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1 Introduction

In [2], the author constructed the ordinary quivers of two symmetric group blocks of weight three in char-

acteristic three. By results of Scopes, there are only finitely many such blocks (up to Morita equivalence), and

here we complete the list of quivers for these blocks.

The books of James [3] and James and Kerber [4] give an excellent introduction to the representation theory

of the symmetric group Sn; we summarise the important points.

∗The author is financially supported by the EPSRC.
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2 Matthew Fayers

For any partition λ of n, one defines a Specht module S λ over any field k; if k has characteristic zero,

these modules are irreducible and pairwise non-isomorphic, and give a complete set of irreducibles for kSn; in

characteristic p > 0, the Specht modules are not irreducible in general; for each p-regular partition λ, S λ has an

irreducible cosocle Dλ; the modules Dλ are pairwise non-isomorphic and give a complete set of irreducibles for

kSn. The decomposition matrix for a symmetric group block records the composition multiplicities [S λ : Dµ];

the matrices for the blocks we consider in this paper are reproduced in the appendix.

The p-blocks of Sn are determined by the Nakayama Conjecture [4, 6.1.21]; we may thus use James’s

abacus [4, pp. 78–80] to represent the partitions in a given block. We also employ the Branching Rule [3,

Theorem 9.3], and the Carter-Lusztig theorem on semistandard homomorphisms [3, Theorem 13.13].

The ordinary quiver or Ext-quiver of an algebra A over a field k is a quiver with vertices indexed by simple

A-modules, and with a number of arrows from vertex S to vertex T equal to dimk Ext1A(S ,T ). Simple modules

for symmetric group blocks are self-dual, and so we may draw an undirected edge in our quiver to indicate an

arrow in each direction.

1.1 Notation for modules

• Given any module M and any simple module S , we write [M : S ] for the multiplicity of S as a composi-

tion factor of M.

• If M has composition factors S 1, . . . , S r, we write

M ∼ S 1 + . . . + S r.

• If M lies in a block A of a symmetric group, and B is a block of a larger (resp. smaller) symmetric group,

we write M↑B (resp. M↓B) to denote the module M induced (resp. restricted) to B.

• We write P(M) for the projective cover of M.

• If the submodule lattice of M is distributive, that is, if M does not have the direct sum of two isomorphic

modules as a subquotient, we frequently encode the submodule lattice of M by drawing the (Hasse

diagram of the) poset of submodules of M which have simple cosocle, labelling each by (the isomorphism

class of) its cosocle. If the structure of M is particularly simple, we frequently omit the edges from this

diagram.

1.2 Schaper’s formula

Schaper’s formula (see for example [1]) is a useful tool for calculating decomposition numbers. In addition,

if the decomposition numbers are known, the formula can provide useful information about the structure of

Specht modules. Specifically, the Specht module S λ has a filtration

S λ = S λ
(0) > S λ

(1) > S λ
(2) > . . . ,
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and Schaper’s formula gives, for each simple module Dµ, the sum

∞∑
i=1

[S λ
(i) : Dµ].

Moreover, each quotient S λ
(i)/S

λ
(i+1) is self-dual (although not always semi-simple). S λ

(1) is the radical of S λ

when λ is p-regular, while S λ
(1) equals S λ when λ is p-singular.

In fact, S λ
(i) is the reduction modulo p of the submodule

{x | 〈x, y〉 ≡ 0 (mod pi) ∀ y}

of the integral Specht module S λ
Z with its usual inner product 〈, 〉.

2 The Scopes equivalence

Here we use the abacus notation extensively. Let B and C be symmetric group blocks of weight ω. We say

that B and C form an [ω : κ]-pair if there exist abacuses for B and C such that

• for some i, the abacus for B has κ more beads on runner i − 1 than on runner i, and

• the abacus for C is obtained from that for B by moving κ beads from runner i − 1 to runner i.

Scopes [5] then proves the following.

Theorem 2.1 (Scopes). If ω 6 κ, then two symmetric group blocks forming an [ω : κ]-pair are Morita equiv-

alent. Hence there are only finitely many Morita equivalence classes of symmetric group blocks with a given

weight in a given characteristic.

We may represent the Scopes equivalence in characteristic p as follows: we draw a graph with vertices

indexed by p-cores, with an edge labelled κ between cores λ and µ if the blocks of weight ω with cores λ and

µ form an [ω : κ]-pair. In characteristic three, part of this infinite graph is given in Figure 1; for each block, its

conjugate block (that is, the block found by tensoring with the signature representation) is found by reflection

in a central vertical axis.

