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Abstract

Let F be a field, q a non-zero element of F and Hn = HF,q(Sn) the Iwahori–Hecke
algebra of the symmetric group Sn. If B is a block ofHn of e-weight 3 and the characteristic
of F is at least 5, we prove that the decomposition numbers for B are all at most 1. In
particular, the decomposition numbers for a p-block of Sn of defect 3 are all at most 1.
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1 Introduction

Let F be a field of any characteristic; we adopt the convention that a field whose prime
subfield is infinite has infinite characteristic. Let q be a non-zero element of F and let n be a
non-negative integer. In this paper, we discuss the decomposition numbers for the Iwahori–
Hecke algebra Hn = HF,q(Sn) of the symmetric group Sn. In the special case where q = 1,
this algebra is simply the group algebra FSn. We let e be the least positive integer such that
1 + q + · · ·+ qe−1 = 0 in F if such an integer exists, and let e = ∞ otherwise. Each block ofHn
has an e-weight, and in this paper we examine the blocks whose e-weight is 3. The main result
of the paper is as follows.

Theorem 1.1. Suppose char(F) > 5, and that B is a block of HF,q(Sn) of e-weight 3. Let λ and µ be
partitions in B with µ e-regular. Then [Sλ

B : Dµ
B] 6 1.

This result has been conjectured for some time, and has proved elusive until now. In the
special case of symmetric group algebras, Martin and Russell [13] have published a purported
proof of this result; however, various errors have subsequently been found in that paper. In
particular, when e = p = 5, λ = (82, 4, 1) and µ = (12, 9), the decomposition number [Sλ :
Dµ] is hard to calculate; it was eventually found to be 1 rather than 2 by a large computer
calculation carried out by Lübeck and Müller. The novelty in the present paper is to prove
Theorem 1.1 first in the case where F has infinite characteristic, using a reverse induction with
the class of ‘Rouquier blocks’ as a base case. We then complete the proof by showing that the
‘adjustment matrices’ for weight 3 blocks are trivial, verifying James’s Conjecture for weight 3
blocks.

Note that if all the decomposition numbers for a block are known to be at most 1, then these
decomposition numbers can all be calculated using the Jantzen–Schaper formula (Theorem 1.6
below). Thus in principle we now know the decomposition numbers for weight 3 blocks of
Iwahori–Hecke algebras. However, we do not have anything like a combinatorial description
of these, as we do for blocks of weight 2.
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We now indicate the layout of the paper. After summarising all the background theory and
notation that we shall need in the remainder of this introduction, we list some essential proper-
ties of weight 3 blocks in Section 2, mostly following Martin and Russell. We then proceed with
the proof of Theorem 1.1. In Section 3, we prove Theorem 1.1 in the case where F has infinite
characteristic; in this case, the Iwahori–Hecke algebra is better understood, and we have at our
disposal a key theorem due to James and Mathas, which says that the decomposition matrices
in infinite characteristic are ‘independent of e’, in a sense which we make precise below. In
Section 4, we use the result of Section 3 to complete the proof of Theorem 1.1, by finding the
‘adjustment matrices’ for weight 3 blocks.

Acknowledgement. An earlier version of this paper was very cumbersome. The present stream-
lined version incorporates some ideas from the author’s forthcoming paper with Kai Meng Tan
[5], which was written while the author was visiting the National University of Singapore. The
author is very grateful for that institution’s hospitality. The author also wishes to thank Kai
Meng Tan for pointing out the easy proof of Lemma 3.6 below.

1.1 Background and notation

Excellent references for the representation theory of the symmetric groups and the Iwahori–
Hecke algebras are the books of James [6] and Mathas [14] respectively. We take most of our
notation from these books, but the Specht modules we use are those defined by Dipper and
James in [3] rather than those in [14]. From now on we denote by Hn the Iwahori–Hecke
algebra HF,q(Sn), and we assume that e = inf{d ∈ N | 1 + q + · · ·+ qd−1 = 0} is finite. For
each partition λ of n, one defines a Specht module Sλ

F,q for Hn. If λ is e-regular (i.e. if it does not
have e equal positive parts), then Sλ

F,q has an irreducible cosocle Dλ
F,q; the modules Dλ

F,q give a
complete set of irreducible modules forHn as λ ranges over the set of e-regular partitions of n.
We may write Sλ

F,q and Dλ
F,q as Sλ

B and Dλ
B to indicate that they lie in a block B ofHn, or simply

as Sλ and Dλ if F and q are understood.
Given partitions λ and µ of n with µ e-regular, we define the decomposition number dλµ to

be the composition multiplicity [Sλ : Dµ]; the decomposition matrix forHn is a matrix with rows
indexed by partitions of n and columns by e-regular partitions of n, in which the (λ, µ) entry
is dλµ. In the case q = 1, this is the decomposition matrix in the usual representation-theoretic
sense.

We use some notational conventions for modules. We write

M ∼ Ma
1 + · · ·+ Ma

r

to indicate that M has a filtration in which the factors are M1, . . . , Mr, each appearing a times.
We also write M⊕r to indicate the direct sum of r isomorphic copies of M.

We assume throughout the paper that the reader is familiar with the combinatorics of
Young diagrams, particularly removable nodes and rim hooks.

1.1.1 Blocks and the abacus

If e is finite, then partitions of n are conveniently represented on an abacus. If λ is a parti-
tion, choose an integer r greater than the number of parts of λ, and define

βi = λi + r− i
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for i = 1, . . . , r. The set {β1, . . . , βr} is then said to be a set of beta-numbers for λ. Now take an
abacus with e vertical runners 1, . . . , e from left to right, and number the positions on runner i
as i− 1, i− 1+ e, i− 1+ 2e, . . . from the top downwards (so each non-negative integer occurs
on exactly one runner). Then place a bead on the abacus at position βi for each i. The resulting
configuration is said to be an abacus display for λ. The partition whose abacus display is
obtained from this by moving all the beads as far up their runners as they will go is called the
e-core of λ; it is a partition of n − we for some w, which is called the e-weight (or simply the
weight) of λ. Moving a bead up s spaces on its runner corresponds to removing a rim hook of
length es from the Young diagram. ‘Nakayama’s Conjecture’ [14, Corollary 5.38] says that two
Specht modules Sλ and Sµ lie in the same block of Hn (we shall abuse notation by saying that
λ and µ lie in this block) if and only if they have the same e-core; this means that they also have
the same weight, and this is called the (e-)weight of the block. If there is a bead in an abacus
display for λ with exactly w empty spaces above it on the same runner, we say that the bead
has weight w.

We shall often be comparing the numbers of beads on runners i − 1 and i, and moving
beads ‘one space to the right’ or ‘one space to the left’. We wish to include the possibility i = 1
here, with the convention that the position ‘one space to the left’ of position ex on runner 1 is
position ex − 1 on runner e. To say that ‘there are κ more beads on runner i than on runner
i − 1’ in the case i = 1 will actually mean that there are κ + 1 more beads on runner 1 than
runner e. ‘Swapping runners i− 1 and i’ in the case i = 1 will actually mean moving each bead
at a position ex > 0 on runner 1 to position ex− 1 on runner e, and vice versa.

1.1.2 Branching rules

There is a natural embedding Hn−1 6 Hn. If M is a module for Hn, we write M↓Hn−r to
indicate the restriction of M toHn−r, and M↑Hn+r to indicate the module obtained by inducing
M to Hn+r. If B is a block of Hn−r or Hn+r, we write M↓B (respectively, M ↑B) to indicate the
projection of M↓Hn−r (respectively, M ↑Hn+r ) onto B. In this section we describe the induction
and restriction of Specht modules and simple modules.

Suppose A, B and C are blocks of Hn−κ, Hn and Hn+κ respectively, and that there is an
abacus display for B and an integer i such that an abacus display for A is obtained by moving
κ beads from runner i to runner i− 1, while an abacus display for C is obtained by moving κ

beads from runner i− 1 to runner i.
Suppose λ is a partition in B, and let λ−1, . . . , λ−r be the partitions in A which may be

obtained from λ by moving exactly κ beads on runner i one place to the left. Similarly, let
λ+1, . . . , λ+s be the partitions in C which may be obtained from λ by moving exactly κ beads
from runner i− 1 one place to the right. Then we have the following.

Theorem 1.2. (The Branching Rule [14, Corollary 6.2]) Suppose A, B, C and λ are as above. Then

Sλ↓B
A∼ (Sλ−1

)κ! + · · ·+ (Sλ−r
)κ!

and
Sλ ↑C

B∼ (Sλ+1
)κ! + · · ·+ (Sλ+s

)κ!.

The induction and restriction of simple modules is rather more subtle. Suppose A, B, C
and λ are as above, and that λ is e-regular. The i-signature of λ is a sequence of signs defined
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as follows. Starting from the top row of the abacus and working down, write a − if there is a
bead on runner i but no bead on runner i− 1 in the same row; write a + if there is a bead on
runner i− 1 but no bead on runner i in the same row; otherwise, write nothing for that row.

Given the i-signature of λ, successively delete all neighbouring pairs of the form −+; the
resulting sequence is called the reduced i-signature of λ. If there are any − signs in the reduced
i-signature, then we say that the corresponding beads on runner i are normal; if there are at
least κ normal beads, then we define λ− to be the partition obtained by moving the κ highest
normal beads one place to the left. If there are any + signs in the reduced i-signature, then we
say that the corresponding beads on runner i − 1 of the abacus display are conormal. If there
are at least κ conormal beads, then we define λ+ to be the partition obtained by moving the κ

lowest conormal beads one place to the right.

Theorem 1.3. [1, §2.5] Suppose A, B, C and λ are as above.

• If there are fewer than κ normal beads on runner i of the abacus for λ, then Dλ↓B
A= 0.

• If there are exactly κ normal beads on runner i of the abacus for λ, then Dλ↓B
A
∼= (Dλ−)⊕κ!.

• If there are fewer than κ conormal beads on runner i− 1 of the abacus for λ, then Dλ ↑C
B= 0.

• If there are exactly κ conormal beads on runner i− 1 of the abacus for λ, then Dλ ↑C
B
∼= (Dλ−)⊕κ!.

Example. Take e = 4, i = 2 and κ = 1 and suppose that

λ = (4, 22, 12) =
u u u uu u uu uu , µ = (3, 22, 13) =

u u u uu u uu uu .

Then
Dλ ↑C

B= Dλ+
, Dµ↓B

A
∼= Dµ− , Dµ ↑C

B= 0,

where

λ+ =
u u u uu u uu uu , µ− =

u u u uu u uu uu .

1.1.3 The Mullineux map

Let T1, . . . , Tn−1 be the standard generators of Hn. Let ] : Hn → Hn be the involutory
automorphism sending Ti to q− 1−Ti, and let ∗ : Hn → Hn be the anti-automorphism sending
Ti to Ti. Given a module M forHn, define M] to be the module with the same underlying vector
space and with action

h ·m = h]m,

and define M∗ to be the module with underlying vector space dual to M and withHn-action

h · f (m) = f (h∗m).

If M lies in a block B, then M] lies in a block B], which we call the conjugate block to B.
(Note that in the symmetric group case q = 1, M] is simply M ⊗ sgn, where sgn is the

1-dimensional signature representation, while M∗ is the usual dual module to M.)
The effect of these functors on Specht modules is easily described; let λ′ denote the partition

conjugate to λ.
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Lemma 1.4. [14, Exercise 3.14(iii)] For any partition λ,

Sλ′ ∼= (Sλ)]∗.

Now we turn to the simple modules Dλ, for λ e-regular. It follows from the cellularity of
Hn that (Dλ)∗ ∼= Dλ. If we let λ� denote the e-regular partition such that (Dλ)] ∼= Dλ� , then
� is an involutory bijection from the set of e-regular partitions of n to itself. This bijection is
given combinatorially by Mullineux’s algorithm [15]; we shall not describe this here, but we
note that given an e-regular partition λ, the partition λ� depends only on λ and e, not on the
underlying field.

Of course, the functor M 7→ M] is a self-equivalence of the category of Hn-modules, and
we have the following consequence for decomposition numbers.

Corollary 1.5. For any partitions λ and µ with µ e-regular,

[Sλ : Dµ] = [Sλ′ : Dµ� ].

