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1 Introduction

In this note we present some data (decomposition numbers and Cartan matrix entries) for weight
two blocks of Iwahori–Hecke algebras of type A. This has been studied in detail before, and the
material here is not new, though our presentation is. In particular, we give a classification of Specht
modules according to composition length, and give the possible composition lengths of a projective
indecomposable module and each of its Loewy layers. (This answers a question of Erdmann and
Danz: the third Loewy layer of a projective indecomposable cannot be simple.)

We attempt to present results efficiently by judicious choice of notation. In particular, we employ
the ‘pyramids’ described by Richards. We also use a new labelling of the simple modules: for any
block in ‘quantum characteristic’ e, the simple modules are labelled by symbols dic and di, jc, where
1 6 i 6 j < e. Our labelling has the property that two simple modules which correspond under the
Scopes equivalence have the same label. This will simplify formulæ considerably. In particular, our
Proposition 3.1 describes the decomposition numbers of all blocks of weight 2 rather more concisely
than the tables in Richards’s paper. However, some of our later results are nonetheless rather com-
plicated. But we hope that some of these results will be useful. This note is expected to evolve over
time; readers are invited to suggest new items for inclusion.
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Correctness of the results

No proofs are given in this paper, because the results really are already known in a different form,
thanks to the work of Scopes, Richards, Chuang–Tan and others. So the method of proof here is just
careful book-keeping. The results were obtained theoretically, and then tested by computer on all
(Scopes classes of) blocks of weight 2 in quantum characteristic at most 7. So we are very confident
in their correctness.

2 Notation

2.1 Partitions, Specht modules and the abacus

We summarise the background and notation we use. The reader should consult the references for
a less brief account.

Throughout, we work over a field F of arbitrary characteristic, and fix a root of unity q ∈ F. We
define the quantum characteristic e to be the least positive integer such that 1 + q + · · ·+ qe−1 = 0 in
F. Given a positive integer n, let Hn denote the Iwahori–Hecke algebra of type An−1 over F, with
quantum parameter q. We assume throughout that e > 2. Many of our results still apply when e = 2,
but modifications are needed in certain cases, and the results we use on extensions between simple
modules fail badly when e = 2.
Hn has Specht modules indexed by the partitions of n; we use the Specht modules defined by

Dipper and James. Given a partition λ of n, one defines the beta-numbers

βi = λi − i for i > 1.

The e-runner abacus is an abacus with e infinite vertical runners, with positions marked on the runners.
These positions are labelled with integers, in such a way that the positions on the ith runner from
the left are labelled with the integers congruent to i− 1 modulo e, increasing down the runner. For
example, the 5-runner abacus is marked as follows.

−5 −4 −3 −2 −1

0 1 2 3 4

5 6 7 8 9

The abacus display for λ is obtained by placing a bead at position βi for each i. By sliding beads up
their runners into empty spaces, we obtain the abacus display for the e-core of λ; this is a partition of
n− ew, where w is the e-weight of λ. Two Specht modules Sλ and Sµ forHn lie in the same block if and
only if λ and µ have the same e-core. This automatically implies that they have the same e-weight,
and so we may speak of the (e-)weight and (e-)core of a block. In this note we are entirely concerned
with blocks of weight 2.

If λ is an e-regular partition, then Sλ has an irreducible cosocle Dλ, and the Dλ realise all irre-
ducible representations of Hn. In this note we are mainly concerned with the decomposition num-
bers

[
Sλ : Dµ

]
, and the Cartan invariants

[
Pλ : Dµ

]
, where Pλ denotes the projective cover of Dλ for

λ an e-regular partition.

2.2 Pyramids

Suppose B is a block of Hn of weight 2. The pyramid of B is a triangular array of integers which
encodes some of the combinatorics of B. Take the abacus display for the e-core of B, and consider
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the position of the lowest bead on each runner. This yields a set of e integers, which we write as
p0 < · · · < pe−1. Now for 0 6 i 6 j 6 e−1, we define

iBj =

{
1 (if pj − pi < e)
0 (if pj − pi > e).