In this paper, we shall concern ourselves with the case p = 3, ω = 3. The Scopes classes of blocks may then

be represented as in Figure 2, where each vertex represents an equivalence class and is labelled by the core of

the ‘smallest’ member of that class, and where there is an edge labelled with an integer κ < 3 between classes

B and C if B and C form a [3 : κ] pair for some B ∈ B, C ∈ C. Two blocks are Scopes equivalent if and only if

their conjugates are, and again conjugate blocks can be found by reflecting the diagram left-to-right.

Some of these blocks have already been studied; Tan [6, 7] found the Ext-quivers of the principal blocks

of kS9, kS10 and kS11, where k is a field of characteristic three, and the present author [2] found the quivers

for the blocks of kS13 and kS14 with cores (3, 1) and (3, 12) respectively. Of course, conjugate blocks have

the same quivers, so only three quivers remain to be found; we can find these by analysing three [3 : 2]-pairs,

which turn out to behave very similarly.
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Figure 1: The Scopes equivalence in characteristic three

3 The Ext-quivers of weight three blocks in characteristic three

Given a weight three block B of a symmetric group in characteristic three, suppose we have an abacus for

B with a beads on the first runner, b on the second, and c on the third. We may then denote the partitions of B

using the 〈a, b, c〉 abacus notation:

• 〈i〉 denotes a partition with a bead of weight three on runner i;

• 〈i, j〉 denotes a partition with a bead of weight two on runner i and a bead of weight one on runner j;

• 〈i, j, k〉 denotes a partition with beads of weight one on runners i, j and k.

Let B1 denote the block of kS13 with core (3, 1), with the 〈3, 5, 3〉 abacus notation, and C1 the block of kS15

with core (4, 2), with the 〈3, 3, 5〉 abacus notation. The Ext-quiver of B1 is found in [2], and is reproduced in

Figure 3.

Let B2 denote the block of kS17 with core (4, 2, 12), with the 〈3, 6, 4〉 notation, and C2 the block of kS19

with core (5, 3, 12), with the 〈3, 4, 6〉 notation. The quiver of B2 is the same as that of the block of kS14 with

core (3, 12), with which it forms a [3 : 3]-pair. The latter quiver is also found in [2]. By re-labelling the vertices,

we obtain the quiver of B2, also shown in Figure 3.

Let B3 denote the block of kS23 with core (5, 3, 22, 12), with the 〈3, 7, 5〉 notation, and C3 the block of kS25

with core (6, 4, 22, 12), with the 〈3, 5, 7〉-notation. The quiver of B3 is the same as that of its conjugate block,

whose core is (6, 4, 2, 12); the latter forms a [3 : 4]-pair with C2, and so the quiver of B3 will follow from the

analysis of C2.
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Figure 2: The Scopes classes of weight three blocks in characteristic three

First we examine induction and restriction between Bi and Ci.

Proposition 3.1.

1. D〈3,3,3〉Ci
does not self-extend.

2. For i = 1, 2, 3 we have

D〈3〉Ci
↓Bi � D〈2〉Bi

⊕ D〈2〉Bi
, D〈2〉Bi

↑Ci � D〈3〉Ci
⊕ D〈3〉Ci

;

D〈3,3〉Ci
↓Bi � D〈2,2〉Bi

⊕ D〈2,2〉Bi
, D〈2,2〉Bi

↑Ci � D〈3,3〉Ci
⊕ D〈3,3〉Ci

;

D〈3,2〉Ci
↓Bi � D〈2,3〉Bi

⊕ D〈2,3〉Bi
, D〈2,3〉Bi

↑Ci � D〈3,2〉Ci
⊕ D〈3,2〉Ci

;

D〈2,3,3〉Ci
↓Bi � D〈2,2,2〉Bi

⊕ D〈2,2,2〉Bi
, D〈2,2,2〉Bi

↑Ci � D〈2,3,3〉Ci
⊕ D〈2,3,3〉Ci

;

D〈2,3〉Ci
↓Bi � D〈2,2,3〉Bi

⊕ D〈2,2,3〉Bi
, D〈2,2,3〉Bi

↑Ci � D〈2,3〉Ci
⊕ D〈2,3〉Ci

;