1.1.4 The Jantzen–Schaper formula

One of the most important tools in finding the decomposition numbers for Hn is the (q-
analogue of the) Jantzen–Schaper formula. We describe this very briefly.

Given partitions λ and µ of n and given e and p, let H(λ, µ) be the set of ordered pairs
(g, h), where

• g is a rim hook of the Young diagram [λ] of λ;

• h is a rim hook of the Young diagram [µ] of µ;

• [λ] \ g = [µ] \ h.

Now define
cλ,µ = ∑

(g,h)∈H(λ,µ)
(−1)l(g)+l(h)+1νe,p(|g|);

here |g| is the number of nodes of g and l(g) its leg length, and

νe,p(x) =


0 (e - x)
1 (e | x and p = ∞)

1 + νp(x/e) (e | x and p < ∞)

for a positive integer x.
A weak form of the Jantzen–Schaper formula may now be stated as follows, where > indi-

cates the lexicographic order of partitions.

Theorem 1.6. [9, Theorem 4.7] Let F be a field of characteristic p. For partitions λ 6= µ of n with µ

e-regular, define
nλ,µ = ∑

ν>λ

cλ,ν[Sν
F : Dµ

F].

Then
[Sλ

F : Dµ
F] 6 nλ,µ,

and [Sλ
F : Dµ

F] = 0 if and only if nλ,µ = 0.
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In view of Theorem 1.6, we define a ‘dominance’ order on the set of partitions of n. We
define λ B µ if λ > µ and cλ,µ 6= 0, and we extend transitively. Note that this does not coincide
with the usual dominance order (which is a refinement), and that it depends on e and p. In
practice, though, we shall only be considering partitions of e-weight less than p, for which the
order Q depends only on e.

It is clear that Q is reversed by conjugation of partitions, and in view of the results of Section
1.1.3, we have the following.

Proposition 1.7. If F is a field of characteristic p, and λ and µ are partitions of n with µ e-regular and
with λ 6= µ�′, define

n′λ,µ = ∑
νCλ

cλ,ν[Sν
F : Dµ

F].

Then
n′λ,µ > [Sλ

F : Dµ
F],

and n′λ,µ = 0 if and only if [Sλ
F : Dµ

F] = 0.
Hence [Sλ : Dµ] = 0 unless µ Q λ Q µ�′.

Proof. Replace λ and µ with λ′ and µ�, and apply Theorem 1.6 (replacing ν > λ′ with ν B λ′)
and Corollary 1.5.

1.1.5 The Scopes equivalence

Various Morita equivalences for blocks of the same weight were found by Scopes [17];
although her paper was concerned only with blocks of the symmetric group, her results are
known to be valid for the Iwahori–Hecke algebras.

Suppose that A is a block of Hn−κ of weight w, and B a block of Hn of weight w. Suppose
that there is an abacus display for B and an integer i such that:

• there are exactly κ more beads on runner i than on runner i− 1;

• by interchanging runners i and i− 1, we obtain an abacus display for A.

Then we say that A and B form a [w : κ]-pair.
Suppose that A and B form a [w : κ]-pair with w 6 κ, and let λ be a partition in B. Then

there are exactly κ beads on runner i in the abacus display for λ which do not have beads
immediately to their left. If we move each of these beads one place to the left, we obtain a
partition in A, which we denote Φ(λ). Then we have the following.

Theorem 1.8. [14, p. 127] Let A, B and Φ be as above. Then:

• Φ is a bijection between the set of partitions in B and the set of partitions in A;

• Φ(λ) is e-regular if and only if λ is e-regular;

• for any partition λ in B,

Sλ↓B
A∼ (SΦ(λ))κ!, SΦ(λ) ↑B

A∼ (Sλ)κ!;
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• for any e-regular partition λ in B,

Dλ↓B
A
∼= (DΦ(λ))⊕κ!, DΦ(λ) ↑B

A
∼= (Dλ)⊕κ!;

• the correspondence Dλ ↔ DΦ(λ) is induced by a Morita equivalence between B and A.

In view of Theorem 1.8, we define blocks to be Scopes equivalent if they form a [w : κ]-pair
for some κ > w. We extend this transitively to define an equivalence relation on the set of
blocks of weight w, and we refer to an equivalence class as a Scopes class.

It will be useful later to use the notion of [w : κ]-pairs to define a partial order on the set of
blocks of a given weight. If A and B form a [w : κ]-pair (not necessarily with w 6 κ), we write
A ≺ B, and extend 4 transitively to form a partial order on the set of weight w blocks.

We also define a partial order on the set of Scopes classes by setting C 4 D if A 4 B for
some A ∈ C and B ∈ D, and extending transitively. It is not immediately obvious that this
relation is anti-symmetric, but this will follow from the section on pyramids below.

1.1.6 Pyramids

In order to understand the combinatorics of Scopes classes, Richards [16] defined the notion
of a pyramid. Let γ be an e-core, and choose an abacus display for γ. Let p1 < · · · < pe be those
integers such that there is a bead at position pi but no bead at position pi + e, for each i. Then
exactly one pi lies in each congruence class modulo e. We re-number the runners of the abacus
so that the bead at position pi lies on runner i for each i. Note that we use this new numbering
for the remainder of this paper. For i < j the integer pj − pi is a positive integer not divisible by e,
and it does not depend on the choice of abacus display for γ. Given w > 0, we define

iaj =



w− 1 (e > pj − pi > 0)
w− 2 (2e > pj − pi > e)

...
1 ((w− 1)e > pj − pi > (w− 2)e)
0 (pj − pi > (w− 1)e)

for 1 6 i < j 6 e. For ease of notation, we also define 0aj = jae+1 = 0 for all j. If B is the
block of Hn with core γ and weight w, then the set of integers iaj is called the pyramid for B;
we shall write iaj(B) when it is not clear to which block we are referring. We shall also use
shorthand such as i0j to indicate that iaj = 0.

A critical property of pyramids is the following.

Proposition 1.9. [16, Lemma 3.1 & Proposition 3.3] Two blocks of weight w are Scopes equivalent
if and only if they have the same pyramid.

By examining the difference between the pyramids of two blocks forming a [w : κ]-pair, we
can easily see the following.

Lemma 1.10. Let A and B be blocks of weight w. If A 4 B, then iaj(A) > iaj(B) for all i, j. In
particular, the relation 4 on Scopes classes is anti-symmetric.
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1.1.7 The row and column removal theorems

Here we state two useful results concerning decomposition numbers for Hecke algebras.

Theorem 1.11. [14, p. 125, Rule 8]
1. Suppose λ and µ are partitions of n with µ e-regular, and that λ1 = µ1. Define

λ = (λ2, λ3, . . . ), µ = (µ2, µ3, . . . ).

Then µ is e-regular, and

[Sλ
F : Dµ

F] = [Sλ
F : Dµ

F]

for any field F.

2. Suppose λ and µ are partitions of n with µ e-regular, and that λ′1 = µ′1. Define

λ = (max(λ1 − 1, 0), max(λ2 − 1, 0), . . . ), µ = (max(µ1 − 1, 0), max(µ2 − 1, 0), . . . ).

Then µ is e-regular, and

[Sλ
F : Dµ

F] = [Sλ
F : Dµ

F]

for any field F.

1.1.8 The runner removal theorem

Here we state a result which will be very useful in Section 3; it describes a relationship
between the decomposition matrices of Iwahori–Hecke algebras defined over fields of infinite
characteristic with different values of e.

Suppose F has infinite characteristic, that e > 3, that q is a primitive eth root of unity in F
and that q′ is a primitive (e− 1)th root of unity in F. Suppose λ and µ are partitions of n and
suppose r > λ′1, µ′1. Consider the abacus displays for λ and µ on an abacus with r beads and
e runners, and suppose that there are no beads on runner i in either of these abacus displays.
Delete runner i from both displays, and let λ− and µ− be the partitions given by the resulting
abacus displays.

Theorem 1.12. [10, Corollary 2.3] Let λ and µ be as above. If µ− is (e− 1)-regular and if |λ−| =
|µ−|, then

[Sλ
F,q : Dµ

F,q] = [Sλ−
F,q′ : Dµ−

F,q′ ].

Remark. In practice, if we are trying to calculate the decomposition number [Sλ : Dµ], then we
may assume that λ and µ lie in the same block. This automatically implies that |λ−| = |µ−|.

1.1.9 Adjustment matrices

Finally we come to a result which relates the decomposition matrices of Iwahori–Hecke
algebras with the same value of e but defined over different fields. It is a consequence of a type
of modular reduction.
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Theorem 1.13. [14, Theorem 6.35] Suppose B is a block of HF,q(Sn), with e-core γ. Let q′ be a
primitive eth root of unity in C, and let B0 be the block ofHC,q′(Sn) with e-core γ.

Let D and D0 be the decomposition matrices of B and B0 respectively, with rows indexed by partitions
of n with e-core γ, and columns indexed by e-regular partitions of n with e-core γ. Then there exists a
square matrix A with non-negative integer entries and with rows and columns both indexed by e-regular
partitions of n with e-core γ, such that D = D0A.

The matrix A in Theorem 1.13 is known as the adjustment matrix for B. Adjustment matrices
were introduced by James in [7]; James’s Conjecture asserts that if char(F) > w, then the
adjustment matrix for a block ofHn of weight w is the identity matrix.

2 Blocks of small weight

In this section, we give some basic results on blocks of weight at most 3. These are largely
concerned with comparing the decomposition numbers for blocks forming a [3 : κ]-pair. The
results are largely the same as those in [13], but we are able to give quicker proofs using the
modular branching rules.

To begin with, we review the theory of blocks of weight less than 3.

2.1 Blocks of weight at most 2

Blocks of weight 0 are simple; thus each contains a unique partition ν, with Sν = Dν.
Blocks of weight 1 are very well understood; each contains e partitions, which may be labelled
λ1, . . . , λe so that λ1 B · · · B λe and that λ1, . . . , λe−1 are e-regular. The decomposition number
[Sλi

: Dλj
] equals 1 if i = j or j + 1, and 0 otherwise.

Blocks of weight 2 were studied by Richards [16], whose main result we state below; al-
though this was stated only for symmetric group blocks, the proof of the q-analogue of the
Jantzen–Schaper formula means that it is true in general.

Given a partition λ of weight 2, we reach the core of λ by twice moving a bead up one
space on the abacus. This corresponds to removing two rim hooks of length e from the Young
diagram [λ]. We denote by ∂λ the absolute difference between the leg lengths of these rim
hooks. We then have the following.

Theorem 2.1. [16, Theorem 4.4] Suppose that char(F) 6= 2, and that B is a block ofHn of weight 2.
If λ and µ are partitions in B with µ e-regular, then

[Sλ : Dµ] =


1 (λ = µ)

1 (λ = µ�′)

1 (µ B λ B µ�′ and |∂λ− ∂µ| = 1)
0 (otherwise).

Corollary 2.2. Suppose B is a block of Hn of weight 2, and that λ, µ and ν are partitions in B with ν

e-regular. Suppose λ > µ in the lexicographic order, and that |∂λ− ∂µ| = 1. If [Sλ : Dν] = [Sµ :
Dν] = 1, then either ν = λ or ν�′ = µ.

Remark. Theorem 2.1 is not true in characteristic 2; the decomposition numbers in this case
have been found by the present author [4], but we shall not need these results in this paper.
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2.2 Notation for blocks of weight 3

In this section we define some notation for partitions in blocks of weight 3; this is similar to
the notation used by Martin and Russell [13], but we use the numbering of runners described
in §1.1.6.

Suppose B is a block of Hn of weight 3, and fix an abacus for B. Suppose there are b1
beads on the leftmost runner, b2 beads on the next runner, and so on, with be beads on the
rightmost runner. Then the 〈b1, . . . , be〉 notation for the partition λ in B is defined as follows.
If the display for λ is obtained from the display for the core of B by moving the lowest bead
on runner i down three spaces, we denote λ as [i]. If the display for λ is obtained by moving
the lowest bead down two spaces on runner i and moving a bead down one space on runner
j (where i may equal j), we denote λ as [i, j]. If the display for λ is obtained by moving three
beads down one space each on runners i, j and k (where i, j and k may coincide), then we
denote λ as [i, j, k]. In order to emphasise the block in which our partition lies and the abacus
used for that block, we may write [i, j, k] as

[i, j, k | b1, . . . , be],

and similarly for [i] and [i, j]. We may group together equal bis; so the partition (42, 1) with
abacus display u u uu uu u u
may be written as [1, 3 | 32, 2].