The array (iBj) is the pyramid of B. Note that we adhere to Richards’s original convention for the
pyramid values, rather than that employed by the author and Tan.

Example. Suppose e = 5, and that B is the block of H24 with core (8, 4, 1, 1). The abacus display for
this partition is

,

and we see that (p0, p1, p2, p3, p4) = (−9,−6,−5,−2, 7). Hence the pyramid is given by the following
diagram:

0
0 0

1 1 0
1 1 1 0

1 1 1 1 1
0 1 2 3 4

We employ shorthand notation, for example writing i0j to mean that iBj = 0. For convenience,
we extend the definition of the pyramid to allow i and j to be any integers: if i > j, then we define
iBj = 1. Otherwise, if i < 0 or j > e, then we define iBj = 0.

2.3 Labelling Specht modules and simple modules

Now we describe our labelling of partitions and e-regular partitions in weight 2 blocks, which is
slightly unusual.

Suppose B is the weight 2 block with core ν, and consider the abacus display for ν. Let p0 < · · · <
pe−1 be the integers defined above, and label the runners of the abacus 0, . . . e−1 so that integer pi lies
on runner i for each i. For example, taking e = 5 and ν = (8, 4, 1, 1) as in the last example, the runners
are labelled 2, 0, 4, 3, 1 from left to right.

Suppose λ is a partition in B. Then the abacus display for λ is obtained from the abacus display
for ν by twice moving a bead into an empty space below it. If these moves occur on runners i and j
for i < j, then we denote λ as 〈i, j〉. On the other hand, if the lowest bead on runner i is moved down
two spaces, we denote λ as 〈i〉, while if the lowest two beads on runner i are moved down one space
each, we denote λ as 〈i2〉.

Thus B contains the
( e + 2

2

)
− 1 partitions, with labels 〈i, j〉 for 0 6 i < j < e or 〈i〉 or 〈i2〉 for

0 6 i < e. Which of these partitions are e-regular depends on B, so we introduce a different notation
for e-regular partitions, which will have the advantage that the set of labels of e-regular partitions
depends only on e, not on B.

Given 1 6 i < e, we define

dic =
{
〈i〉 (if i0i+1)

〈i, i+1〉 (if i1i+1).
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Given 1 6 i 6 j < e, we define

di, jc =


〈i, j〉 (if i0j)

〈j2〉 (if i1j and i−10j)

〈i−1〉 (if i−11j and i−10j+1)

〈i−1, j+1〉 (if i−11j+1).

It is easy to check that the symbols dic for 1 6 i < e and di, jc for 1 6 i 6 j < e all denote different
partitions in B, and in fact denote precisely the e-regular partitions in B.

Our notation has the property that if A and B are weight 2 blocks of m and n forming a [2 : k]-
pair in the sense of Scopes [S], then a simple module in A has the same label as the corresponding
simple module in B. (The reader who is unfamiliar with the Scopes correspondence should ignore
this remark, since we do not use it explicitly in what follows.)

3 Decomposition numbers

Here we present the decomposition numbers for a block of weight 2. The information here is
essentially that in Tables 1 and 2 of [R], but our notation for simple modules makes the statement a
little shorter.

3.1 Columns of the decomposition matrix

First we present the decomposition numbers ‘by columns’; that is, for a given simple module, we
say which Specht modules contains it as a composition factor.

Proposition 3.1. Suppose B is a block ofHn of weight 2, with pyramid (iBj).

1. Suppose 1 6 i < e. Then the decomposition number
[
Sλ : Ddic

]
equals 1 if one of the following

occurs, and 0 otherwise.

λ = 〈i〉, i0i+1; λ = 〈i−1〉, i−11i, i−10i+1;

λ = 〈i−2〉, i−21i−1, i−20i; λ = 〈i+12〉, i−10i+1, i1i+1;

λ = 〈i2〉, i−20i, i−11i; λ = 〈i−12〉, i−20i−1;
λ = 〈i, i+1〉, i1i+1; λ = 〈i−1, i〉, i−10i;
λ = 〈i−2, i−1〉, i−21i−1; λ = 〈i−1, i+1〉, i−11i+1;
λ = 〈i−2, i〉, i−21i.

