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3 Operations on (ordinary) generating functions
Formal power series support a number of operations. This section is dedicated to
introducing these operations, and then describing their combinatorial meaning for
ordinary generating functions. For exponential generating functions the interpre-
tation is not dissimilar, but the theories are each individually rich enough that they
deserve separate treatment.

3.1 More on the ring of formal power series
We have introduced the ring R[[x]] in Section 1, defining its ring operations. Here
we say more about its properties.

Proposition 3.1 A formal power series is invertible if and only if its constant term
is invertible.

Proof Suppose that f = ∑rnxn and g = ∑snxn satisfy f g = 1. Considering the
term of degree zero, we see that r0s0 = 1, so that r0 is invertible.

Conversely, suppose that r0s0 = 1, where f = ∑rnxn. The inverse g = ∑snxn

must satisfy
n

∑
k=0

rksn−k = 0

for all n > 0. These equations constitute a linear recurrence which can be solved
recursively for the sn: as the coefficient of sn is r0, we have

sn =−s0

n

∑
k=1

rksn−k.

In consequence, we see that if R is an integral domain, so is R[[x]]. Similarly if
R is a field, then R[[x]] is a discrete valuation ring, and if R is local, so is R[[x]].

We emphasise that knowledge of the inverse of a formal power series f =
∑rnxn is equivalent to knowledge of a linear recurrence relation for the ri. This
recurrence relation might have infinitely many terms, though. We discuss exam-
ples below, in Section 3.4. There will only exist a recurrence relation of finite
length if f is a rational function. The previous proof shows this in the case where
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f = 1/p, for a polynomial p = p0 + p1x + · · · , and the initial conditions can be
taken to be r0 = 1/p0, ri = 0 for i < 0, with the recurrence relation in force from
r1 onward. Different initial conditions can be imposed by changing the numerator.

The ring R[[x]] is a differential algebra, with the derivative operator defined
formally: (

∑
n≥0

rnxn

)′

= ∑
n≥0

(n+1) fn+1xn.

This means that the usual rules of calculus for differentiating sums and products
are valid.

Also, R[[x]] bears the structure of a topological ring. In fact, it is the completion
of R[x] with respect to the I-adic topology, where I is the maximal ideal 〈x〉: this
is the topology whose basic open sets are the sets f + In, for f ∈ R[x] and n ∈ N,
and whose Cauchy sequences are therefore the sequences the differences between
whose terms eventually lie in In, for each n. If R itself bears a topology, then
replacing the I-adic topology on R[x] = R+Rx+Rx2 + · · · ∼= RN with the product
topology on RN yields a topology on R[[x]] which respects that on R.

In the case R = C, for any r > 0 we have a continuous injection to C[[x]]
from the differential algebra of power series converging on the disc {x ∈C : |x|<
r}. This lets us do analysis on power series: any identity that holds analytically
between formal power series converging on a disc also holds formally.

For example, we know analytically that exe−x = 1, and as such we deduce the
identity of coefficients

∑
k

1
k!

(−1)n−k

(n− k)!
=

{
1 n = 0
0 n ≥ 1.

This particular identity is also easy to prove algebraically, using the binomial the-
orem expansion of (1+(−1))n.

Lastly, let f and g be formal power series in which the constant term of g is
zero. Then the composition f ◦ g is defined: if f (x) = ∑rnxn, then ( f ◦ g)(x) =
∑rngn. Like the formula for the product, this expression only has finitely many
contributions to the coefficient of xn for each n. The chain rule for differentiation
is valid as well.

3.2 Ordinary versus exponential
Ordinary and exponential generating functions are advantageous in different con-
texts. The general rule of thumb is this. Exponential generating functions are good
when the combinatorial structures being counted are labelled. Labelled structures
are structures on the set [n], whose elements are treated as distinguishable; the Sn
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action on [n] induces a nontrivial Sn action on the structures, unless the structures
are trivial themselves. By contrast, ordinary generating functions are good when
there is no obvious meaningful group action on the structures of parameter n (ex-
cept perhaps by a group of cardinality O(1)). For example, the structures might
be sequences of a sort whose terms can’t be scrambled willy-nilly; n might not
even be the length of the sequence.