An advantage of using our numbering of the runners of the abacus is that if A and B are
blocks forming a [3 : κ]-pair with κ > 3, then the map Φ described in §1.1.5 becomes

[i, j, k] 7−→ [i, j, k],
[i, j] 7−→ [i, j],
[i] 7−→ [i],

for all i, j, k.
We make similar definitions for blocks of weight 2. We write [i] for the partition obtained

by moving the lowest bead down two spaces on runner i, and [i, j] for the partition obtained by
moving two beads down one space each on runners i and j. We shall always make the weight
of the partition explicit, so no confusion should arise.

2.3 [3 : κ]-pairs

In studying weight 3 blocks, [3 : κ]-pairs are a vital tool. Since blocks forming a [3 : κ]-pair
with κ > 3 are Morita equivalent, the study of blocks of weight 3 centres around [3 : 1]- and
[3 : 2]-pairs. Here we set up some notation and prove some basic results for [3 : κ]-pairs,
following Martin and Russell.

Suppose A ≺ B form a [3 : κ]-pair, and that the abacus for B is obtained from that for A by
swapping the adjacent runners i and j, where i < j. We say that a partition λ in B is exceptional
for this [3 : κ]-pair if there are more than κ beads on runner j of the abacus display for B with
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no bead immediately to the left, and non-exceptional otherwise. If λ is e-regular, then we say
that the simple module Dλ is exceptional if there are more than κ normal beads on runner j of
the abacus display for λ. We make similar definitions for A: we say that a partition λ in A is
exceptional if there are more than κ beads on runner i of the abacus display for λ with no bead
immediately to the right, and if λ is e-regular we say that Dλ is exceptional if there are more
than κ conormal beads on runner i.

2.4 [3 : 1]-pairs

Suppose that A ≺ B form a [3 : 1]-pair, and that the abacus for B is obtained from that for
A by swapping runners i and j. Then the following are the exceptional partitions in A and B:

A B

αk =

{
[i, k] (k 6= j)
[i] (k = j)

αk =


[j, j, k] (k 6= i, j)
[j, j, j] (k = i)
[j, j] (k = j)

βk =

{
[i, j, k] (k 6= j)
[j, i] (k = j)

βk =

{
[i, j, k] (k 6= j)
[j, i] (k = j)

γk =


[j, j, k] (k 6= i, j)
[j, j, j] (k = i)
[j, j] (k = j)

γk =

{
[i, k] (k 6= j)
[i] (k = j).

The exceptional simple modules in A and B are the modules Dαk and Dαk for those k such that
αk is e-regular.

Now we define a bijection between the set of partitions in B and the set of partitions in A. If
λ is a partition in B which is not exceptional, then define the partition Φ(λ) in A by swapping
runners j and i of the abacus display for λ. We define Φ on the exceptional partitions as follows:

Φ : αk 7−→ αk,

βk 7−→ γk,

γk 7−→ βk.

The following result is then easily checked.

Lemma 2.3. Φ is a bijection between the set of partitions in B and the set of partitions in A. If λ is a
partition in B, then Φ(λ) is e-regular if and only if λ is e-regular.

We get the following results on induction and restriction from Theorems 1.2 and 1.3.

Proposition 2.4. Suppose that A and B form a [3 : 1]-pair as above, and that λ is a partition in B.

• If λ is a non-exceptional partition, then

Sλ↓B
A
∼= SΦ(λ), SΦ(λ) ↑B

A
∼= Sλ.
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• If 1 6 j 6 e, then

Sαk↓B
A ∼ Sαk + Sβk , Sαk ↑B

A ∼ Sαk + Sβk ,

Sβk↓B
A ∼ Sαk + Sγk , Sβk ↑B

A ∼ Sαk + Sγk ,

Sγk↓B
A ∼ Sβk + Sγk , Sγk ↑B

A ∼ Sβk + Sγk .

• If λ is e-regular and Dλ is a non-exceptional simple module, then

Dλ↓B
A
∼= DΦ(λ), DΦ(λ) ↑B

A
∼= Dλ.

We now derive some results on the decomposition numbers for blocks forming a [3 : 1]-
pair. Let A and B be as above, and let C be the block of weight 1 whose abacus is obtained from
that for B by moving a bead from runner i to runner j. We let λ1 B . . . B λe be the partitions in
C. We get the following result on induction and restriction between B and C from Theorems
1.2 and 1.3.

Proposition 2.5. Let B and C be as above. Then there is a permutation π ∈ Se such that:

1. if λ is a partition in B, then

Sλ ↑C
B
∼=

{
Sλk

(if λ is of the form απ(k), βπ(k) or γπ(k))

0 (otherwise);

2. if λ is an e-regular partition in B, then

Dλ ↑C
B
∼=

{
Dλk

(if λ is of the form απ(k))

0 (otherwise).

Corollary 2.6. Suppose 1 6 k 6 e − 1. Then Dαπ(k) appears exactly once as a composition factor of
each of

Sαπ(k) , Sβπ(k) , Sγπ(k) , Sαπ(k+1) , Sβπ(k+1) , Sγπ(k+1) ,

and does not appear as a composition factor of any other Specht module.

Proof. This follows at once from Proposition 2.5, the decomposition matrix of C described in
Section 2.1, and the fact that induction is an exact functor.

As a consequence of this corollary (or by examining the dominance order directly), we see
that the partitions αk are totally ordered by dominance, with

απ(1) B . . . B απ(e).

Using the weight 1 block obtained from A by moving a bead from runner j to runner i, we
obtain the following.

Proposition 2.7. Suppose 1 6 k 6 e− 1. Then Dαπ(k) appears exactly once as a composition factor of
each of

Sαπ(k) , Sβπ(k) , Sγπ(k) , Sαπ(k+1) , Sβπ(k+1) , Sγπ(k+1) ,

and does not appear as a composition factor of any other Specht module.



14 Matthew Fayers

Finally, we seek to compare the decomposition numbers for A and B.

Proposition 2.8.
1. Suppose λ is a non-exceptional partition in B and Dµ is a non-exceptional simple module in B.

Then
[SΦ(λ) : DΦ(µ)] = [Sλ : Dµ].

2. Suppose Dµ is a non-exceptional simple module in B, and that 1 6 k 6 e. Then

[Sαk : Dµ] + [Sγk : DΦ(µ)] = [Sβk : Dµ] + [Sβk : DΦ(µ)] = [Sγk : Dµ] + [Sαk : DΦ(µ)].

Proof.
1. This follows from Proposition 2.4, Corollary 2.6 and the fact that restriction is an exact

functor.

2. By Proposition 2.4, Corollary 2.6 and the exactness of restriction, we have

[Sαk : DΦ(µ)] + [Sβk : DΦ(µ)] = [Sαk : Dµ] + [Dαk↓B
A: DΦ(µ)] + [Dαk′↓B

A: DΦ(µ)],

[Sαk : DΦ(µ)] + [Sγk : DΦ(µ)] = [Sβk : Dµ] + [Dαk↓B
A: DΦ(µ)] + [Dαk′↓B

A: DΦ(µ)],

[Sβk : DΦ(µ)] + [Sγk : DΦ(µ)] = [Sγk : Dµ] + [Dαk↓B
A: DΦ(µ)] + [Dαk′↓B

A: DΦ(µ)],

where k′ = π(π−1(k)− 1); the factor involving Dαk should be ignored if k = π(e), and
the factor involving Dαk′ should be ignored if k = π(1). The result follows.

2.5 [3 : 2]-pairs

In this section we review some background on [3 : 2]-pairs; the notation here is less complex
than for [3 : 1]-pairs.

Suppose A ≺ B form a [3 : 2]-pair, and that an abacus for B is obtained by swapping
runners i and j of an abacus for A. We use the following notation for the exceptional partitions
in A and B:

A B
α = [i] α = [j, j, j]

β = [i, j] β = [i, j, j]
γ = [i, j, j] γ = [i, j]

δ = [j, j, j] δ = [i].

The exceptional simple modules for this [3 : 2]-pair are Dα and Dα.
We define a bijection Φ between the set of partitions in B and the set of partitions in A, as

follows. If λ is a non-exceptional partition in B, we define Φ(λ) by interchanging runners i− 1
and i of the abacus display for λ, while for exceptional partitions we define

Φ : α 7−→ α

β 7−→ δ

γ 7−→ γ

δ 7−→ β.
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Lemma 2.3 then applies in the present context. The following result follows at once from
Theorems 1.2 and 1.3.

Proposition 2.9. Suppose A and B are as above, and λ is a partition in B.

• If λ is non-exceptional, then

Sλ↓B
A∼ (SΦ(λ))2, SΦ(λ) ↑B

A∼ (Sλ)2.

• For the exceptional partitions, we have

Sα↓B
A ∼ (Sα)2 + (Sβ)2 + (Sγ)2, Sα ↑B

A ∼ (Sα)2 + (Sβ)2 + (Sγ)2,

Sβ↓B
A ∼ (Sα)2 + (Sβ)2 + (Sδ)2, Sβ ↑B

A ∼ (Sα)2 + (Sβ)2 + (Sδ)2,

Sγ↓B
A ∼ (Sα)2 + (Sγ)2 + (Sδ)2, Sγ ↑B

A ∼ (Sα)2 + (Sγ)2 + (Sδ)2,

Sδ↓B
A ∼ (Sβ)2 + (Sγ)2 + (Sδ)2, Sδ ↑B

A ∼ (Sβ)2 + (Sγ)2 + (Sδ)2.

• If λ is e-regular and Dλ is a non-exceptional simple module, then

Dλ↓B
A
∼= DΦ(λ) ⊕ DΦ(λ), DΦ(λ) ↑B

A
∼= Dλ ⊕ Dλ.

Now let C be the block of weight 0 whose abacus is obtained from the abacus for B by
moving a bead from runner i to runner j. Let ν denote the unique partition in C.

Proposition 2.10.
1. If λ is a partition in B, then

Sλ ↑C
B
∼=

{
Sν (if λ = α, β, γ or δ)

0 (otherwise);

if in addition λ is e-regular, then

Dλ ↑C
B
∼=

{
Dν (λ = α)

0 (λ 6= α).

2. Dα appears once as a composition factor of each of Sα, Sβ, Sγ, Sδ, and does not appear as a com-
position factor of any other Specht module. Dα appears once as a composition factor of each of
Sα, Sβ, Sγ, Sδ, and does not appear as a composition factor of any other Specht module.

3. For any λ, µ in B with λ non-exceptional and µ e-regular, we have

[Sλ : Dµ] = [SΦ(λ) : DΦ(µ)].

4. For any non-exceptional simple module Dµ in B, we have

[Sα : Dµ] + [Sδ : DΦ(µ)] = [Sβ : Dµ] + [Sγ : DΦ(µ)]

= [Sγ : Dµ] + [Sβ : DΦ(µ)] = [Sδ : Dµ] + [Sα : DΦ(µ)].

Proof. (1) follows from Theorems 1.2 and 1.3. (2) and (3) then follow from the exactness of in-
duction and restriction (and the fact that Sν = Dν), while (4) is proved similarly to Proposition
2.8(2).
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2.6 Rouquier blocks

A special class of blocks of Hecke algebras is particularly well understood. These are de-
fined for all weights, but we shall restrict attention to blocks of weight 3.

Let B be a block of weight 3, and let { iaj} be the pyramid for B. We say that B is Rouquier if
i0j for all i, j. Thus the Rouquier blocks form a single Scopes class; we shall see later that this
class is the greatest class with respect to the order 4.

The decomposition numbers for Rouquier blocks (of any weight) are known over a field of
infinite characteristic [2, 12]. In addition, a recent paper of James, Lyle and Mathas [8] shows
that James’s Conjecture holds for Rouquier blocks. As a consequence, we have the following.