2. Suppose 1 6 i 6 j < e. Then the decomposition number
[
Sλ : Ddi,jc

]
equals 1 if one of the

following occurs, and 0 otherwise.

λ = 〈i〉, i1j−1, i0j; λ = 〈i−1〉, i−11j−1, i−10j+1;

λ = 〈i−2〉, i−21j, i−20j+1; λ = 〈j+12〉, i−20j+1, i−11j+1;

λ = 〈j2〉, i−20j, i1j; λ = 〈j−12〉, i−10j−1, i1j−1;

λ = 〈i, j−1〉, i0j−1; λ = 〈i, j〉, i0j;

λ = 〈i−1, j−1〉, i−10j−1; λ = 〈i−1, j〉;
λ = 〈i−1, j+1〉, i−11j+1; λ = 〈i−2, j〉, i−21j;

λ = 〈i−2, j+1〉, i−21j+1.
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This leads to a surprisingly simple formula for the diagonal entries of the Cartan matrix.

Corollary 3.2. Suppose B is a block ofHn of weight 2, with pyramid (iBj).

1. Suppose 1 6 i < e. Then the diagonal Cartan number
[

Pdic : Ddic
]

equals

3 + i−2Bi−1 + i−1Bi + iBi+1 − i−2Bi − i−1Bi+1.

2. Suppose 1 6 i 6 j < e. Then the diagonal Cartan number
[

Pdi,jc : Ddi,jc
]

equals

4 + iBj−1 − i−1Bj−1 − iBj + i−2Bj + i−1Bj+1 − i−2Bj+1.

3.2 Rows of the decomposition matrix

Next, we present the same information ‘by rows’, giving a list of the composition factors of a
given Specht module. In the following result, we use [M] to denote the image of a module M in
the Grothendieck group of Hn. The term

[
Ddi,jc

]
should be interpreted as zero if the conditions

1 6 i 6 j < e fail, and similarly for
[
Ddic

]
.

Proposition 3.3. Suppose B is a block ofHn of weight 2, with pyramid (iBj).

1. Suppose 0 6 k < e, and let l ∈ {k, . . . , e−1} be maximal such that k1l . Then[
S〈k〉

]
= δkl

[
Ddkc

]
+ δ(k+1)l

([
Ddk+1c]+ [Ddk+2c])+ [Ddk,l+1c]+ [Ddk+1,l+1c]+ [Ddk+1,lc]+ [Ddk+2,lc].

2. Suppose 0 6 l < e, and let k ∈ {0, . . . , l} be minimal such that k1l . Then[
S〈l

2〉]= δkl
[
Ddl+1c]+ δk(l−1)

([
Ddl−1c]+ [Ddlc])+ [Ddk,lc]+ [Ddk+1,lc]+ [Ddk,l+1c]+ [Ddk+1,l−1c].

3. Suppose 1 6 l < e, and l−11l . Then[
S〈l−1,l〉]= [Ddl−1c]+ [Ddl+1c]+ [Ddl,lc].

4. Suppose 1 6 l < e, and l−10l . Then[
S〈l−1,l〉]= [Ddlc]+ [Ddl,lc]+ [Ddl−1,lc]+ [Ddl,l+1c]+ [Ddl−1,l+1c].

5. Suppose 2 6 l < e, and l−21l . Then[
S〈l−2,l〉]= [Ddl−1c]+ [Ddlc]+ [Ddl−1,l−1c]+ [Ddl,lc]+ [Ddl−1,lc].

6. Suppose 0 6 k 6 l−2 < e−2, and k0l . Then[
S〈k,l〉]= [Ddk,lc]+ [Ddk,l+1c]+ [Ddk+1,lc]+ [Ddk+1,l+1c].

7. Suppose 0 6 k 6 l−3 < e−3, and k1l . Then[
S〈k,l〉]= [Ddk+1,l−1c]+ [Ddk+1,lc]+ [Ddk+2,l−1c]+ [Ddk+2,lc].

Corollary 3.4. Suppose B is a block of Hn of weight 2, with pyramid (iBj), and λ is a partition in B.
Then the composition length of Sλ is 1, 2, 3, 4 or 5.