D〈2〉Ci
↓Bi � D〈3,2〉Bi

⊕ D〈3,2〉Bi
, D〈3,2〉Bi

↑Ci � D〈2〉Ci
⊕ D〈2〉Ci

;

for i = 2, 3 we have

D〈2,2,3〉Ci
↓Bi � D〈2,3,3〉Bi

⊕ D〈2,3,3〉Bi
, D〈2,3,3〉Bi

↑Ci � D〈2,2,3〉Ci
⊕ D〈2,2,3〉Ci

;

D〈2,2〉Ci
↓Bi � D〈3,3〉Bi

⊕ D〈3,3〉Bi
, D〈3,3〉Bi

↑Ci � D〈2,2〉Ci
⊕ D〈2,2〉Ci

;
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Figure 3: The Ext-quivers of B1 and B2

for i = 1, 2 we have

D〈1〉Ci
↓Bi � D〈1〉Bi

⊕ D〈1〉Bi
, D〈1〉Bi

↑Ci � D〈1〉Ci
⊕ D〈1〉Ci

;

we also have

D〈2,2,2〉C3
↓B3 � D〈3,3,3〉B3

⊕ D〈3,3,3〉B3
, D〈3,3,3〉B3

↑C3 � D〈2,2,2〉C3
⊕ D〈2,2,2〉C3

;

D〈1,3〉C1
↓B1 � D〈1,2〉B1

⊕ D〈1,2〉B1
, D〈1,2〉B1

↑C1 � D〈1,3〉C1
⊕ D〈1,3〉C1

;

D〈2,1〉C1
↓B1 � D〈3,1〉B1

⊕ D〈3,1〉B1
, D〈3,1〉B1

↑C1 � D〈2,1〉C1
⊕ D〈2,1〉C1

.

Proof.
1. From the decomposition matrix for Ci, we see that P(D〈3,3,3〉Ci

) has a filtration by the Specht modules

S 〈3,3,3〉Ci
, S 〈2,3,3〉Ci

, S 〈2,3〉Ci
and S 〈2,2,2〉Ci

. Since the partitions corresponding to these Specht modules are all

3-regular, D〈3,3,3〉Ci
cannot appear in the second Loewy layer of P(D〈3,3,3〉Ci

).

2. The composition factors of the induced and restricted modules may be found using the Branching Rule,

the decomposition matrices for Bi and Ci (which may be found in Appendix A) and the fact that induc-

tion and restriction are exact functors. Since none of the simple modules in B1 or B2 self-extends, the

restricted modules in the cases i = 1, 2 must be semi-simple. Frobenius reciprocity then implies that the

induced modules in these cases are semi-simple. By the Eckmann-Shapiro relations and the general fact

that

Ext1(M,N ⊕ N) � Ext1(M,N) ⊕ Ext1(M,N),

we then find that none of the simple modules of C2 self-extends. Since C2 is Morita equivalent to B3,

none of the simple modules of the latter block self-extends, and the restricted modules in the case i = 3

are semi-simple, as are the induced modules.

�
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By the Eckmann-Shapiro relations, then, we may determine most of the Ext-spaces in Ci; in the cases

i = 1, 2, we know Ext1(Dλ
Ci
,Dµ

Ci
) provided neither λ nor µ equals 〈3, 3, 3〉, and in the case i = 3 we know

Ext1(Dλ
Ci
,Dµ

Ci
) provided neither λ nor µ equals 〈3, 3, 3〉 or 〈2, 2, 2〉 (although of course the latter case will

follow once we know the extensions of D〈3,3,3〉C2
). We proceed, then, to find the extensions of D〈3,3,3〉Ci

.

As noted in the proof of Proposition 3.1, the projective cover of D〈3,3,3〉Ci
is filtered by S 〈3,3,3〉Ci

, S 〈2,3,3〉Ci
, S 〈2,3〉Ci

and S 〈2,2,2〉Ci
. From the decomposition matrix we see that the first of these Specht modules has structure

D〈3,3,3〉Ci

D〈3,3〉Ci

,

and so D〈3,3,3〉Ci
can only possibly extend D〈3,3〉Ci

, D〈2,3,3〉Ci
, D〈2,3〉Ci

and D〈2,2,2〉Ci
, and the corresponding Ext-spaces are

at most one-dimensional.