Theorem 2.11. Suppose char(F) > 5, that B is a weight 3 Rouquier block ofHn, and that λ and µ are
partitions in B with µ e-regular. Then [Sλ : Dµ] 6 1.

Proof. If char(F) = ∞, then it easy to read from the explicit combinatorial description of
the decomposition numbers ([12, Corollary 10] or [2, Theorem 1.1]) that the decomposition
numbers are at most 1. The general case follows from [8, Corollary 4].

2.7 Lowerable partitions

Here we prove a simple lemma which will be in useful in this section and in the next. Sup-
pose B is a weight 3 block ofHn, and that in an abacus display for B runner j lies immediately
to the right of runner i, and the number of beads on runner i exceeds the number of beads on
runner j by b, for b = 0, 1 or 2. Let C be the block of Hn−1 of weight 2− b whose abacus is
obtained by moving a bead from runner j to runner i. We say that an e-regular partition µ in B
is lowerable if Dµ↓B

C 6= 0 for some such C.

Lemma 2.12. Suppose char(F) > 3, that B is a weight 3 block ofHn, and that µ is a lowerable e-regular
partition in B. Then [Sλ : Dµ] 6 1 for all partitions λ in B.

Proof. Let C be such that Dµ ↓B
C 6= 0. By Theorem 1.2, we find that Sλ ↓B

C is either zero or
isomorphic to a Specht module. So, since restriction is an exact functor, we find that [Sλ : Dµ]
is either zero or equal to a decomposition number for C. But the decomposition numbers for
C are known to be at most 1.

In Appendix A, we give a classification of partitions which are not lowerable in certain
blocks; this will be useful in Sections 3 and 4. Suppose e > 5 and that B is the weight 3 block of
Hn with core (xz), where x and z are positive integers with x + z 6 e. We let y = e− x− z, and
use the 〈3x, 4z, 3y〉 abacus notation for partitions in B. Table 1 lists all those e-regular partitions
µ in B which are not lowerable. For each of these the partition µ�′ is calculated. There are
fifty cases, each labelled with a pair of letters. The labelling is chosen to reflect the Mullineux
map: the conjugate block B] to B has core (zx), and the non-lowerable partitions in B] may
be read off from Table 1 by interchanging x and z throughout. For a partition µ appearing in
Table 1, the partition µ� in B] may be found by interchanging the two letters labelling µ and
interchanging x and z. For example, we have

[x + y + 1 | 3x, 42]� = [1, z + y + 1 | 32, 4x],

so that case AE corresponds to case EA under the Mullineux map.
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3 The case char(F) = ∞

In this section, we prove Theorem 1.1 in the case where F has infinite characteristic. Using
Theorem 1.12, we proceed by induction on e, and for given e, we use a reverse induction using
the partial order 4 on the set of Scopes classes of weight 3 blocks, with the Rouquier blocks
as a base case. This requires some understanding of how Scopes classes are related, and we
define what it means for two Scopes classes to form a [3 : 1]- or [3 : 2]-pair.

Suppose that C,D are Scopes classes, that C ≺ D and that A and B are blocks forming a
[3 : 2]-pair, with A ∈ C and B ∈ D. Suppose moreover that the abacus for B is obtained from
that for A by moving two beads from runner j to runner i (so i < j). The exceptional partitions
in A for this [3 : 2]-pair are then [i], [i, j], [i, j, j] and [j, j, j]. And so by Proposition 2.8, every
decomposition number [Sλ : Dµ] for A can be equated with a decomposition number for B as
long as λ is not one of these four partitions. Hence for any block A′ in C, the decomposition
number [Sλ : Dµ] can be equated with a decomposition number for B, as long as λ does not
equal [i], [i, j], [i, j, j] or [j, j, j]. We say that C and D form a [3 : 2]-pair on runners i and j.
Analogously, we define what it means for C and D to form a [3 : 1]-pair on runners i and j;
here there are more exceptional partitions, but they are easily listed, as in Section 2.4.

Our technique in proving Theorem 1.1 for fields of infinite characteristic is to suppose that
B lies in a Scopes class C, and that Theorem 1.1 holds for all blocks in Scopes classes D � C.
We then examine with which classes C can form a [3 : 1]- or [3 : 2]-pair; in most cases, we find
that we can equate each decomposition number for a block in C with a decomposition number
for a block in some such D. We must then deal with the remaining cases.

To find [3 : 2]- and [3 : 1]-pairs between Scopes classes, we examine their pyramids; recall
the definition of iaj from Section 1.1.6.

Lemma 3.1. Suppose C is a Scopes class, and that 1 6 i < j 6 e.

1. There is a Scopes class D � C such that C and D form a [3 : 1]-pair on runners i and j if and
only if

(a) i2j,

(b) there is no k < i such that kai = kaj > 0, and

(c) there is no k > j such that iak = jak > 0.

2. There is a Scopes class D � C such that C and D form a [3 : 2]-pair on runners i and j if and
only if

(a) i1j,

(b) there is no k < i with k1j,

(c) there is no i < k < j with i2k2j, and

(d) there is no k > j with i1k.

Proof. We prove (1); the proof of (2) is very similar.
Suppose A and B form a [3 : 1]-pair for A ∈ C, B ∈ D on runners i and j. Choose an abacus

display for A so that runners i and j are adjacent (with runner i to the right of runner j). Then
there must be one more bead on runner j than on runner i, so we have i2j. If k is as in (1b) or
(1c) then runner k must lie between runners j and i, which it cannot.
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Conversely, suppose that the pyramid for C satisfies the conditions given, and take an
abacus display for some block in C in which runner i is to the right of runner j. Suppose there
are a beads on runner i; then, since i2j, there must be a + 1 beads on runner j; furthermore, if
runner k lies between runners j and i, then the number of beads on runner k is either at most
a− 2 or at least a + 3. If there is a runner between i and j with at least a + 3 beads, let runner k
be the rightmost such. Then runner k has at least three more beads than runner i or any runner
between k and i. So we may successively swap runner k with these runners, and we reach,
via a sequence of [3 : κ]-pairs with κ > 3, a block A′ in C with fewer runners between j and i.
Similarly, we move any runner with at most a− 2 beads to the left. In this way, we can reach
a block in C with no runners between j and i, which therefore forms a [3 : 1]-pair on these
runners.

Corollary 3.2. Suppose C,D1,D2 are distinct Scopes classes such that, for l = 1, 2:

• C ≺ Dl ;

• C and Dl form a [3 : κl ]-pair on runners il and jl , where κl = 1 or 2.

Then i1 6= i2 and j1 6= j2.

Proof. The pyramid for Dl is obtained from that for C by decreasing il ajl by 1. In particular, C,
il and jl determine Dl , and so we cannot have i1 = i2 and j1 = j2. So suppose that i1 = i2 and
j1 < j2. Since κl = 3− il ajl , this implies that κ1 6 κ2. Furthermore, the conditions of Lemma
3.1 imply that jl is maximal such that κl = 3− il ajl ; so we cannot have κ1 = κ2.

So κl = l for l = 1, 2. The conditions for the [3 : 2]-pair imply that i1 aj2 = j1 aj2 = 1, but the
conditions for the [3 : 1]-pair say that there is no such j2.

A similar argument applies when i1 < i2 and j1 = j2.

In view of this, we can find several circumstances where each decomposition number for a
block in C can be equated with a decomposition number for a block in a higher class.

Lemma 3.3. Suppose that C,D1,D2 are distinct Scopes classes such that, for l = 1, 2:

• C ≺ Dl ;

• C and Dl form a [3 : κl ]-pair on runners il and jl , where κl = 1 or 2.

Suppose also that if κ1 = κ2 = 1, then i1 6= j2 and i2 6= j1.
Then every decomposition number for a block in C can be equated with a decomposition number for

a block in either D1 or D2.

Proof. By the above discussion, we know that each decomposition number [Sλ : Dµ] for a
block in C can be equated to a decomposition number for a block in Dl unless λ ∈ Λ1 ∩ Λ2,
where

Λl =

{
{[il ], [jl , il ], [jl , jl ]} ∪ {[il , m], [il , jl , m] | m 6= jl} ∪ {[jl , jl , m] | m 6= il} (κl = 1)
{[il ], [il , jl ], [il , jl , jl ], [jl , jl , jl ]} (κl = 2).

The conditions given for il , jl imply that Λ1 and Λ2 are disjoint.
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So the only cases where there are some decomposition numbers for blocks in C which can-
not be equated with decomposition numbers for higher classes are as follows.

C1. There is no Scopes class D � C with which C forms a [3 : 1]- or [3 : 2]-pair.

C2. There is exactly one Scopes class D � C with which C forms a [3 : 1]-pair, and no D with
which C forms a [3 : 2]-pair.

C3. There are two Scopes classes D1,D2 � C and 1 6 i < j < k 6 e such that C and D1 form
a [3 : 1]-pair on runners i and j, while C and D2 form a [3 : 1]-pair on runners j and k.
There are no other classes D with which C forms a [3 : 1]- or [3 : 2]-pair.

C4. There is exactly one Scopes class D � C with which C forms a [3 : 2]-pair, and no D with
which C forms a [3 : 1]-pair.

To prove Theorem 1.1, we must study these four cases. First, we describe all the corre-
sponding Scopes classes in terms of pyramids.

Lemma 3.4. Suppose C is a Scopes class of weight 3 blocks, with pyramid { iaj | 1 6 i < j 6 e}.

1. C satisfies condition C1 above if and only if i0j for all i, j.

2. C satisfies condition C2 above if and only if there exist i < j such that

• i2j, and

• k0l whenever k < i or l > j.

3. C satisfies condition C3 above if and only if

• i2j2k,

• l1m whenever i 6 l < j < m 6 k, and

• l0m whenever l < i or m > k.

4. C satisfies condition C4 above if and only if there exist i < k < k + 1 < j such that

• i1j,

• k1k+1, and

• l0m whenever l < i or m > j.

Proof. In each case the ‘if’ condition is easily verified; in cases C2 and C4 the [3 : κ]-pair in
question is on runners i and j.

For the ‘only if’ parts, we suppose that the pyramid for C does not satisfy the conditions
given in any of (1–4). Define a pair (i, j) with 1 6 i < j 6 e to be a peak if

0 = i−1aj = iaj+1 < iaj.

Note that if (i, j) and (i′, j′) are peaks with i 6 i′, then i < i′ and j < j′. We say in this case that
(i, j) is smaller than (i′, j′).

Suppose that there is at least one peak, and that (i, j) is the smallest peak. We claim that
there is some k 6 j such that C forms either a [3 : 1]- or a [3 : 2]-pair on runners i and k. If i2j,
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then C forms a [3 : 1]-pair on i and j, so suppose i1j. If there is no i < l < j such that i2l2j,
then C forms a [3 : 2]-pair on runners i and j. If there is such an l, let k be the maximal such; k
is then maximal such that i2k. Since (i, j) is the smallest peak, we have i−10k, and so we find
that C forms a [3 : 1]-pair on runners i and k.

Similarly, if (i′, j′) is the largest peak, then C forms a [3 : 1]- or [3 : 2]-pair on runners k′ and
j′ for some k′ > i′.

If there are at least two peaks, let (i, j) and (i′, j′) be the smallest and largest. Then C forms
[3 : 1]- or [3 : 2]-pairs on (i, k) and (k′, j′) for some k, k′; the only way we could then be in any
of cases C1–C4 is if both the pairs are [3 : 1]-pairs and k = k′. But then we would have i2k2j′

and (since (i, j) and (i′, j′) are distinct peaks) i0j′ ; this is not possible.
So we may assume that there is exactly one peak, at (i, j). (If there are no peaks, then i0j

for all i, j, so the pyramid is as described in (1).) By assumption we cannot have i2j (since then
the pyramid would be as in (2)), and we cannot have k1k+1 for any k (or the pyramid would be
as in (4)). Let l be minimal such that i1l , let i′ be minimal such that i′2l , and let j′ be maximal
such that i′2j′ . Then C forms a [3 : 1]-pair on (i′, j′), so we cannot be in case C4; so C does not
form a [3 : 2]-pair on (i, j), and hence there is some k such that i2k2j. This means that C forms
a [3 : 1]-pair on (m, n) for every pair (m, n) such that

2 = man > m−1an, man+1.