1. Sλ is simple if and only if:
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� λ = 〈e−1〉;
� λ = 〈02〉;
� λ = 〈0〉 and 001;

� λ = 〈e−12〉 and e−20e−1; or

� λ = 〈0, e−1〉 and 00e−1.

2. Sλ has composition length 2 if and only if:

� λ = 〈k〉, k1e−1 and k 6 e−2;

� λ = 〈l2〉, 01l and 1 6 l;
� λ = 〈0, 1〉 and 011;

� λ = 〈e−2, e−1〉 and e−21e−1;

� λ = 〈0, l〉, 00l and 2 6 l 6 e−2; or

� λ = 〈k, e−1〉, k0e−1 and 1 6 k 6 e−3.

3. Sλ has composition length 3 if and only if:

� λ = 〈0〉, 012 and 00e−1;
� λ = 〈e−12〉, e−31e−1 and 00e−1;
� λ = 〈k〉, k0k+1 and 1 6 k 6 e−2;
� λ = 〈l2〉, l−10l and 1 6 l 6 e−2;

� λ = 〈l−1, l〉, l−11l and 2 6 l 6 e−2;

� λ = 〈0, 1〉 and 001; or

� λ = 〈e−2, e−1〉 and e−20e−1.

4. Sλ has composition length 4 if and only if:

� λ = 〈k〉, k1k+2, k0e−1 and k > 1;

� λ = 〈l2〉, l−21l , 00l and l 6 e−2;

� λ = 〈0〉, 011 and 002;

� λ = 〈e−12〉, e−21e−1 and e−30e−1;

� λ = 〈k, l〉, k0l and 1 6 k 6 l−2 6 e−4; or

� λ = 〈k, l〉, k1l and 0 6 k 6 l−3 6 e−4.

5. Sλ has composition length 5 if and only if

� λ = 〈k〉, k1k+1, k0k+2 and 1 6 k 6 e−2;

� λ = 〈l2〉, l−20l , l−11l and 2 6 l 6 e−2;

� λ = 〈l−1, l〉, l−10l and 2 6 l 6 e−2; or

� λ = 〈l−2, l〉 and l−21l .

4 Richards’s ∂-function and a bipartition of the simple modules

Since e > 3, the quiver of a weight 2 block is bipartite. The corresponding bipartition of the set
of simple modules can be derived from Richards’s ∂-function, which assigns to each partition λ in
a weight 2 block (and hence to the corresponding simple module, if λ is e-regular) an integer ∂λ in
the range 0, . . . , e−1. It is shown by Chuang and Tan [CT1, CT2] that when e > 3, Ext1

Hn
(Dλ, Dµ) can

be non-zero only if ∂λ− ∂µ = ±1. Furthermore, Richards defines a colour (either black or white) for
each λ with ∂λ = 0, which plays a role in his formula for decomposition numbers. Here we describe
in our notation the ∂ function and the colour function on simple modules.

Proposition 4.1. Suppose B is a block ofHn of weight 2, with pyramid (iBj).

1. If 1 6 i < e, then ∂dic = 0. dic is white if i ≡ e (mod 2), and black otherwise.

2. If 1 6 i 6 j < e, then ∂di, jc = j− i + i−1Bj. If i−10i, then di, ic is black if i ≡ e (mod 2), and white
otherwise.

We define the parity of an e-regular partition µ to be the parity of the integer ∂µ.
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5 The Cartan matrix

Now we use the decomposition numbers to obtain the entries of the Cartan matrix. Since e > 3,
we can then easily obtain the Loewy layers of the indecomposable projectives, since it is known that
the quiver of a weight 2 block is bipartite and that the projectives have Loewy length 5 and are rigid.