Lemma 3.2. S 〈2〉Ci
is uniserial, with structure

D〈2〉Ci

D〈2,3〉Ci

D〈2,3,3〉Ci

D〈3,3〉Ci

D〈3,3,3〉Ci

,

and Ext1(D〈3,3,3〉Ci
,D〈2〉Ci

) = 0.

Proof. Since 〈2〉 is column 3-regular, it has a simple socle isomorphic to D〈2〉
′

Ci
⊗ sgn, by [3, Theorem 8.15].

Using the Mullineux map we find that D〈2〉
′

Ci
⊗ sgn � D〈3,3,3〉Ci

. The structure then follows from the part of

the Ext-quiver of Ci we already know, in particular the fact that Ext1(D〈2〉Ci
,D〈2,3,3〉Ci

), Ext1(D〈2〉Ci
,D〈3,3〉Ci

) and

Ext1(D〈2,3〉Ci
,D〈3,3〉Ci

) are all zero.

From the decomposition matrix of Ci, we see that the head of S 〈2〉Ci
is the only copy of D〈2〉Ci

lying in

P(D〈3,3,3〉Ci
); from the above Specht structure, it does not lie in the second socle layer, and so does not ex-

tend D〈3,3,3〉Ci
. �

Corollary 3.3.

Ext1(D〈3,3,3〉Ci
,D〈2,3,3〉Ci

) = Ext1(D〈3,3,3〉Ci
,D〈2,3〉Ci

) = 0.

Proof. From the structure of S 〈2〉Ci
, we see that P(D〈3,3,3〉Ci

) has a uniserial submodule

D〈2,3〉Ci

D〈2,3,3〉Ci

D〈3,3〉Ci

D〈3,3,3〉Ci

.
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Since this projective cover is self-dual, it has a uniserial quotient

D〈3,3,3〉Ci

D〈3,3〉Ci

D〈2,3,3〉Ci

D〈2,3〉Ci

;

hence the heads of S 〈2,3,3〉Ci
and S 〈2,3〉Ci

lie in the third and fourth Loewy layers of P(D〈3,3,3〉Ci
), and so do not extend

D〈3,3,3〉Ci
. �

Since D〈3,3,3〉Ci
evidently extends D〈3,3〉Ci

, we have determined all the Ext-spaces. Thus we may draw the

quivers of all symmetric group blocks of weight three in characteristic three. We put these together in Figure 4,

with the equivalence classes arranged as in Figure 2. We change notation, and represent the simple modules in

each class by using an abacus with fifteen beads for the ‘smallest’ block in each class. Next to each quiver we

note which notation we are using.

4 The projective cover of D〈3,3,3〉

For this section, we shall restrict attention to the block Ci, for a fixed i; Specht modules and simple modules

will be assumed to be in this block unless otherwise indicated. Let P denote the projective cover of D〈3,3,3〉.

Since we have already discovered some of the structure of P, it seems worth while to determine this structure

completely. Recall that P is filtered by the Specht modules S 〈3,3,3〉, S 〈2,3,3〉, S 〈2,3〉 and S 〈2,2,2〉, and that we have

determined the structures of the first and last of these. For the others we use Schaper’s formula, together with a

consideration of homomorphisms between Specht modules. First of all we determine the structure of S 〈2,3,3〉.

Lemma 4.1. The Specht module S 〈2,3,3〉 has structure

D〈2,3,3〉

D〈3,3〉

D〈3〉D〈3,3,3〉

D〈3,3〉

.

Proof. Using Schaper’s formula, we find that the bounds for the multiplicities for the factors of S 〈2,3,3〉 other

than D〈2,3,3〉 actually equal their multiplicities. Hence S 〈2,3,3〉(2) = 0, and rad(S 〈2,3,3〉) = S 〈2,3,3〉(1) is self-dual. Since

D〈2,3,3〉 constitutes the cosocle of S 〈2,3,3〉, it must extend each composition factor of cosoc(S 〈2,3,3〉(1) ); from the

Ext-quiver of Ci, we find that D〈2,3,3〉 extends neither D〈3〉 nor D〈3,3,3〉, and so S 〈2,3,3〉(1) must be isomorphic to the

indecomposable module
D〈3,3〉

D〈3〉D〈3,3,3〉

D〈3,3〉
.

�
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s
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B
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��
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s
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s
〈3,2〉

s
〈2,3,3〉

s
〈3,3,3〉

s
〈2,2,3〉

s
〈2,2,2〉
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XXX

〈3, 5, 7〉

Figure 4: Ext-quivers of weight three blocks in characteristic three
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We can also determine the structure of S 〈2,3〉.