There are at least two such pairs, so if we are in one of cases C1–C4 then there must be ex-
actly two such pairs, and they must be (i, k) and (k, j) for some k. But then the pyramid is as
described in (3).

In order to prove Theorem 1.1, we assume that C is in one of cases C1–C4 and that the
decomposition numbers for any class D � C are at most 1. We must then prove that the
decomposition numbers in C are at most 1.

Case C1 is dealt with by Theorem 2.11, so we turn our attention to the other cases.

3.1 Case C2

The main result of this subsection is the following.

Proposition 3.5. Suppose that F has infinite characteristic, and that e > 5. Suppose also that B is a
weight 3 block in a Scopes class C which forms exactly one [3 : 1]-pair with a Scopes class D, and no
[3 : 2]-pairs. If the decomposition numbers for blocks in D are all at most 1 and Theorem 1.1 holds over
F with e replaced by e− 1, then the decomposition numbers for B are all at most 1.

First we need a lemma describing the map µ 7→ µ�′ for certain partitions in certain blocks.
We assume throughout this subsection that e > 5.

Lemma 3.6. Suppose that 1 6 c 6 e− 1, and that Bc is the weight 3 block ofHn with the 〈3c, 5, 7, . . . , 2(e−
c) + 3〉 notation.
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Then in Bc we have

[e]�′ =

{
[e− 1, e− 1, e− 1] (c 6 e− 2)
[e− 1, e− 2, e− 3] (c = e− 1),

[e, e]�′ =

{
[e− 1, e− 1] (c 6 e− 2)
[e− 1, e− 2] (c = e− 1),

[e, i]�′ =

{
[e− 1, e− 1, i− 1] (2 6 i 6 e− 1, c 6 e− 2)
[i− 1, e− 1] (2 6 i 6 e− 1, c = e− 1).

Proof. The case c = e− 1 may be dealt with directly by using Mullineux’s algorithm. When
c 6 e− 2, the result may be read off from [2, Theorem 1.1]; the partitions in the lemma lie in
the set Pκ described in that paper, where the decomposition numbers [Sλ : Dµ] are described
for µ ∈ Pκ. For any e-regular µ, the partition µ�′ is the least dominant partition λ for which
[Sλ : Dµ] > 0, and so is easily obtained.

Proof of Proposition 3.5. By Lemma 3.4 we may deduce the form of the pyramid for C, and
hence the abacus for some block in C. So without loss of generality we may assume that there
exist a, b > 0 and c > 2 with a + b + c = e and that B is the block with the

〈3, 5, 7, . . . , 1 + 2a, (3 + 2a)c, 5 + 2a, 7 + 2a, . . . , 3 + 2a + 2b〉

notation. This abacus may be pictured as follows:
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.

Since by assumption all the decomposition numbers for blocks inD are at most 1, the same
is true for the decomposition numbers [Sλ : Dµ] in B, except possibly when λ is one of the
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following partitions (which we label analogously with Section 2.4):

αk =

{
[a + 1, k] (k 6= a + c)
[a + 1] (k = a + c);

βk =

{
[a + 1, a + c, k] (k 6= a + c)
[a + c, a + 1] (k = a + c);

γk =


[a + c, a + c, k] (k 6= a + 1, a + c)
[a + c, a + c, a + c] (k = a + 1)
[a + c, a + c] (k = a + c).

So for the remainder of the proof we assume that λ is one of these partitions and that µ is an
e-regular partition with µ Q λ Q µ�′. Furthermore, if λ = αk, βk or γk, then we may assume
that µ Q αk and γk Q µ�′, since by Proposition 2.8(2) we find that if [Sλ : Dµ] > 2 then
[Sαk : Dµ], [Sγk : Dµ] > 1. By Corollary 2.6, we may also assume that µ does not equal αi for
any i.

If a > 1 and k > 2, then the assumption µ B αk means that λ and µ can be displayed
on an abacus with an empty runner, namely the same abacus as above but with three beads
removed from each runner. If we define λ− and µ− to be the partitions obtained by removing
this runner (as in Section 1.1.8) and if µ− is (e − 1)-regular, then by Theorem 1.12 we may
equate the decomposition number [Sλ : Dµ] with a decomposition number for a weight 3
block of an Iwahori–Hecke algebra at an (e− 1)th root of unity; by our inductive assumption
this decomposition number will be either 0 or 1. So we assume for the rest of the proof that
either a = 0 or k = 1 or µ− is (e− 1)-singular. We consider several cases.

[a = b = 0] In this case, it is easy to check that µ is always lowerable. So the proposition holds
here by Lemma 2.12.

[a > 2, k > 2] In this case, the conditions that µ B α2 and µ− is (e − 1)-singular imply that
a = k = 2 and that the first two runners of the abacus display for µ have the form

1 2u uu uu uuu .

Then we find that for i = 1, 2, 3 we have µ′i = λ′i. So we may apply Theorem 1.11; we
define

λ = (max(λ1 − 3, 0), max(λ2 − 3, 0), . . . ), µ = (max(µ1 − 3, 0), max(µ2 − 3, 0), . . . ).

Then we have
[Sλ : Dµ] = [Sλ : Dµ],

and this is at most 1, since λ and µ are partitions of weight 2.

[a = 1, b = 0, k > 2] The conditions that µ B αk and that µ− is (e − 1)-singular imply that
µ = [i, i] for some i > 2. Furthermore, we cannot have µ = [2, 2] = αe. But if i > 3 then µ

is lowerable, and so [Sλ : Dµ] 6 1 by Lemma 2.12.
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[a = 1, b = 1, k > 2] We assume that µ is not lowerable. Together with our other assumptions
on µ, this implies that µ is one of the four partitions

[e, 2], [e, 3, 2], [e, e, 2], [e, 2, 2].

We may analyse these using the Jantzen–Schaper formula. First we apply Mullineux’s
algorithm to find that

[e, 2]� = [e, 3, 2], [e, e, 2]� = [e, 2, 2].

Now we examine the cases µ = [e, 2] and µ = [e, e, 2] explicitly; see Appendix B. The
other two cases follow using Corollary 1.5.

[a = 0, b > 1, k = e] Since µ Q λ, µ must have a bead of weight at least 1 on runner e. If the
lowest bead on runner e has weight exactly 1, then λ and µ have the same first part, and
so we may apply Theorem 1.11: we have [Sλ : Dµ] = [Sλ̂ : Dµ̂], where

λ̂ = (λ2, λ3, . . . ), µ̂ = (µ2, µ3, . . . )

are partitions of weight 2. Hence by Theorem 1.11(1) we have [Sλ : Dµ] 6 1.

So we may assume that there is a bead of weight at least 2 on runner e in the abacus
display for µ, i.e. µ is one of the partitions [e] or [e, i] for 1 6 i 6 e. But then by Lemma 3.6
µ�′ has at most one bead of positive weight on any of runners 1, . . . , c, and so γe S µ�′;
contradiction.

[a = 1, b > 2, k = e] Since µ Q λ, there must be a bead of weight at least 1 on runner e in the
abacus display for µ. As above, if the lowest bead on this runner has weight exactly 1,
then we have λ1 = µ1 and we may appeal to Theorem 1.11(1). So we assume that there
is a bead of weight at least 2 on runner e in the abacus display for µ. The condition that
µ− is (e− 1)-singular then implies that µ = [e, 2]. By appealing to [2, Theorem 1.1] as in
the proof of Lemma 3.6, we find that

µ�′ = [e− 1, e− 1, 1].

But then γe 6B µ�′; contradiction.

[(a > 1 > b, k = 1) or (b > 1 > a, k 6 e− 1)] We replace B, λ, µ with B], λ′, µ�, and appeal to
the previous cases (and Corollary 1.5).

3.2 Case C3

Cases C3 and C4 are rather easier to deal with than Case C2. We prove the following
statement for Case C3.

Proposition 3.7. Suppose that F has infinite characteristic, that e > 5, and that B is a weight 3 block
lying in a Scopes class C. Suppose that there are two Scopes classesD1, D2 and 1 6 i < j < k 6 e such
that C and D1 form a [3 : 1]-pair on runners i and j, while C and D2 form a [3 : 1]-pair on runners j
and k. Suppose also that there are no other classes D with which C forms a [3 : 1]- or [3 : 2]-pair. If the
decomposition numbers for blocks in D1 and D2 are all at most 1 and Theorem 1.1 holds over F with e
replaced by e− 1, then the decomposition numbers for B are all at most 1.
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Proof. By Lemma 3.4, we may assume that B is the block with the

〈3, 5, 7, . . . , 1 + 2a, (3 + 2a)c, (4 + 2a)d, 6 + 2a, 8 + 2a, . . . , 4 + 2a + 2b, 3 + 2a〉

notation, where a+ b+ c+ d = e− 1. (In fact, we have a = i− 1, c = j− i, d = k− j, b = e− k.)
The abacus for this block may be pictured as follows:
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.

By replacing B with its conjugate block if necessary, we may assume a > b.
Since we assume that the decomposition numbers for D1 and D2 are at most 1, the same is

true for the decomposition numbers [Sλ : Dµ] for B, except for those λ which are exceptional
for both of the [3 : 1]-pairs. There are four such partitions, which we label as follows:

βγ = [a + c + 1, a + c + 1, a + c + d + 1], ββ = [a + c + 1, a + c + d + 1, a + 1],

αγ = [a + c + 1, a + c + 1], αβ = [a + c + 1, a + 1].

We also define the following partitions:

γγ = [a + c + d + 1, a + c + d + 1, a + c + d + 1], γβ = [a + c + d + 1, a + c + d + 1, a + 1],

βα = [a + 1, a + c + d + 1], αα = [a + 1].

Now suppose µ is an e-regular partition in B with [Sλ : Dµ] > 1 for some λ. Then we claim that
we must have µ B βα. For if λ = βγ or ββ, then by Proposition 2.8(2) and by our assumption
on the decomposition numbers for blocks in D1 we have [Sβα : Dµ] > 1, so that µ Q βα; if
λ = αγ or αβ, then in the same way we find that µ Q αα Q βα. Furthermore, we cannot have
µ = βα, by Proposition 2.7. By similar arguments, we find that µ B αγ, and also that αγ B µ�′

and γβ B µ�′.
If a > 1, then λ and µ can both be displayed on an abacus with an empty runner, namely

the same abacus as above but with 3e fewer beads. We define λ− and µ− to be the partitions
obtained by removing this runner, as in Section 1.1.8. If µ− is (e − 1)-regular, then we may
equate [Sλ : Dµ] with a decomposition number for a weight 3 block of a Hecke algebra at an
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(e− 1)th root of unity; by our inductive assumption, such a decomposition number is at most
1. So we are left to consider only those cases where a = 0 or µ− is (e− 1)-singular. If a > 2,
then µ− is always (e− 1)-regular, and so we are left with the cases where a 6 1. By Lemma
2.12, we may also assume that µ is not lowerable. We examine the possibilities for a and b.

[a = b = 1] The conditions that µ B βα, µ B αγ, µ− is (e− 1)-singular and µ is not lowerable
imply that µ is one of the four partitions [c + 3, 2], [e, 2], [e, e, 2], [e, c + 3, 2]. For each of
these possibilities we calculate µ�′:

µ µ�′

[c + 3, 2]
[e− 1, c + 2, 1] (d > 1)
[c + 2, c + 1, 1] (d = 1)

[e, 2]
[e− 1, e− 2, 1] (d > 1)
[e− 1, c + 2, 1] (d = 1)

[e, e, 2] [e− 1, 1]
[e, c + 3, 2] [c + 2, 1]

.

We find that in none of these cases do we have γβ B µ�′, except the case µ = [c + 3, 2]
and d = 1. In this case we look at µ�, which lies in the block conjugate to B, and we find
that

µ� = [e, 4, 3 | 3, 5, 6c, 8, 5],

so (µ�)− is (e− 1)-regular.

[a = 1, b = 0] This case is dealt with in the same way as the last one, but here it is much
easier. The only partition µ such that µ B βα, µ B αγ, µ− is (e− 1)-singular and µ is not
lowerable is µ = [c + 3, 2], for which we have

µ�′ =

{
[e, c + 2, 1] (d > 1)
[c + 2, c + 1, 1] (d = 1),

and so we do not have γβ B µ�′.