Proposition 5.1. Suppose B is a weight 2 block of Hn with pyramid (iBj), and λ 6= µ are e-regular
partitions in B of the same parity. Then the Cartan matrix entry cλµ =

[
Pλ : Dµ

]
=
[
Pµ : Dλ

]
equals

0, 1 or 2.

1. cλµ = 1 if and only if the pair {λ, µ} corresponds to one of the entries in the following table.

λ µ conditions |∂λ− ∂µ|
dic di+1c i−1Bi + iBi+1 + i−1Bi+1 is odd 0
dic di+2c i1i+1 0
dic di−1, i−1c i−20i−1 0
dic di, ic i−10i 0
dic di+1, i+1c i0i+1 0
di, jc di, j+1c i−11j and i−10j+1 0
di, jc di+1, jc i−10j and i1j 0
di, jc di+1, j+1c i0j or i−11j+1 0
dic di−1, ic i−21i 2
dic di, i+1c i−11i+1 2
dic di−2, ic i−21i−1 and i−20i 2
dic di−1, i+1c i−10i or i−2Bi + i−1Bi+1 = 1 2
dic di, i+2c i−10i+1 and i1i+1 2
di, jc di−1, j+1c i−10j or i−21j+1 2
di, jc di−1, j+2c i−20j+1 and i−11j+1 2
di, jc di+2, j−1c i1j−1 and i0j 2

2. cλµ = 2 if and only if the pair {λ, µ} corresponds to one of the entries in the following table.

λ µ conditions |∂λ− ∂µ|
dic di+1c i−11i1i+1 and i−10i+1 0
dic di−1, i+1c i−20i, i−11i and i−10i+1 2

Proposition 5.2. Suppose B is a weight 2 block of Hn with pyramid (iBj), and λ, µ are e-regular
partitions in B. Then dimF Ext1

Hn
(Dλ, Dµ) equals 0 or 1, and is 1 if and only if the pair {λ, µ} equals:

� {dic, di−1, i−1c}, where i−21i−1;

� {dic, di, ic}, where i−11i;

� {dic, di+1, i+1c}, where i1i+1;

� {dic, di−1, ic}, where i−20i;

� {dic, di, i+1c}, where i−10i+1;

� {di, jc, di−1, j+1c}, where i−20j+1 and i−11j;

� {di, jc, di, j+1c}, where i−10j or i−11j+1; or

� {di, jc, di+1, jc}, where i0j or i−11j.
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Proposition 5.3. Suppose B is a weight 2 block of Hn with pyramid (iBj), and λ is an e-regular par-
tition in B. Let nλ be the number of e-regular partitions µ such that Ext1

Hn
(Dλ, Dµ) 6= 0, i.e. the

composition length of the second (or fourth) Loewy layer of Pλ.

1. � If λ = dic for 1 6 i < e, then

nλ = 2− δi1 − δi(e−1) + i−2Bi−1 + i−1Bi + iBi+1 − i−2Bi − i−1Bi+1.

� If λ = di, ic for 1 6 i < e, then

nλ = (2− δi1 − δi(e−1)) (1 + i−1Bi) + i−2Bi + i−1Bi+1 − i−2Bi+1.

� If λ = di, i+1c for 1 6 i 6 e−2, then

nλ = 6− δi1 − δi(e−2) − i−1Bi − iBi+1 + (−1 + δi1δi(e−2))i−1Bi+1 + i−2Bi+1 + i−1Bi+2 − i−2Bi+2.

� If λ = di, jc for 1 6 i 6 j−2 6 e−3, then

nλ = 4− δi1 − δj(e−1) + iBj−1 − i−1Bj−1 − iBj + δi1δj(e−1)(i−1Bj) + i−2Bj + i−1Bj+1 − i−2Bj+1.

2. � If e = 3, then nλ can take any of the values 1, 2, 3, 4.