Lemma 4.2. For the Specht module S 〈2,3〉, we have

S 〈2,3〉(0)

S 〈2,3〉(1)

� D〈2,3〉,

S 〈2,3〉(1)

S 〈2,3〉(2)

� D〈2,3,3〉 ⊕ D〈3,2〉,

S 〈2,3〉(2)

S 〈2,3〉(3)

∼ D〈3〉 + D〈3,3,3〉 + D〈3,3〉 × 2,

S 〈2,3〉(3) = 0.

Proof. Schaper’s formula gives

∞∑
i=1

S 〈2,3〉(i) ∼ D〈2,3,3〉 + D〈3,2〉 + 2 × D〈3〉 + 2 × D〈3,3,3〉 + 4 × D〈3,3〉.

For those composition factors which only appear once, this determines which layer S 〈2,3〉(i) /S 〈2,3〉(i+1) they lie in.

D〈3,3〉 appears twice in S 〈2,3〉, so it could lie in S 〈2,3〉(1) /S 〈2,3〉(2) and S 〈2,3〉(3) /S 〈2,3〉(4) , or twice in S 〈2,3〉(2) /S 〈2,3〉(3) . But in any

case S 〈2,3〉(1) /S 〈2,3〉(2) is semi-simple, and so D〈2,3〉 extends each factor of S 〈2,3〉(1) /S 〈2,3〉(2) . But Ext1(D〈2,3〉,D〈3,3〉) = 0. �

Lemma 4.3.
Hom(D〈3〉, S 〈2,3〉) = 0.

Proof. We have

Hom(D〈3〉, S 〈2,3〉) 6 Hom(D〈3〉 ⊕ D〈3〉, S 〈2,3〉)

� Hom(D〈2〉Bi
, S 〈2,3〉↓Bi)

6 Hom(D〈2〉Bi
, (S 〈3〉Bi

⊕ S 〈2,2,3〉Bi
⊕ S 〈2,2,2〉Bi

)⊕2)

by Frobenius reciprocity and the Branching Rule. Now [S 〈2,2,3〉Bi
: D〈2〉Bi

] = 0, and soc(S 〈2,2,2〉Bi
) � D〈3〉Bi

by [3,

Theorem 8.15]. By examining the Ext-quiver of Bi we see that S 〈3〉Bi
is uniserial with socle D〈2,2〉Bi

. Hence D〈2〉Bi

does not inject into any of these three Specht modules. �

Lemma 4.4. S 〈2,3〉(2) has the structure

D〈3,3〉

D〈3〉D〈3,3,3〉

D〈3,3〉
.

Hence S 〈2,3〉 has a distributive submodule lattice, and its structure is given by
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D〈2,3〉

D〈3,2〉 D〈2,3,3〉

D〈3,3〉

D〈3〉 D〈3,3,3〉

D〈3,3〉

�
�

@
@

A
A
A
A
A

�
�

@
@

@
@

�
�

.

Proof. The composition factor D〈3,3,3〉 only extends D〈3,3〉, and so a copy of the latter must lie above it in S 〈2,3〉;

the other copy of D〈3,3〉 must lie below D〈3,3,3〉, since S 〈2,3〉(2) is self-dual. D〈3〉 does not lie in the socle of S 〈2,3〉,

so it also must lie in between the two copies of D〈3,3〉. Thus the structure of S 〈2,3〉(2) is as stated.

Now the only factor of S 〈2,3〉(0) /S 〈2,3〉(2) which extends D〈3,3〉 is D〈2,3,3〉, and so this extension must occur in

S 〈2,3〉. Of the factors of S 〈2,3〉(2) , D〈2,3〉 extends none and D〈3,2〉 can only possibly extend D〈3〉. This gives the

structure of S 〈2,3〉, except that it is not clear that there is an edge joining D〈3,2〉 to D〈3〉.

In order to show that this edge exists, we need to consider homomorphisms between Specht modules. From

the module structures we have so far, it is clear that

Hom(S 〈3,3〉, S 〈3,2〉) � Hom(S 〈3,2〉, S 〈2,3〉) � Hom(S 〈3,3〉, S 〈2,3〉) � k.