[a = b = 0] Here we examine Table 1 (putting x = c, y = 1, z = d) to find those partitions
µ which are not lowerable and which satisfy µ B βα and µ B αγ. We find that these
correspond to cases AH, AK, AN, BG, CH, CN and DF. But in none of these cases do we
have αγ B µ�′.

3.3 Case C4

Proposition 3.8. Suppose F has infinite characteristic, that e > 5, and that B is a weight 3 block in a
Scopes class C which forms exactly one [3 : 2]-pair with a Scopes class D, and no [3 : 1]-pairs. If the
decomposition numbers for blocks in D are all at most 1 and Theorem 1.1 holds over F with e replaced
by e− 1, then the decomposition numbers for B are all at most 1.

Proof. By Lemma 3.4, we may assume that B is the block with the

〈3, 5, 7, . . . , 1 + 2a, (3 + 2a)c, (4 + 2a)d, 6 + 2a, 8 + 2a, . . . , 4 + 2a + 2b〉
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notation. This abacus may be pictured as follows:
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By replacing B with its conjugate if necessary, we assume that a > b.
As in the proof of Proposition 3.7, we know that the decomposition number [Sλ : Dµ] for B

is at most 1 except possibly when λ is one of the four exceptional partitions

α = [a + 1], β = [a + 1, a + c + d],

γ = [a + 1, a + c + d, a + c + d], δ = [a + c + d, a + c + d, a + c + d].

So we assume that λ is one of these four partitions. Assuming [Sλ : Dµ] > 1, we have [Sα :
Dµ], [Sβ : Dµ], [Sγ : Dµ], [Sδ : Dµ] > 1 by Proposition 2.10(4), so that

µ Q α, β, γ, δ Q µ�′.

If a > 1, then λ and µ may both be displayed on an abacus with an empty runner, namely
the same abacus as above with three fewer beads on each runner. We define λ− and µ− to
be the partitions obtained by removing this runner, as in Section 1.1.8. Then if µ− is (e− 1)-
regular, we may equate [Sλ : Dµ] with a decomposition number for a Hecke algebra at an
(e− 1)th root of unity; by our inductive assumption, this decomposition number is at most 1.

So we assume from now on that either a = 0 or µ− is (e − 1)-singular. If a > 2, then
(assuming µ Q α) µ− is always (e− 1)-regular, so we are left with only the cases where a 6 1.

[a = 1 > b] If we assume that µ Q α, µ− is (e − 1)-singular and µ is not lowerable, then we
find that µ is one of the following partitions:

[c + 2, 2] (b = 0 or 1)

[e, 2], [e, e, 2], [e, c + 2, 2] (b = 1)

[2, e] (b = c = 1).

Each of these partitions satisfies

µ′1 = 2e− 2 + d + 3b,
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µ′2 = µ′3 = e− 1 + d + 3b.

But we also have

α′1 = 2e− 2 + d + 3b, α′2 = α′3 = e− 1 + d + 3b

and similarly for β and γ, and so we may apply Theorem 1.11: we define

µ = (µ1 − 3, µ2 − 3, . . . , µe−1+d+3b − 3),

and α, β, γ similarly. Then by Theorem 1.11(2) we have

[Sα : Dµ] = [Sα : Dµ],

[Sβ : Dµ] = [Sβ : Dµ],

[Sγ : Dµ] = [Sγ : Dµ].

By assumption, the decomposition numbers on the left are all positive. On the other
hand, the decomposition numbers on the right are decomposition numbers for a block of
weight 2, and so are at most 1. So all of these decomposition numbers equal 1.

Examining the weight 2 block in which µ lies, we have

α = [c + 1],

β = [c + 1, c + d + 1],

γ = [c + d + 1, c + d + 1]

in the 〈5, 6, 5c−1, 6d, 8b〉 notation for partitions of weight 2. So we may calculate

∂α = d, ∂β = d− 1, ∂γ = d.

Hence by Corollary 2.2 we must have µ = α, whence µ = α. But then [Sλ : Dµ] 6 1 by
Proposition 2.10(2).

[a = 0] We examine Table 1 (putting x = c, y = 0, z = d) to find those partitions µ such that
µ Q α and µ is not lowerable. These correspond to cases AE, AG, AJ, CE, CG. And in none
of these cases do we have δ Q µ�′.

3.4 Theorem 1.1 holds when char(F) = ∞

We can now prove Theorem 1.1 for fields of infinite characteristic by induction on e. The
cases e = 2, 3, 4 can be dealt with using the LLT algorithm [11], so we suppose that e > 5. Let
C denote the Scopes class in which B lies, and assume that the result is true for blocks in all
classes D with D � C.

If there are Scopes classes D1,D2 satisfying the conditions of Lemma 3.3, then by the con-
clusion of that result and by our assumption on the decomposition numbers forD1,D2 we find
that the result holds. So we assume that the hypotheses of Lemma 3.3 do not hold, so that we
are in one of cases C1–C4. Case C1 is dealt with by Theorem 2.11, case C2 by Proposition 3.5,
case C3 by Proposition 3.7 and case C4 by Proposition 3.8.
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4 Adjustment matrices in finite characteristic

In this section, we use the result of the previous section to prove Theorem 1.1 in general,
by finding the adjustment matrices (as defined in Section 1.1.9) for weight 3 blocks. Given a
weight 3 block B of Hn over a field of finite characteristic and e-regular partitions λ, µ in B,
let Bλµ be the λ, µ entry of the adjustment matrix for B. Then we must prove the following
theorem; throughout this section we employ the Kronecker delta.

Theorem 4.1. (James’s Conjecture for weight 3 blocks) Suppose char(F) > 5, and that B is a
block ofHn of weight 3. Suppose that λ and µ are e-regular partitions in B. Then Bλµ = δλµ.

In this section, we assume that e > 5. Theorem 4.1 is true for e = 2, 3, 4 and may be proved
using exactly the same techniques, but there are various extra cases which are peculiar to these
small values of e, and in the interests of brevity we do not consider these. In any case, to prove
Theorem 1.1 in the symmetric group case, we need only consider e > 5.

First we note a trivial lemma which applies to adjustment matrices for blocks of any weight.

Lemma 4.2. Suppose B is a block ofHn containing e-regular partitions λ and µ, and let B] be the block
conjugate to B. Then:

1. Bλµ = B]
λ�µ� ;

2. Bλµ = 0 unless µ B λ and λ�′ B µ�′.

Proof.
1. This follows easily from Corollary 1.5.

2. If Bλµ > 0, then [Sν : Dµ] > [Sν : Dλ] for all partitions ν in B. In particular, [Sλ : Dµ] > 1,
so that µ B λ. Replacing λ and µ with λ� and µ� and applying part (1), we get λ�′ B
µ�′.

In order to prove Theorem 4.1, we examine how the adjustment matrices of two blocks
forming a [3 : κ]-pair are related. Suppose A and B form a [3 : κ]-pair with A ≺ B; if κ 6 2,
recall from Sections 2.4 and 2.5 the exceptional simple modules in A and B for this pair. Recall
also the map Φ defined in those sections or in §1.1.5.

Lemma 4.3. Suppose that A and B are as above. Suppose λ, µ are e-regular partitions in B.

1. If Dµ is exceptional, then
Bλµ = AΦ(λ)Φ(µ) = δλµ.

2. If Dλ is non-exceptional, then
Bλµ = AΦ(λ)Φ(µ).

Proof.
1. Since Dµ is exceptional, we must have κ 6 2. But then we know all decomposition

numbers [Sν : Dµ] by Corollary 2.6 and Proposition 2.10(2), and the result follows.



Weight three blocks of symmetric groups and Iwahori–Hecke algebras 29

2. Let ν and ξ be the e-cores of A and B respectively, and let A0 and B0 be the blocks of the
algebrasHn−κ andHn defined over C with e-cores ν and ξ. Suppose that A0 and B0 have
decomposition matrices C and D respectively. Let A and B be the adjustment matrices for
A and B, so that CA and DB are the decomposition matrices for A and B.

Let S be the ‘Specht branching matrix’, i.e. the matrix with rows indexed by partitions in B
and columns by partitions in A, in which the λ, ν entry is 1 if the abacus display for ν can
be obtained from that for λ by moving κ beads one place to the left, and 0 otherwise. In
other words, S has entries Sλν such that Sλ↓B

A∼ ∑ν Sλν(Sν)κ! and Sλ↓B0

A0∼ ∑ν Sλν(Sν)κ!. Let
T0 be the ‘simple branching matrix’ for B0 and A0, i.e. the matrix with rows indexed by
e-regular partitions in B0 and columns indexed by e-regular partitions in A0 in which the
λ, ξ entry is the composition multiplicity of Dξ in Dλ↓B0

A0 . Let T be the simple branching
matrix for B and A, defined similarly.

Since restriction is an exact functor, we have

DT0 = SC, DBT = SCA.

Hence DBT = DT0A; since D has full column rank, we get

BT = T0A.

(This is simply saying that restriction commutes with modular reduction.) Now if Dµ is
a non-exceptional simple module in B, then we have

TµΦ(ν) = κ!δµν

by Theorem 1.3; on the other hand, if Dµ is an exceptional simple module in B, then we
have Bλµ = δλµ from (1). Hence we have

(BT)λΦ(ν) = κ!BλΦ(ν)

if Dλ is non-exceptional. If Dλ is a non-exceptional simple module in B0, then we have

T0
λΦ(µ) = κ!δλµ

by Theorem 1.3, and so
(T0A)λΦ(ν) = κ!AλΦ(ν)

when Dλ is non-exceptional. The result follows.

The following lemma will also be very useful; this is taken from the author’s forthcoming
paper [5] with Kai Meng Tan.

Lemma 4.4. Suppose B is a weight 3 block of Hn, and that char(F) > 3. If λ and µ are e-regular
partitions in B with µ lowerable, then Bλµ = δλµ.

Proof. Let C be a block of Hn−1 of weight 0, 1 or 2 such that Dµ↓B
C= 0. Let B0 and C0 be the

blocks of the algebras Hn and Hn−1 defined over C corresponding to B and C. Let D and D0

be the decomposition matrices for B and B0; our goal is to show that the columns of D and D0

corresponding to µ are equal. If we let E be the decomposition matrix for C, then by Theorem
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2.1 (if C has weight 2) or the discussion preceding it (if C has weight 0 or 1) E is also the
decomposition matrix of C0.

Let S be the ‘Specht branching matrix’ for restriction from B to C, defined in the same way
as in the proof of Lemma 4.3. Since the Branching Rule is independent of characteristic, S is
also the Specht branching matrix for restriction from B0 to C0. Let T be the ‘simple branching
matrix’ for restriction from B to C. By Theorem 1.3 the restriction of a simple module from
B to C (or from B0 to C0) is either simple or zero, and if it is non-zero it is described in a
characteristic-free way, so T is also the simple branching matrix for restriction from B0 to C0.

By exactness of restriction from B to C, we get

DT = SE,

and by exactness of restriction from B0 to C0 we get

D0T = SE,

so that
DT = D0T.

Let ν be the partition in B such that Dµ↓B
C
∼= Dν. Then it is easy to see from Theorem 1.3 that Dµ

is the only simple module in B which restricts to give Dν. So the column of T corresponding to
ν has a 1 in the µ position, and 0s elsewhere. So the column of DT corresponding to ν equals the
column of D corresponding to µ, and the column of D0T corresponding to ν equals the column
of D0 corresponding to µ. The result follows.

We shall use these results to prove that the adjustment matrices for all weight 3 blocks
are trivial; for each e-regular partition, we induce or restrict the corresponding simple module
until it becomes lowerable or it lies in a block whose decomposition matrix we know. To aid
us, we introduce some notation for induction. Suppose µ is an e-regular partition lying in a
block B, and take an abacus display for B. Suppose the number of beads on runner i of the
abacus exceeds the number of beads on the runner to the immediate right by κ > 1, and let Bi
be the block whose abacus is obtained by interchanging runner i with the runner to its right.
Then B and Bi form a [3 : κ]-pair. If Dµ is a simple module in B which is non-exceptional for
this [3 : κ]-pair, then define fi(µ) to be the e-regular partition such that Dµ ↑Bi

B
∼= (Dfi(µ))⊕κ!, and

leave fi(µ) undefined otherwise (so if fi(µ) is defined, then Φ(fi(µ)) = µ, where Φ is the map
defined in 1.1.5, 2.4 or 2.5). We shall make use of the following two ideas.