� If e > 4 then nλ can take any of the values 1, 2, 3, 4, 5, 6.

Combining Corollary 3.2 and Proposition 5.1, we can obtain the composition length of the third
Loewy layer of a projective indecomposable module.

Proposition 5.4. Suppose B is a weight 2 block of Hn with pyramid (iBj), and λ is an e-regular parti-
tion in B. Let mλ be the composition length of the third Loewy layer of

[
Pλ : Dµ

]
.

1. � If λ = dic for 1 6 i < e, then

mλ = 5− 2δi1 − 2δi(e−1) + (3− 2δi2)(i−2Bi−1) + (3− 2δi1 − 2δi(e−1))(i−1Bi)

+ (3− 2δi(e−2))(iBi+1) + (−3 + δi2 + δi(e−1))(i−2Bi) + (−3 + δi1 + δi(e−2))(i−1Bi+1).

� If λ = di, ic for 1 6 i < e, then

mλ = 5− 2δi1 − 2δi(e−1) + (−2 + δi1 + δi(e−1))(i−1Bi) + (2− δi2 − δi(e−1) + δi2δi(e−1))(i−2Bi)

+ (2− δi1 − δi(e−2) + δi1δi(e−2))(i−1Bi+1) + (−2 + δi2 + δi(e−2))(i−2Bi+1).

� If λ = di, i+1c for 1 6 i 6 e−2, then

mλ = 6− 2δi1 − 2δi(e−2) + δi1δi(e−2) + (−1 + δi1)(i−1Bi) + (−1 + δi(e−2))(iBi+1)

+ (1− δi1δi(e−2))(i−1Bi+1) + (2− δi2 − δi(e−2) + δi2δi(e−2))(i−2Bi+1)

+ (2− δi1 − δi(e−3) + δi1δi(e−3))(i−1Bi+2) + (−2 + δi2 + δi(e−3))(i−2Bi+2).

� If λ = di, i+2c for 1 6 i 6 e−3, then

mλ = 7− 2δi1 − 2δi(e−3) + δi1δi(e−3) + 3(iBi+1) + (−3 + δi1)(i−1Bi+1) + (−3 + δi(e−3))(iBi+2)

− δi1δi(e−3)(i−1Bi+2) + (2− δi2 − δi(e−3) + δi2δi(e−3))(i−2Bi+2)

+ (2− δi1 − δi(e−4) + δi1δi(e−4))(i−1Bi+3) + (−2 + δi2 + δi(e−4))(i−2Bi+3).
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� If λ = di, jc for 1 6 i 6 j−3 6 e−4, then

mλ = 6− 2δi1 − 2δj(e−1) + δi1δj(e−1) + 2(iBj−1) + (−2 + δi1)(i−1Bj−1) + (−2 + δj(e−1))(iBj)

− δi1δj(e−1)(i−1Bj) + (2− δi2 − δj(e−1) + δi2δj(e−1))(i−2Bj)

+ (2− δi1 − δj(e−2) + δi1δj(e−2))(i−1Bj+1) + (−2 + δi2 + δj(e−2))(i−2Bj+1).

2. � If e = 3, then mλ can take any of the values 2–5.

� If e = 4, then mλ can take any of the values 2–10.

� If e = 5, then mλ can take any of the values 2–12.

� If e > 6, then mλ can take any of the values 2–12 or 14.

Now we consider the composition length of an indecomposable projective module. Combining
Propositions 5.3 and 5.4, one can easily write down an explicit formula for the length of a projective
module. We save space by omitting this, but instead give the possible values such a formula can take.

Proposition 5.5. Suppose B is a weight 2 block of Hn, and λ is an e-regular partition in B, and let cλ

denote the composition length of Pλ.

� If e = 3, then cλ can take any of the values 7–11 or 13.

� If e = 4, then cλ can take any of the values 7, 8, 10–19 or 22.

� If e = 5, then cλ can take any of the values 7–21 or 24.

� If e > 6, then cλ can take any of the values 7–22, 24 or 26.
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