We need to show that the image of the homomorphism from S 〈3,2〉 to S 〈2,3〉 contains the image of the homo-

morphism from S 〈3,3〉 to S 〈2,3〉, i.e. that the latter factors through S 〈3,2〉. Since the corresponding Hom-spaces

are all one-dimensional, it is sufficient to show that, for some 0 , f ∈ Hom(S 〈3,3〉, S 〈3,2〉) and 0 , g ∈

Hom(S 〈3,2〉, S 〈2,3〉), the composition g f is non-zero.

We concentrate on the case i = 3; the other cases are essentially identical. Here we have 〈3, 3〉 =

(12, 7, 22, 12), 〈3, 2〉 = (12, 42, 3, 12), 〈2, 3〉 = (9, 6, 5, 3, 12). Now, if λ and µ are partitions of n, [3, Theo-

rem 13.13] tells us that a basis for HomkSn(S λ,Mµ) is given by

{Θ̂T | T ∈ T0(λ, µ)},

where T0(λ, µ) is the set of semistandard λ-tableaux of type µ, and Θ̂T is the semistandard homomorphism

corresponding to T . Looking at our case, we find that there is just one semistandard (12, 7, 22, 12)-tableau of

type (12, 42, 3, 12), namely

T1 =

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 3 3 4
3 3
4 4
5
6

,

and one (12, 42, 3, 12)-tableau of type (9, 6, 5, 3, 12), namely

T2 =

1 1 1 1 1 1 1 1 1 2 2 3
2 2 2 2
3 3 3 3
4 4 4
5
6

.
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So we may take f = Θ̂T1 and g = Θ̂T2 . Given a λ-tableau T of type µ, Θ̂T is constructed as the restriction of the

homomorphism ΘT : Mλ → Mµ, which depends on a specific choice of a λ-tableau t (of type λ). Choosing the

(12, 7, 22, 12)-tableau

t1 =

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
b1 b2 b3 b4 b5 b6 b7
c1 c2
d1 d2
e1
f1

and the (12, 42, 3, 12)-tableau

t2 =

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
b1 b2 b3 b4
c1 c2 b5 b6
d1 d2 b7
e1
f1

,

we get

ΘT1({t1}) =
∑

16l<m67
16n67
l,n,m


a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
b1 ... b̂l ... b̂m ... b̂n ... b7
c1 c2 bl bm
d1 d2 bn
e1
f1


and

ΘT2({t2}) =
∑

16i< j612
16k612
i,k, j


a1 ... ... âi ... ... â j ... ... âk ... ... a12
b1 b2 b3 b4 b5 b6 b7 ai a j
c1 c2 ak
d1 d2
e1
f1

 ,
where, as usual, a circumflex accent indicates omission, and {t} denotes the tabloid containing the tableau t.

Hence we have

ΘT2(ΘT1({t1})) =
∑

16i< j612
16k612
i,k, j

∑
16l<m67

16n67
l,n,m


a1 ... ... âi ... ... â j ... ... âk ... ... a12

b1 ... b̂l ... b̂m ... b̂n ... b7 ai a j
c1 c2 ak bl bm
d1 d2 bn
e1
f1

 .
To show that the composite Θ̂T2Θ̂T1 is non-zero, we need only show that the image under ΘT2ΘT1 of some

polytabloid is non-zero; we shall take the polytabloid et1 corresponding to t1, that is the sum
∑
π(−1)π{πt},

where the sum is over all column permutations of t1. Consider the coefficient of the tabloid

U =


a1 a2 a3 a4 a5 a6 a7 a8 a9
b1 b2 b3 b4 a10 a11
c1 c2 b5 b6 a12
d1 d2 b7
e1
f1


in ΘT2(ΘT1(et1)). Since a column permutation π of t1 only permutes entries of t1 with the same index, we must

have i = 10, j = 11, k = 12, l = 5,m = 6, n = 7 in order to get

π


a1 ... ... âi ... ... â j ... ... âk ... ... a12

b1 ... b̂l ... b̂m ... b̂n ... b7 ai a j
c1 c2 ak bl bm
d1 d2 bn
e1
f1

 = U;

it is then clear that we must have π = 1, so that the coefficient of U in ΘT2(ΘT1(et1)) is 1. �

Combining the structures of the Specht modules in P, we are able to find the structure of the latter. Using

the structures of the Specht modules and their duals, and using the Ext-quiver of Ci to rule out any further

extensions, we obtain the following.
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Figure 5: The submodule structure of P(D〈3,3,3〉)

Proposition 4.5. The projective module P = P(D〈3,3,3〉) has a distributive submodule lattice, and its structure

is as in Figure 5.