1. Suppose λ is an e-regular partition lying in a block B, and that we can find i1, . . . , ir such
that fir . . . fi1(λ) is defined and lies in a block with trivial adjustment matrix. Then we
have Bλµ = δλµ for all e-regular partitions µ in B, by Lemma 4.3(2).

2. Suppose λ and µ are e-regular partitions lying in a block B, and that we can find i1, . . . , ir
such that fir . . . fi1(λ) and fir . . . fi1(µ) are defined, with the latter partition being lower-
able. Then Bλµ = δλµ, by Lemma 4.3(2) and Lemma 4.4.

Our strategy will be to use induction on n (in the usual direction), but we shall also make
use of the fact [8, Corollary 4] that the adjustment matrix for a Rouquier block is trivial.

To begin with, we examine the block of H3e with core (0). As noted in the proof of Propo-
sition 3.5, every e-regular partition in this block is lowerable. So the adjustment matrix of this
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block is trivial, by Lemma 4.4. So we may assume that B has a non-empty core, and so there
is at least one block A such that A and B form a [3 : κ]-pair. Suppose λ and µ are e-regular
partitions in B. If either Dµ is exceptional or Dλ is non-exceptional for this [3 : κ]-pair, then by
Lemma 4.3 and by induction we have Bλµ = δλµ. So we may assume that Dλ is exceptional
and Dµ is non-exceptional for every such [3 : κ]-pair. If there are two blocks A and A′ forming
[3 : κ]-pairs with B, then there is no λ such that Dλ is exceptional for both [3 : κ]-pairs. So it
suffices to consider only those cases where there is exactly one block forming a [3 : κ]-pair with
B, and where κ 6 2.

4.1 Blocks with rectangular cores

The aim of this subsection is to prove the following.

Proposition 4.5. Suppose char(F) > 5 and B is a weight 3 block of Hn, and that there is exactly one
block A forming a [3 : κ]-pair with B, with κ = 1. If the adjustment matrix for A is trivial, then the
adjustment matrix for B is trivial.

If B satisfies the hypothesis of Proposition 4.5, then the core of B has the form xz for some
x and z with x + z 6 e. By Lemma 4.3(2), we may assume that λ = αi for some i (that is
λ = [x + y + 1, x + y + 1] or [x + y + 1, x + y + 1, k] for some k 6= x), and by Lemma 4.4, we
may assume that µ is not lowerable, so that µ is one of the partitions listed in Table 1. If we
let π be the permutation described in Section 2.4 and λ = απ(j), then by Lemma 4.2(2) we may
assume that µ B απ(j) and γπ(j+1) B µ�′. Looking at Table 1, we find that in cases AJ, AK, AL,
AM, AN, CL, CM, CN, GM, JA, KA, LA, LC, MA, MC, MG, NA, NC there is no such j. So we may
assume that µ is not one of these partitions.

4.1.1 Inducing Dλ and Dµ

Consider the (partial) function f = fx+y+1fx+y+2 . . . fe. The effect of this is to move each
of the runners e, e− 1, . . . , x + y + 1 in succession past runner x + 1 (if y > 0) or runner 1 (if
y = 0). It is easy to see that f(λ) is defined, and that if µ is one of

[x+ 1, x+ y+ 1] (with y > 1, z = 1), [1, x+ y+ 1, x+ 1] (with y > 1), [x+ y+ 1, x+ y+ 2, x+ 1] (with y > 1),

[x + y + 1, x + 1, x + 2] (with y > 1), [1, x + y + 1] (with y = 0),

then f(µ) is defined and lowerable. For example, f([1, x+ 1, x+ y+ 1]) is the partition [x+ 1, 1 |
3x+1, 4z, 3y−1]; we easily see that this is lowerable from its abacus display:

1 2 pp p x x
+

1
x
+

y
+

1

pp p e x
+

2 pp p x
+

y

u u pp p u u u pp p u u pp p uu u pp p u u u pp p u u pp p uu pp p u u pp p u u pp p uu pp p u pp p u pp ppp p u pp p pp ppp p pp p pp p
.

So we find that in cases BG, BH, BI, EA, EC, FD, HA, HB, HC, HG, HH, HI, IA, IB, IC, IG, IH we
have Bλµ = δλµ. Applying the Mullineux map and using Lemma 4.2(1), we may also deal with
cases AE, AH, AI, CE, CH, CI, DF, GB, GH, GI.
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4.1.2 The case µ = [x + 1, x + 2, x + 3]

Now assume that y = 0 and z > 3 and suppose µ = [x + 1, x + 2, x + 3]. By Lemma 4.2(2),
we may assume that λ is one of the exceptional partitions

[x + 1, x + 1, x + 3], [x + 1, x + 1, x + 2], [x− 1, x + 1, x + 1] (if x > 2).

First we look at λ = [x + 1, x + 1, x + 3]. We apply the partial function f = (fx+3fx+4 . . . fe)x+2

to both λ and µ. To make it easier to see what is happening, we apply this in stages: for µ, it is
easy to see that

(fx+3 . . . fe)x(µ) = [x + 1, x + 2, x + 3 | 3x, 5z−2, 42],

with abacus display
1 pp p x x
+

3
x
+

4 pp p e x
+

1
x
+

2

u pp p u u u pp p u u uu pp p u u u pp p u u uu pp p u u u pp p u u upp p u u pp p upp p u pp p u u upp p u pp ppp p pp p
.

Applying (fx+3 . . . fe) again, we reach [x + 1, x + 2 | 3x, 4, 5z−2, 4]:

1 pp p x x
+

1
x
+

3 pp p e x
+

2

u pp p u u u pp p u uu pp p u u u pp p u uu pp p u u u pp p u upp p u pp p upp p u pp p u upp p u pp ppp p pp p
.

Applying (fx+3 . . . fe) once more, we find f(µ) = [x + 1, x + 2 | 3x, 42, 5z−2]. For λ, applying
(fx+3 . . . fe)x yields [x + 1, x + 1, x + 3 | 3x, 5z−2, 42]:

1 pp p x x
+

3
x
+

4 pp p e x
+

1
x
+

2

u pp p u u u pp p u u uu pp p u u u pp p u u uu pp p u u u pp p u upp p u u pp p u u upp p u pp p u upp p u pp ppp p pp p
.

Applying (fx+3 . . . fe) again yields [x + 1, x + 1 | 3x, 4, 5z−2, 4]:

1 pp p x x
+

1
x
+

3 pp p e x
+

2

u pp p u u u pp p u uu pp p u u u pp p u uu pp p u u pp p u upp p u u pp p u upp p u pp p upp p u pp ppp p pp p
.

We apply (fx+3 . . . fe) once more to find f(λ) = [x + 1, x + 1 | 3x, 42, 5z−2]. Let B̂ be the block in
which f(λ) and f(µ) lie.
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A very simple application of the Jantzen–Schaper formula yields [Sf(λ) : Df(µ)] = 1, irre-
spective of the underlying characteristic, which means that B̂f(λ)f(µ) = 0, and so Bλµ = 0 by
Lemma 4.3.

Next we look at λ = [x + 1, x + 1, x + 2]. Here we find a sequence i1, . . . , ir such that
fi1 . . . fir(λ) is defined and lies in a Rouquier block; by Lemma 4.3(2) and [8, Corollary 4] we
shall have Bλµ = 0. Again, we apply the functions fi in stages.

We have λ = [x + 1, x + 1, x + 2 | 3x, 4z]; we apply f2e−2
e followed by (fe−1fe)

2e−4 and then
(fe−2fe−1fe)

2e−6 and so on in succession up to (fx+3 . . . fe)2x+4, and we reach the partition [x +
1, x + 1, x + 2 | 3x, 42, 6, 8, . . . , 2z]:

1 pp p x x
+

1
x
+

2
x
+

3
x
+

4 pp p e−
1

eu pp p u u u u u pp p u uu pp p u u u u u pp p u uu pp p u u u u pp p u upp p u u u pp p u upp p u u u u pp p u upp p u u pp p u upp p u pp p u upp p u pp p u uppp ppp ppp ppp ppp ppp ppp ppppp p pp p u upp p pp p u upp p pp p upp p pp p upp p pp p

.

We apply (fx+2 . . . fe)x+1 to reach [x + 1, x + 1 | 3x, 4, 5, 7, 9, . . . , 2z + 1]:

1 pp p x x
+

1
x
+

2
x
+

3
x
+

4 pp p e−
1

eu pp p u u u u u pp p u uu pp p u u u u u pp p u uu pp p u u u u pp p u upp p u u u u pp p u upp p u u u pp p u upp p u u u pp p u upp p u u pp p u upp p u pp p u upp p u pp p u uppp ppp ppp ppp ppp ppp ppp ppppp p pp p u upp p pp p u upp p pp p upp p pp p upp p pp p

.

Now we apply (fx+2 . . . fe)x+1 again followed by (fx+1 . . . fe)x to reach [x+ 1, x+ 1 | 3x, 5, 7, . . . , 2z+
3], and then we apply (fx . . . fe)2x−2 and then (fx−1 . . . fe)2x−4 and so on up to (f2 . . . fe)2 to reach
[x + 1, x + 1 | 3, 5, 7, . . . , 2e + 1], which lies in a Rouquier block.

Finally, we suppose that x > 2 and consider λ = [x − 1, x + 1, x + 1]. We apply the
Mullineux map to λ and µ to get

µ� =

{
[z + 1, z + 2, z + 3 | 3z, 4x] (x > 3)
[z + 1, z + 2 | 3z, 4x] (x = 2),

λ� =

{
[z + 1, z + 1, z + 3 | 3z, 4x] (x > 3)
[z + 1, z + 1 | 3z, 4x] (x = 2).
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The case x > 3 corresponds to a case we have already considered. In the case x = 2, a simple
application of the Jantzen–Schaper formula yields [Sλ� : Dµ� ] = 1 regardless of the underlying
characteristic. So we have B]

λ�µ� = 0, and so Bλµ = 0.
Hence we have Bλµ = δλµ in cases GA, GC and GG. By looking at conjugate cases we also

deal with cases AG and CG, and so Proposition 4.5 is proved.

4.2 Blocks with birectangular cores

Proposition 4.6. Suppose that char(F) > 5, that B is a weight 3 block ofHn, and that there is exactly
one block A forming a [3 : κ]-pair with B, with κ = 2. If the adjustment matrix for A is trivial, then
the adjustment matrix for B is trivial.

If B is a weight 3 block as in Proposition 4.6, then B has a core of the form ((w + x)z, wy+z)
for some w, x, y, z > 0 with w + x + y + z = e and w, z > 0. This may be represented on an
abacus with the 〈3w, 5z, 4y, 3x〉 notation. By Lemma 4.3(2) we have Bλµ = δλµ for e-regular
partitions λ, µ in B, except possibly when Dλ is the unique exceptional simple module, i.e.
when λ = [w + x + y + 1, w + x + y + 1, w + x + y + 1 | 3w, 5z, 4y, 3x]. As with the partition
[x + 1, x + 1, x + 2] in the last section, we shall induce this simple module up to a Rouquier
block. The behaviour varies depending on whether x and y are positive, so we must consider
four cases. First suppose x, y > 0. We first apply (fw+x+y+2 . . . fe)x+y to reach [w + x + y +
1, w + x + y + 1, w + x + y + 1 | 3w, 5, 4y, 3x, 5z−1]:

1 pp p w w
+

x
+

y
+

1
w
+

x
+

1

pp p w
+

x
+

y
w
+

1 pp p w
+

x
w
+

x
+

y
+

2

pp p eu pp p u u u pp p u u pp p u u pp p uu pp p u u u pp p u u pp p u u pp p uu pp p u u pp p u u pp p u u pp p upp p u u pp p u pp p u pp p upp p u pp p pp p u pp p upp p u pp p pp p pp ppp p pp p pp p pp p

.