For “unlabelled” structures which come from structures labelled in the above
sense by “erasing the labels” and making the elements of [n] undistinguished, an
approach that sometimes succeeds is to work with the labelled structures and count
Sn-orbits thereof. We discuss this together with labelled structures in general in
the next section.

3.3 Operations on ordinary generating functions
Let us say that a combinatorial class A is a set bearing the data of a size function
|·| : A → N, so that the fibre An = (|·|)−1(n) is finite for each n. Let an = #An,
and associate the generating function A(x) = ∑n≥0 anxn. An isomorphism between
combinatorial classes is a set isomorphism between them preserving the size func-
tion.

For example, in the combinatorial class of binary words

W = {ε,0,1,00,01,10,11, . . .},

where ε denotes the empty word, the sets Wn are the words of length n, |·| is the
length function, and wn = 2n, making

W (x) = ∑
n

2nxn =
1

1−2x
.

We will also want to refer to certain small finite classes, as building blocks.
We define one of these now: ζ = {◦} is the singleton class whose only element
has size | ◦ |= 1. Versions of this class where the element is renamed will appear
as well.

Let A and B be combinatorial classes. The next propositions are enrichments
of our addition and multiplication principles from Section 1.; the proofs follow
easily from expanding the stated generating functions. Let A +B be the disjoint
union of A and B, with the size function extended from A and B in the natural
way.

Proposition 3.2 The generating function of A +B is A(x)+B(x).
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Let A ×B be the Cartesian product of A and B,

A ×B = {(α,β ) : α ∈A ,β ∈B},

with the size function |(α,β )|= |α|+ |β |.

Proposition 3.3 The generating function of A ×B is A(x)B(x).

Special cases of the product are the powers A k = A ×·· ·×A︸ ︷︷ ︸
k

, for k ≥ 1. It is

the only defensible convention, if not strictly a special case, to set A 0 = 1, where
1 is the combinatorial class with a single element ε , whose size is 0. Suppose
A0 = /0. Let A ∗ = ∑k≥0 A k be the free monoid on A , i.e. the class of sequences
of elements of A .

Corollary 3.4 The generating function of A ∗ is 1/(1−A(x)).

This follows from the propositions by expanding 1/(1−A(x)) as a geometric
series. The sum converges in the I-adic topology, i.e. there are only finitely many
summands in each power of x, because A0 = /0.

We recognise our example class W above of binary words as {0,1}∗, where
|0| = |1| = 1. Several examples from Section 2 are also easy to handle in this
mould, with judicious choices of size functions for the components:

(1) The class of all compositions is (N+)∗, where N+ = N\{0} has the identity
weight function |n|= n.

Here N+ is itself nearly a free monoid class: it is obtained by deleting the
size-zero element from N = ζ ∗. So N+ has generating function 1/(1−x)−
1 = x/(1− x), and the class of compositions has generating function

1
1− x

1−x
=

1− x
1−2x

= 1+ ∑
n≥1

2n−1xn.

So we recover the fact that there are 2n−1 compositions of a positive inte-
ger n. This fact also has an elementary proof (exercise) using the balls-and-
commas bijection of Section 2.2.

There is no class of all weak compositions according to our formalism, for
the size function would have infinite fibres.
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(2) The class of multisets on a finite set [n] is ∏i∈[n]{i}∗, where each {i} is
isomorphic to ζ , i.e. is a singleton class with |i| = 1. So the generating
function for multisets on [n] is

∏
i∈[n]

1
1− x

= (1− x)−n.

Expanding with the binomial theorem, this equals

∑
k≥0

(−1)k
(
−n
k

)
xk,

reproducing our reciprocity between multisets and subsets.

(3) The class of integer partitions can’t quite be built using these tools, but with
a suitable extension of the Cartesian product to an infinite family of classes,
it would be ∏n≥1(ζ n)∗, yielding the generating function

∏
n≥1

1
1− xn

of Section 3.4.1.

