also bear a family of surjections, π : Λn � Λm
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for n > m given by π(xi) = xi for i≤ m and π(xi) = 0 for i > m, such that

Λ
m ι

↪→ Λ
n π

� Λ
m

is the identity. This means that given any R-algebra A and elements a1,a2, . . . ∈ A,
all but finitely many of which are zero, there is an evaluation map Λ→ A which
substitutes ai for xi.

Our setup is the following. Suppose S is a set with an action of a group G,
and X is a set of “colours”. By quotienting out the subgroup of elements which
act trivially, we may and will assume that G is a subgroup of the symmetric group
on S. As above, there is an induced G-action on the set XS of set maps f : S→ X ,
that is, colourings of the elements of S. Momentarily fix a bijection π : X ∼→ [n].
Then to any such f we can associate a monomial x f ∈ R[x1, . . . ,xn] recording
which colours appear, given as

x f = ∏
s∈S

xπ( f (s)).

In fact x f depends only on the G-orbit of f within XS, so we may as well write it
xG f . The pattern enumerator is the sum of this monomial for all possible orbits,

FG = ∑
G f∈XS/G

xG f .

Note that FG is a symmetric function in Λ|S|, because the colours in X play sym-
metric roles. Therefore, FG is independent of π .

On the other hand, for a subgroup G of the symmetric group on S, we define
a cycle indicator. If g is a permutation of S, momentarily let Cyc(g) be the set
partition of S given by the cycles into which g decomposes. The cycle indicator is
then

ZG =
1
|G| ∑g∈G

∏
C∈Cyc(g)

p|C|,

which is a symmetric function in Λ|S|.

Proposition 4.13 Let S be a finite set and G a subgroup of its symmetric group.
Then ZG = FG.

Proof To apply Burnside’s lemma, we have to count the functions of given weight
fixed by a permutation g∈G. As we have seen, a function is fixed by g if and only
if it is constant on the cycles of g. Now, functions fixed by g associated the same
colour to every point of any cycle. For a particular i-cycle of g, the generating
function of the assignments of colours to that cycle is exactly pi = xi

1 + · · ·+ xi
n.

So the generating function for all functions fixed by g is ∏C∈Cyc(g) p|C|. Averaging
over all g ∈ G gives the result.
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For example, the cycle indicator for the cube above is

1
24

(p111111 +3p2211 +6p411 +6p222 +8p33).

We may evaluate it at (x1,x2,x3,x4, . . .) = (x,1,1,0,0,0, . . .), to get a generating
function for the number of three-coloured cubes according to the number of white
faces: we get

1
24

(
(x+2)6 +3(x2 +2)2(x+2)2 +6(x4 +2)(x+2)2 +6(x2 +2)3 +8(x3 +2)2

)
= 10+12x+16x2 +10x3 +6x4 +2x5 + x6.

Alternatively, setting n variables to 1 and the remainder to 0 will recover the poly-
nomial of equation 1.

We give an application to tie this to the foregoing material. To compute the
cycle indicator of the whole symmetric group, we wish to take a weighted average
over all permutations, where the weight of a permutation is the product of pi for
each cycle of size i. So we redo example (3) with the generating functions appro-
priately weighted, and using the variable y for the formal power series since I’ve
used x in the symmetric functions. Inserting this weight, the generating function
for the species of cycles in the ring Λ[[y]] becomes

∑
n≥1

pn

n
yn.

This can be formally rewritten as the symmetric power series

∑
i≥1
− log(1− xiy);

the expression is legitimate as long as we eventually make a specialisation with
all but finitely many xi specialised to zero. So the egf for permutations with these
weights on their cycles, in y, is

e∑i≥1− log(1−xiy) = ∏
i≥1

1
1− xiy

.

This is the ordinary generating function for the cycle indicators of Sn; it is ordinary
because the coefficients 1/n! in the exponential generating function machinery are
absorbed by the definition of the cycle indicator.

This expression is therefore also the ordinary generating function for pattern
enumerators for coloured (unlabelled) sets. For example, to count n-coloured sets,
we set n of the xi to 1 and the others to zero, yielding(

1
1− y

)n

= ∑
k

(
−n
k

)
(−y)k = ∑

k

(
n+ k−1

k

)
yk
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by the binomial theorem. But an n-coloured unlabelled set of size k is a way to
put k indistinguishable balls into n distinguishably coloured boxes, i.e. a weak
composition of k with n terms. So this replicates our count of Section 2.

Finally, readers interested in representation theory may wish to note an inter-
pretation of the cycle indicator. If G is a subgroup of Sn, consider the induced
representation 1Sn

G (in characteristic zero), that is, the representation with a basis
labelled by the right cosets of G in Sn, on which Sn acts by permutation matrices.
Under a standard identification of Λn with the vector space generated by charac-
ters of Sn-representations, the cycle indicator ZG is identified with the character
of 1Sn

G . For the details, see sections 7.18 and 7.24 of Stanley’s Enumerative Com-
binatorics, volume 2.
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