Next we apply fw+x+y+1
x+y and reach [w + x + 1, w + x + 1, w + x + y + 1 | 3w, 4y, 3x, 5z]:

1 pp p w w
+

x
+

1
w
+

x
+

2

pp p w
+

x
+

y
w
+

1 pp p w
+

x
w
+

x
+

y
+

1
w
+

x
+

y
+

2

pp p eu pp p u u u pp p u u pp p u u u pp p uu pp p u u u pp p u u pp p u u u pp p uu pp p u u pp p u u pp p u u u pp p upp p u u pp p u pp p u u pp p upp p u pp p pp p u pp p upp p pp p pp p u pp ppp p pp p pp p pp p

.

Applying (fw+x+2 . . . fw+x+y)x we reach [w + x + 1, w + x + 1, w + x + y + 1 | 3w, 4, 3x, 4y−1, 5z].
Next we apply fxw+x+1 and reach [w + 1, w + x + 1, w + x + y + 1 | 3w+x, 4y, 5z]. Now we apply
the following functions in turn:

f2e−2
e , (fe−1fe)

2e−4, . . . , (fw+x+y+2 . . . fe)2w+2x+2y+2,
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(fw+x+y+1 . . . fe)w+x+y,

(fw+x+y . . . fe)2w+2x+2y−2, . . . , (fw+x+2 . . . fe)2w+2x+2,

(fw+x+1 . . . fe)w+x,

(fw+x . . . fe)2w+2x−2, . . . , (f2 . . . fe)2.

We reach [w + 1, w + x + 1, w + x + y + 1 | 3, 5, 7, . . . , 2e + 1], which lies in a Rouquier block.

The other three cases are similar but simpler, and we give much less detail. If x > y = 0,
then we can find a sequence i1, . . . , ir such that fi1 , . . . , fir(λ) is defined and equals [w + 1, w +
x + y + 1, w + x + y + 1 | 3, 5, 7, . . . , 2e + 1]. If y > x = 0, then we can reach [w + 1, w + 1, w +
x + y + 1 | 3, 5, 7, . . . , 2e + 1], and if x = y = 0, then we can reach [w + x + y + 1, w + x + y +
1, w + x + y + 1 | 3, 5, 7, . . . , 2e + 1].

By Lemma 4.3(2) and since the adjustment matrix of a weight 3 Rouquier block is trivial,
we have Bλµ = δλµ for all µ. So Proposition 4.6 is proved, and this completes the proof of
Theorem 1.1 by induction.

A Non-lowerable partitions in blocks with rectangular cores

Table 1 is a list of all e-regular partitions which are not lowerable in blocks with rectangular
cores. See Section 2.7 for more details.
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µ conditions on x, y, z µ�′

AE [x + y + 1] y = 0, z = 2 [e, e, x]
AG [x + y + 1] y = 0, z = 1 [x, x− 1, x− 2]
AH [x + y + 1] y = 1, z = 1 [x + y, x, x− 1]
AI [x + y + 1] y = 2, z = 1 [x + y, x + y− 1, x]
AJ [x + y + 1] y = 0, z > 3 [e, e, e− 1]
AK [x + y + 1] y > 1, z > 3 [e, e− 1, x + y]
AL [x + y + 1] y > 2, z = 2 [e, x + y, x + y− 1]
AM [x + y + 1] y > 3, z = 1 [x + y, x + y− 1, x + y− 2]
AN [x + y + 1] y = 1, z = 2 [e, e, x + y]
BG [x + 1, x + y + 1] y = 1, z = 1 [x, x− 1, x− 2]
BH [x + 1, x + y + 1] y = 2, z = 1 [x + y, x, x− 1]
BI [x + 1, x + y + 1] y > 3, z = 1 [x + y, x + y− 1, x]
CE [x + y + 1, x + y + 2] y = 0, z > 3 [e, e, x]
CG [x + y + 1, x + y + 2] y = 0, z = 2 [x, x− 1, x− 2]
CH [x + y + 1, x + y + 2] y = 1, z = 2 [x + y, x, x− 1]
CI [x + y + 1, x + y + 2] y = 2, z = 2 [x + y, x + y− 1, x]
CL [x + y + 1, x + y + 2] y > 2, z > 3 [e, x + y, x + y− 1]
CM [x + y + 1, x + y + 2] y > 3, z = 2 [x + y, x + y− 1, x + y− 2]
CN [x + y + 1, x + y + 2] y = 1, z > 3 [e, e, x + y]
DF [x + y + 1, x + 1] y > 1 [e, x + y, x]
EA [1, x + y + 1] x = 2, y = 0 [x, x, x]
EC [1, x + y + 1] x > 3, y = 0 [x, x, x− 1]
FD [1, x + y + 1, x + 1] y > 1 [x + y, x, x]
GA [x + y + 1, x + y + 2, x + y + 3] x = 1, y = 0 [x, x, x]
GB [x + y + 1, x + y + 2, x + y + 3] x = 1, y = 1 [x + y, x + y, x]
GC [x + y + 1, x + y + 2, x + y + 3] x = 2, y = 0 [x, x, x− 1]
GG [x + y + 1, x + y + 2, x + y + 3] x > 3, y = 0, z > 3 [x, x− 1, x− 2]
GH [x + y + 1, x + y + 2, x + y + 3] x > 2, y = 1, z > 3 [x + y, x, x− 1]
GI [x + y + 1, x + y + 2, x + y + 3] y = 2, z > 3 [x + y, x + y− 1, x]
GM [x + y + 1, x + y + 2, x + y + 3] y > 3, z > 3 [x + y, x + y− 1, x + y− 2]
HA [x + y + 1, x + y + 2, x + 1] x = 1, y = 1 [x, x, x]
HB [x + y + 1, x + y + 2, x + 1] x = 1, y = 2 [x + y, x + y, x]
HC [x + y + 1, x + y + 2, x + 1] x = 2, y = 1 [x, x, x− 1]
HG [x + y + 1, x + y + 2, x + 1] x > 3, y = 1, z > 2 [x, x− 1, x− 2]
HH [x + y + 1, x + y + 2, x + 1] x > 2, y = 2, z > 2 [x + y, x, x− 1]
HI [x + y + 1, x + y + 2, x + 1] y > 3, z > 2 [x + y, x + y− 1, x]
IA [x + y + 1, x + 1, x + 2] x = 1, y = 2 [x, x, x]
IB [x + y + 1, x + 1, x + 2] x = 1, y > 3 [x + y, x + y, x]
IC [x + y + 1, x + 1, x + 2] x = 2, y = 2 [x, x, x− 1]
IG [x + y + 1, x + 1, x + 2] x > 3, y = 2 [x, x− 1, x− 2]
IH [x + y + 1, x + 1, x + 2] x > 2, y > 3 [x + y, x, x− 1]
JA [1, 2] x > 3, y = 0 [x, x, x]
KA [1, 2, x + 1] x > 3, y > 1 [x, x, x]
LA [1, x + 1, x + 2] x = 2, y > 2 [x, x, x]
LC [1, x + 1, x + 2] x > 3, y > 2 [x, x, x− 1]
MA [x + 1, x + 2, x + 3] x = 1, y > 3 [x, x, x]
MC [x + 1, x + 2, x + 3] x = 2, y > 3 [x, x, x− 1]
MG [x + 1, x + 2, x + 3] x > 3, y > 3 [x, x− 1, x− 2]
NA [1, x + 1] x = 2, y = 1 [x, x, x]
NC [1, x + 1] x > 3, y = 1 [x, x, x− 1]

Table 1



Weight three blocks of symmetric groups and Iwahori–Hecke algebras 37

B Application of the Jantzen–Schaper formula

In this section, we illustrate the explicit calculations carried out using the Jantzen–Schaper
formula in the proof of Proposition 3.5. For the partitions µ = [e, 2] and [e, e, 2], we give a table
of the coefficients cλν for all µ Q λ B ν Q µ�′. At the right we list the possible decomposition
numbers [Sλ : Dµ] satisfying Theorem 1.6 and Proposition 1.7; the reader is invited to check
that these are the only possibilities.

B.1 µ = [e, 2], µ�′ = [e− 1, e− 2, 1]
[e

,2
]

[e
,1
]

[2
,e
]

[e
,e
−

1,
2]

[e
,e
−

1,
e−

1]
[e

,e
−

1,
1]

[e
,e
−

2,
2]

[e
,e
−

2,
e−

2]
[e

,e
−

2,
1]

[2
]

[e
−

1,
2]

[e
−

1,
e−

1]
[e
−

1,
1]

[e
−

2,
2]

[e
−

2,
e−

2]
[e
−

2,
1]

[2
,e
−

1]
[2

,e
−

2]
[e
−

1,
e−

2,
2]

[e
−

1,
e−

1,
e−

2]
[e
−

1,
e−

2,
e−

2]
[e
−

1,
e−

2,
1]

[S
λ

:D
µ
]

[e, 2] . . . . . . . . . . . . . . . . . . . . . . 1
[e, 1] 1 . . . . . . . . . . . . . . . . . . . . . 1
[2, e] 1 0 . . . . . . . . . . . . . . . . . . . . 1
[e, e− 1, 2] −1 0 1 . . . . . . . . . . . . . . . . . . . 0
[e, e− 1, e− 1] 0 0 1 1 . . . . . . . . . . . . . . . . . . 1
[e, e− 1, 1] 0 1 0 −1 1 . . . . . . . . . . . . . . . . . 1
[e, e− 2, 2] 1 0 −1 1 0 0 . . . . . . . . . . . . . . . . 0
[e, e− 2, e− 2] 0 0 −1 0 1 0 1 . . . . . . . . . . . . . . . 0
[e, e− 2, 1] 0 −1 0 0 0 1 −1 1 . . . . . . . . . . . . . . 0
[2] −1 0 1 0 0 0 0 0 0 . . . . . . . . . . . . . 0
[e− 1, 2] 1 0 0 1 0 0 0 0 0 1 . . . . . . . . . . . . 1
[e− 1, e− 1] 0 0 0 0 1 0 0 0 0 1 1 . . . . . . . . . . . 1
[e− 1, 1] 0 −1 0 0 0 1 0 0 0 0 −1 1 . . . . . . . . . . 0
[e− 2, 2] −1 0 0 0 0 0 1 0 0 −1 1 0 0 . . . . . . . . . 0
[e− 2, e− 2] 0 0 0 0 0 0 0 1 0 −1 0 1 0 1 . . . . . . . . 1
[e− 2, 1] 0 1 0 0 0 0 0 0 1 0 0 0 1 −1 1 . . . . . . . 1
[2, e− 1] 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 . . . . . . 1
[2, e− 2] 0 0 −1 0 0 0 −1 0 0 1 0 0 0 1 0 0 1 . . . . . 0
[e− 1, e− 2, 2] 0 0 0 −1 0 0 1 0 0 0 1 0 0 −1 0 0 −1 1 . . . . 0
[e− 1, e− 1, e− 2] 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 . . . 0
[e− 1, e− 2, e− 2] 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 1 0 −1 1 . . 1
[e− 1, e− 2, 1] 0 0 0 0 0 1 0 0 −1 0 0 0 −1 0 0 1 0 0 1 −1 1 . 1

B.2 µ = [e, e, 2], µ�′ = [e− 1, 1]

[e
,e

,2
]

[e
,e

,1
]

[2
,e
]

[e
,e
−

1,
2]

[e
,e
−

1,
e−

1]
[e

,e
−

1,
1]

[2
]

[e
−

1,
2]

[e
−

1,
e−

1]
[e
−

1,
1]

[S
λ

:D
µ
]

[e, e, 2] . . . . . . . . . . 1
[e, e, 1] 1 . . . . . . . . . 1
[2, e] 1 0 . . . . . . . . 1
[e, e− 1, 2] −1 0 1 . . . . . . . 0
[e, e− 1, e− 1] 0 0 1 1 . . . . . . 1
[e, e− 1, 1] 0 1 0 −1 1 . . . . . 1
[2] 1 0 1 0 0 0 . . . . 1
[e− 1, 2] −1 0 0 1 0 0 1 . . . 0
[e− 1, e− 1] 0 0 0 0 1 0 1 1 . . 1
[e− 1, 1] 0 1 0 0 0 1 0 −1 1 . 1
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