(4) Here’s one way to tackle set partitions using these tools. The combinatorial
class of set partitions of sets of the form [n] into k parts is ∏

k
i=1{i}× [i]∗,

where in each class {i} or [i], each element has size 1. Indeed, if we name
the k parts of such a set partition S1, . . . ,Sk sorted in increasing order of
their least element, then we can encode a set partition of [n] by the list
(i1, . . . , in) where j ∈ Si j for each j, and these lists are what the above class is
constructed to contain. This yields the generating function from Section 2,

k

∏
i=1

x
1− ix

.

3.4 Linear recurrences
The combinatorial setting that most directly gives rise to linear recurrences is that
of free monoids. Let A be a combinatorial class with A0 = /0. Then we have the
relation

A ∗ = 1+A ×A ∗ :

that is, every element of A ∗, aside from the empty one, is an element of A fol-
lowed by an element of A ∗, and this is a bijection. As we have seen, in Section 3.1
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and our opening example from Section 1, both a linear recurrence and a rational
ordinary generating function follow directly.

The example in Section 1 concerned domino tilings of the 2×n rectangle, and
analysed these tilings as the free monoid over { , }, whose elements’ sizes 1
and 2 are given by their widths.

Let us analyse domino tilings of the 3× n rectangles in the same fashion.
These will form the free monoid over the class of nonempty tiled 3×n rectangles
with at least one domino lying over each horizontal gridline: let me call these
faultfree. The faultfree tilings are easy enough to count by hand experimentation,
once we observe that no vertical domino can occur except up against a short side
of the rectangle. There are infinitely many faultfree tilings, but only two of each
(large enough) even size:

So the generating function for the nonempty faultfree rectangles is

3x2 +2x4 +2x6 + · · ·= 3x2− x4

1− x2 ,

from which we get directly both a recurrence relation

an = 3an−2 +2an−4 +2an−6 + · · · (1)

for the number an of 3× n domino tilings overall (omitting mention of the base
case), as well as a generating function

∑anxn =
1

1− 3x2−x4

1−x2

=
1− x2

1−4x2 + x4 .

From this denominator, or from subtracting from (1) the same equation with n−2
substituted for n, we extract another, finite, recurrence relation

an = 4an−2−an−4.
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The latter recurrence relation, with its negative coefficient, of course does not en-
code directly any other free monoid decomposition of our tilings, but it is possible
to give it a bijective meaning: the reader may wish to construct a bijection between
An ∪̇An−4 and

⋃̇4
i=1 An−2.

Exercise Count the permutations σ : [n]→ [n] such that |σ(i)− i| ≤ 2 for all i.

3.4.1 The infinite recurrence for integer partitions

Recall that the partition number p(n) is the number of partitions of n indistinguish-
able objects, that is, the number of ways to write n as a sum of a nonincreasing
sequence of positive integers. Its generating function is

∑
n≥0

p(n)xn = ∏
k≥1

1
1− xk .

For (1− xk)−1 = 1 + xk + x2k + · · · . Thus a term in xn in the product, with coef-
ficient 1, arises from every expression n = ∑ckk, where the ck are non-negative
integers, all but finitely many equal to zero. This structure is an integer partition,
the number of which is p(n).

Thus, to get a recurrence relation for p(n), we have to understand the coeffi-
cients an of its inverse,

∑
n≥0

anxn = ∏
k≥1

(1− xk).

Now a term in xn on the right arises from each expression for n as the sum of
distinct positive integers; its coefficient is (−1)k, where k is the number of terms
in the sum. Interpreting this as a weighted counting problem, the coefficient an
we seek is the total weight of the integer partitions of n into distinct parts, where
partitions with evenly many parts have weight +1 and those with oddly many
parts have weight −1.

This number is evaluated by Euler’s Pentagonal Numbers Theorem:

Proposition 3.5

an =

{
(−1)k if n = 1

2k(3k−1) for k ∈ Z
0 otherwise.