It is extremely unusual for a projective module in a block of such large defect to have a distributive submod-

ule lattice. The other indecomposable projectives in Ci have many more composition factors, and can easily be

shown not to have distributive submodule lattices.

Notice that the Loewy length of this module is thirteen, and that it is not stable, i.e. its Loewy series does

not coincide with its socle series. However, if we ignore all the copies of the simple module D〈3,3〉, then the

resulting structure is stable, with seven layers. Martin conjectures that for a symmetric group block of weight

ω < p, the projective modules have stable structures and Loewy length exactly 2ω+1; from the above evidence,

it seems as though, with some modified definition of the Loewy series, this conjecture might hold for ω > p as

well.
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A Decomposition matrices

The matrices found here were calculated using Schaper’s formula and other means. The (λ, µ)th entry of

each matrix records the composition multiplicity [S λ : Dµ], with a blank space indicating zero. The partitions

are given in the abacus notation specified for each matrix.

A.1 The block of kS13 with 3-core (3, 1)
(〈3, 5, 3〉-notation)

〈2
〉

〈2
,2
〉

〈2
,3
〉

〈3
〉

〈3
,2
〉

〈2
,2
,3
〉

〈2
,2
,2
〉

〈1
,2
〉

〈1
〉

〈3
,1
〉

〈2〉 1
〈2, 2〉 1 1
〈2, 3〉 2 1 1
〈2, 1〉 1
〈3〉 1 1 1 1
〈3, 2〉 1 1
〈2, 2, 3〉 1 1 1 1
〈2, 2, 2〉 1 1 1 1 1 1 1
〈1, 2, 2〉 1
〈1, 2〉 2 1 1 1 1 1
〈1, 2, 3〉 2 1 1
〈2, 3, 3〉 1 1
〈1, 1, 2〉 1
〈1〉 1 1 1 1 1 1 1
〈3, 1〉 2 1 1 1 1 1 1
〈3, 3〉 1 1 1 1 1 1
〈1, 3〉 1 1 1 1
〈1, 1〉 1 1 1 1
〈1, 3, 3〉 1 1
〈1, 1, 3〉 1 1
〈3, 3, 3〉 1 1
〈1, 1, 1〉 1

A.2 The block of kS15 with 3-core (4, 2)
(〈3, 3, 5〉-notation)

〈3
〉

〈3
,3
〉

〈3
,2
〉

〈3
,3
,3
〉

〈3
,3
,2
〉

〈2
,3
〉

〈1
,3
〉

〈2
〉

〈1
〉

〈2
,2
〉

〈3〉 1
〈3, 3〉 1 1
〈3, 2〉 2 1 1
〈3, 1〉 1
〈3, 3, 3〉 1 1
〈3, 3, 2〉 1 2 1 1
〈3, 3, 1〉 1
〈2, 3〉 1 2 1 1 1 1
〈1, 3〉 2 1 1 1 1 1
〈1, 2, 3〉 2 1 1
〈3, 2, 2〉 1 1
〈3, 1, 1〉 1
〈2〉 1 1 1 1 1
〈1〉 1 1 1 1 1 1 1
〈2, 1〉 2 1 1 1 1 1 1
〈2, 2〉 1 1 1 1 1 1
〈1, 2〉 1 1 1 1
〈1, 1〉 1 1 1 1
〈1, 2, 2〉 1 1
〈1, 1, 2〉 1 1
〈2, 2, 2〉 1 1
〈1, 1, 1〉 1
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A.3 The block of kS17 with 3-core (4, 2, 12)
(〈3, 6, 4〉-notation)

〈2
〉

〈2
,2
〉

〈2
,3
〉

〈3
〉

〈3
,2
〉

〈2
,2
,3
〉

〈2
,2
,2
〉

〈2
,3
,3
〉

〈3
,3
〉

〈1
〉

〈2〉 1
〈2, 2〉 1 1
〈2, 3〉 2 1 1
〈2, 1〉 1
〈3〉 1 1 1 1
〈3, 2〉 1 1
〈2, 2, 3〉 1 1 1 1
〈2, 2, 2〉 1 1 1 1 1 1 1
〈1, 2, 2〉 1
〈2, 3, 3〉 2 1 1 1 1
〈1, 2, 3〉 1 1 1 1
〈1, 2〉 1
〈1, 1, 2〉 1
〈3, 3〉 1 1 1 1 1 1 1 1
〈1〉 1 1 1 1 1 1 1
〈3, 1〉 2 1 1 1 1
〈1, 3〉 1 1 1 1
〈1, 3, 3〉 1 1
〈3, 3, 3〉 1 1 1 1
〈1, 1, 3〉 2 1 1
〈1, 1〉 1 1
〈1, 1, 1〉 1