That is,

∏
k≥1

(1− xk) = · · ·+ x26− x15 + x7− x2 +1− x+ x5− x12 + x22−·· ·
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The exponents appearing here are the pentagonal numbers; they are one of the se-
quences of figurate numbers generalising the more familiar triangular and square
numbers. The Ferrers diagrams of the crucial partitions in the proof below are the
pentagons from which the name derives (except that two of the five sides of the
pentagon have degenerated into a single side twice as long).

Proof Our proof is bijective, using the method of a sign-reversing involution.
That is, we describe a partial involution f on the set of partitions of n into distinct
parts, so that λ and f (λ ) have opposite weight whenever the latter is defined. This
way, the contributions of λ and f (λ ) to the sum an will cancel, and we will only
need to (weightedly) count the λ for which f (λ ) is undefined.

For a partition λ = (λ1, . . . ,λk) of n, with λ1 > · · · > λk > 0 and ∑λi = n,
define two statistics:

• d(λ ) is the largest i such that λi = λ1− i+1: that is, the first d(λ ) parts of
λ successively decrease by only one, but the next decreases by more.

• e(λ ) = λk is the smallest part.

Define f according to how these statistics compare:

• If d(λ ) < e(λ ), let

f (λ ) = (λ1−1, . . . ,λd(λ )−1,λd(λ )+1, . . . ,λk,d(λ )).

• If d(λ )≥ e(λ ), let

f (λ ) = (λ1 +1, . . . ,λe(λ ) +1,λe(λ )+1, . . . ,λk−1).

Note that the final omitted part is λk = e(λ ).

We make several observations. Firstly, by the definition of d(λ ) and e(λ ),
the sequences f (λ ) remain sequences of positive integers with sum n, and these
are strictly decreasing sequences, i.e. partitions of n into distinct parts, in nearly
every case. We mean to exclude the cases where they are not from the domain of f .
Secondly, the two operations in the definition of f are inverses of one another, and
whichever case λ is in, f (λ ) will be in the other when it is defined; this makes f a
partial involution. Thirdly, f (λ ) has either one part more or one part fewer than λ ,
so that the two have opposite weight. Thus our claims in the first paragraph are
vindicated.

It remains just to characterise the λ for which f (λ ) is undefined. This happens
only when the parts involved in defining d(λ ) and e(λ ) “interfere” with each
other, i.e. λ is of the shape (`+ k− 1, . . . , `+ 1, `) for some `. Even in this case
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the problem arises only when ` = k or ` = k+1, i.e. the only partitions outside the
domain of f are

(2k−1,2k−2, · · · ,k +1,k) and (2k,2k−1, · · · ,k +2,k +1).

These are partitions of 1
2k(3k− 1) and 1

2(−k)(3(−k)− 1) respectively, and their
weights are (−1)k.

The number of terms that must be evaluated in the recurrence issuing from
Proposition 3.5 grows with n, but only as O(

√
n). So evaluating p(n) for all n≤N

requires only O(N3/2) additions and subtractions. In practice, if you had the task
of computing a table of partition numbers, this recurrence is the most efficient
way I am aware of to do so.

3.5 Catalan objects
One particular sequence of naturals, the Catalan numbers, deserves exposition
because of the extraordinary number of counting problems it solves: over two hun-
dred, by Stanley’s count (http://www-math.mit.edu/∼rstan/ec/catadd.pdf).

A Dyck path of size n is a path from (0,0) to (2n,0) in the directed graph
whose vertices are the upper half-plane Z×N and which contains all possible
edges of the forms (i, j) → (i + 1, j + 1) and (i, j) → (i + 1, j− 1). The figure
depicts a Dyck path of size 5.

The edges are often called steps.
Dyck paths are in easy bijection with a more typographically convenient ob-

ject, strings of matched pairs of parentheses. These are strings of “(” and “)”
whose characters can be paired off, each pair consisting of a “(” and a “)” some-
where to its right, so that no two pairs interweave: that is, the subconfiguration
· · · (1 · · · (2 · · · )1 · · · )2 · · · does not occur, using the subscripts (and colours) to indi-
cate the pairing. The bijection reads the steps of a Dyck path in order, turning each
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up step (i, j)→ (i+1, j +1) to a “(” and each down step (i, j)→ (i+1, j−1) to
a “)”. For example, the above picture corresponds to

()((())()).

Let D be the class of Dyck paths. We recognise this as a free monoid class,
D = I ∗, where I is the class of those irreducible Dyck paths of positive size
which include no vertex (i,0) aside from their start- and end-points. On the other
hand, every irreducible Dyck path is simply a general Dyck path flanked by an
initial up step and a final down step, implying that I = ζ ×D . The generating
functions D(x) and I(x) therefore satisfy

D(x) =
1

1− I(x)
=

1
1− xD(x)

,

i.e.
xD2(x)−D(x)+1 = 0

or

D(x) =
1−

√
1−4x

2x
.

In solving the quadratic we must take the negative sign, as the positive would
produce a nonzero coefficient of x−1 in D(x).

Definition 3.6 The Catalan number Cn is the number of Dyck paths of size n.

Here is a related way the structure of a Dyck path, or a string of matched
parentheses, could have been unrolled. Every such string is either empty, or starts
with a “(”. In the latter case the string is composed of this “(”, a string of matched
parentheses, the ”)” to match the first “(”, and then another string of matched
parentheses. This gives

D = 1+ζ ×D2

which translates to the same equation for D(x).
Attempting to read the above equation directly gives us another Catalan com-

binatorial class. Every structure is either empty or consists of a ◦, of size 1, and
two whole structures of the same sort. If we denote the empty case by an ε and
draw edges from the ◦ to the two substructures in the nonempty case, what we
end up drawing are binary trees, with ◦s on the internal nodes and εs on the leaf
nodes. We have proved

Proposition 3.7 The number of binary trees with n non-leaf nodes is the Catalan
number Cn.

The proof is easy to render bijective.
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Exercise State a functional equation for the generating function of the class of
binary trees wherein the two children of a node are undistinguished, i.e. (The
coefficients are known as the Wedderburn-Etherington numbers.)

We would like a closed form for the Catalan numbers. Thankfully, the gener-
ating function is one we can expand with the binomial theorem:

D(x) =
1
2

(
1−∑

n

(
1/2
n

)
(−4)nxn−1

)
.

Hence

Cn =−1
2

(
1/2

n+1

)
(−4)n+1

= (−1)n 1
2
·
(

1
2
· −1

2
· −3

2
· · · 2n−1

2

)
· 22n+2

(n+1)!

=
1

2n+2
(2n)!
2n ·n!

· 22n+2

(n+1) ·n!

=
1

n+1

(
2n
n

)
.

In the flesh, beginning from C0, the Catalan numbers are

1,1,2,5,14,42,132,429,1430,4862,16796, . . .

We can read coarse asymptotics of the Catalan numbers directly from the gen-
erating function. The nearest singularity of D(x) to the origin is a branchpoint at
1/4, so with the ratio test in mind, Cn grows “like” 4n. If more precision be de-
sired, our closed form together with Stirling’s approximation gives the asymptotic
statement

Cn ∼
4n

n3/2√π
.

Finally, here is a sketch of a bijective proof of the formula for Cn. Let P be the
class of paths, in the graph on vertices Z×Z with analogous up and down edges,
from (0,0) to (2n,0): informally, these are Dyck paths without the restriction that
the second coordinate stay positive. Clearly |Pn| =

(2n
n

)
, since n of the 2n steps

in a path of size n must be up, and the others down. If P is a path in Pn that is not
a Dyck path, then it contains some vertex (i, j) with j < 0: select the one with j
minimal, and then with i maximal for that choice of j. Then P can be decomposed
as some path P1 from (0,0) to (i, j), followed by an up step, followed by a path P2
from (i+1, j +1) to (2n,0).
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The reader may verify that the new path made of P2 translated to begin at
(0,0), followed by an up step, followed by P1 translated to end at (2n,0) is a Dyck
path. Call it D. Moreover, if it’s known which is the special up step separating
P2 from P1 in D, P can be recovered; and any of its n up steps can be this special
one. Therefore, we have an n-to-one map from Pn \Dn to Dn, implying that
|Dn|=

(2n
n

)
/(n+1).
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