A.4 The block of kS19 with 3-core (5, 3, 12)
(〈3, 4, 6〉-notation)

〈3
〉

〈3
,3
〉

〈3
,2
〉

〈3
,3
,3
〉

〈2
,3
,3
〉

〈2
,3
〉

〈2
,2
,3
〉

〈2
〉

〈2
,2
〉

〈2
,1
〉

〈3〉 1
〈3, 3〉 1 1
〈3, 2〉 2 1 1
〈3, 1〉 1
〈3, 3, 3〉 1 1
〈2, 3, 3〉 1 2 1 1
〈1, 3, 3〉 1
〈2, 3〉 1 2 1 1 1 1
〈2, 2, 3〉 2 1 1 1 1
〈1, 2, 3〉 1 1 1 1
〈1, 3〉 1
〈1, 1, 3〉 1
〈2〉 1 1 1 1 1
〈2, 2〉 1 1 1 1 1 1 1 1
〈2, 1〉 1 1 1 2 1
〈1〉 1 1 1 1 1 1 1
〈1, 2〉 1 1 1 1
〈1, 2, 2〉 1 1
〈2, 2, 2〉 1 1 1 1
〈1, 1, 2〉 1 2 1
〈1, 1〉 1 1
〈1, 1, 1〉 1
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A.5 The block of kS23 with 3-core (5, 3, 22, 12)
(〈3, 7, 5〉-notation)

〈2
〉

〈2
,2
〉

〈2
,3
〉

〈3
〉

〈3
,2
〉

〈2
,2
,3
〉

〈2
,2
,2
〉

〈2
,3
,3
〉

〈3
,3
〉

〈3
,3
,3
〉

〈2〉 1
〈2, 2〉 1 1
〈2, 3〉 2 1 1
〈2, 1〉 1
〈3〉 1 1 1 1
〈3, 2〉 1 1
〈2, 2, 3〉 1 1 1 1
〈2, 2, 2〉 1 1 1 1 1 1 1
〈1, 2, 2〉 1
〈2, 3, 3〉 2 1 1 1 1
〈1, 2, 3〉 1 1 1 1
〈1, 2〉 1
〈1, 1, 2〉 1
〈3, 3〉 1 1 1 1 1 1 1 1
〈3, 1〉 2 1 1 1 1
〈3, 3, 3〉 1 1 1 1 1
〈1, 3, 3〉 1 1 1 1 2 1
〈1, 3〉 1 1 2 1
〈1, 1, 3〉 2 1 1
〈1〉 1 1
〈1, 1〉 1 1
〈1, 1, 1〉 1

A.6 The block of kS25 with 3-core (6, 4, 22, 12)
(〈3, 5, 7〉-notation)

〈3
〉

〈3
,3
〉

〈3
,2
〉

〈3
,3
,3
〉

〈2
,3
,3
〉

〈2
,3
〉

〈2
,2
,3
〉

〈2
〉

〈2
,2
〉

〈2
,2
,2
〉

〈3〉 1
〈3, 3〉 1 1
〈3, 2〉 2 1 1
〈3, 1〉 1
〈3, 3, 3〉 1 1
〈2, 3, 3〉 1 2 1 1
〈1, 3, 3〉 1
〈2, 3〉 1 2 1 1 1 1
〈2, 2, 3〉 2 1 1 1 1
〈1, 2, 3〉 1 1 1 1
〈1, 3〉 1
〈1, 1, 3〉 1
〈2〉 1 1 1 1 1
〈2, 2〉 1 1 1 1 1 1 1 1
〈2, 1〉 1 1 1 2 1
〈2, 2, 2〉 1 1 1 1 1
〈1, 2, 2〉 1 1 1 1 2 1
〈1, 2〉 1 1 2 1
〈1, 1, 2〉 1 2 1
〈1〉 1 1
〈1, 1〉 1 1
〈1, 1, 1〉 1
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