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Abstract

We study blocks of the Iwahori–Hecke algebra Hq(Sn) of weight two over a field of characteristic
two. Using techniques and notation developed by Scopes, Richards, Chuang and Tan for the case of odd
characteristic, we find the decomposition numbers and classify extensions between simple modules for these
blocks.
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1 Introduction

Let F be a field, q an element of F and n a non-negative integer. We consider the Iwahori–Hecke algebra
HF,q(Sn), which we shall henceforth denote Hn. Of course, if q = 1 then Hn � FSn. We let e denote the
smallest integer such that 1 + q + · · · + qe−1 = 0 in F if such an integer exists, and put e = ∞ otherwise. Each
block ofHn then has an e-weight, which is a non-negative integer. In this paper, we consider blocks of e-weight
two in the case where F has characteristic two. Blocks of weight zero and one are very well understood, and
blocks of weight two are understood in the case when char(F) > 2; in the symmetric group case, Scopes [14]
initiated the study of these blocks; Richards [12] described their decomposition matrices combinatorially and
then Chuang and Tan [2, 3] described the Ext1 space between two simple modules. The q-analogue of the
Jantzen–Schaper formula due to James and Mathas [8] ensures that these results also hold for the Iwahori–
Hecke algebras. We use Richards’s combinatorial techniques together with the Jantzen–Schaper formula to
determine the decomposition matrices in the case char(F) = 2 (that is, we find the ‘adjustment matrices’ for
these blocks, in the sense of James [7]); by analysing [2 : 1]-pairs in the cases where the adjustment matrix is
non-trivial, we are also able to calculate the Ext1 space for two simple modules (when e > 2).

An excellent introduction to the representation theory of Hn can be found in Mathas’s book [10]; we shall
summarise the relevant points here.
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For each partition λ of n one defines a Specht module S λ for Hn. (There are conflicting definitions of the
Specht module; we actually use that defined by Dipper and James [4] rather than that defined by Mathas.) If λ is
e-regular (i.e. if λ does not have e equal non-zero parts) then S λ has an irreducible self-dual cosocle Dλ, and the
set of modules Dλ gives a complete set of irreducibleHn-modules as λ ranges over the set of e-regular partitions
of n. Furthermore, each composition factor of S λ is of the form Dµ for some partition µ with µ Q λ, where Q is
the usual dominance order on partitions; if λ is e-regular, then Dλ occurs exactly once as a composition factor
of S λ.

Let T1, . . . ,Tn−1 be the standard generators of Hn. Let ] : Hn → Hn be the involutory automorphism
sending Ti to q − 1 − Ti, and let ∗ : Hn → Hn be the anti-automorphism sending Ti to Ti. Given a module M
forHn, define M] to be the module with the same underlying vector space and with action

h · m = h]m,

and define M∗ to be the module with underlying vector space dual to M and withHn-action

h · f (m) = f (h∗m).

Let λ′ denote the partition conjugate to λ. Then we have the following.

Lemma 1.1. [10, Exercise 3.14(iii)] For any partition λ,

S λ′ � (S λ])∗.

Given an e-regular partition λ, let λ� denote the e-regular partition such that Dλ] � Dλ� ; the bijection
λ 7→ λ� is described by the Mullineux algorithm [11]. Since conjugation of partitions reverses the dominance
order, we find that if Dµ is a composition factor of S λ, then λ Q µ�′.

1.1 Blocks and the abacus

If e is finite, then partitions of n are conveniently represented on an abacus. If λ is a partition, choose an
integer r greater than the number of parts of λ, and define

βi = λi + r − i

for i = 1, . . . , r. The set {β1, . . . , βr} is then said to be a set of beta-numbers for λ. Now take an abacus with e
vertical runners numbered 0, . . . , e − 1 from left to right, and number the positions on runner i from the top as
i, i + e, i + 2e, . . . . Then place a bead on the abacus at position βi for each i. The resulting configuration is said
to be an abacus display for λ. The partition whose abacus display is obtained from this by moving all the beads
as far up their runners as they will go is called the e-core of λ; it is a partition of n − we for some w, which is
called the weight of λ. Moving a bead up s spaces on its runner corresponds to removing a rim hook of length
es from the Young diagram. ‘Nakayama’s Conjecture’ says that two Specht modules S λ and S µ lie in the same
block ofHn (we shall abuse notation by saying that λ and µ lie in this block) if and only if they have the same
e-core; this means that they also have the same weight, and this is called the weight of the block.

1.2 The Janzten–Schaper formula

One of the most important tools in finding the decomposition numbers of Hn is the (q-analogue of the)
Jantzen–Schaper formula. We describe this very briefly.

Given partitions λ and µ of n, define H(λ, µ) to be the set of ordered pairs (g, h), where
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• g is a rim hook of the Young diagram [λ] of λ;

• h is a rim hook of the Young diagram [µ] of µ;

• [λ] \ g = [µ] \ h.

Now define
cλ,µ =

∑
(g,h)∈H(λ,µ)

(−1)l(g)+l(h)+1νe,p(|g|);

here |g| is the number of nodes of g and l(g) its leg length, and νe,p(x) is defined for a positive integer x to be
a + 1 if x may be written in the form x = epab with b an integer not divisible by p, and 0 otherwise.

Each Specht module S λ has a filtration

S λ = S λ(0) > S λ(1) > . . .

in which S λ(0)/S λ(1) is isomorphic to Dλ if λ is e-regular and 0 otherwise. The Jantzen–Schaper formula may
be stated as follows.

Theorem 1.2. [8, Theorem 4.7] For partitions λ, µ of n with µ e-regular,∑
i

i
[(

S λ(i)/S λ(i+1)
)

: Dµ
]

=
∑
νBλ

cλ,ν[S ν : Dµ].

In particular, if λ , µ then
[S λ : Dµ] 6

∑
νBλ

cλ,ν[S ν : Dµ],

and the left-hand side of the above inequality is non-zero if and only if the right-hand side is.

This theorem greatly restricts the possible decomposition numbers for Hn. To use it, one studies one e-
regular partition µ at a time, and tries to find possible sets of values

[(
S λ(i)/S λ(i+1)

)
: Dµ

]
satisfying the Jantzen–

Schaper formula, bearing in mind that [S λ : Dµ] = 0 unless µ Q λ Q µ�′, and that[(
S µ(0)/S µ(1)

)
: Dµ

]
= [S µ : Dµ] = [S µ�′ : Dµ] = 1.

Remark. One might ask in which layer of the Janzten–Schaper filtration of S µ�′ the composition factor Dµ

lies, or more generally how the Jantzen–Schaper filtrations of S λ and S λ′ correspond under the isomorphism in
Lemma 1.1. The author has answered this question in the symmetric group case [5, Theorem 4.8], and from the
calculations used in the present work an analogous result would seem to hold for the Iwahori–Hecke algebras.
But we shall not need this here.

1.3 Blocks of weight two

In this paper we shall be entirely concerned with blocks of weight two. Scopes [14] began the study of
these blocks in the symmetric group case, and developed the notion of a [2 : k]-pair. If A is a block of Hn−k

and B a block of Hn, then we say that A and B form a [2 : k]-pair if there is an abacus for A and some integer
0 6 i 6 e − 1 such that interchanging runners i and i − 1 gives an abacus for B.

If k > 2, then [2 : k]-pairs are particularly useful.

Theorem 1.3. [10, p. 127] Suppose that A and B form a [2 : k]-pair as above, with k > 2. For each partition λ
in A, define the partition Φ(λ) in B by interchanging runners i and i − 1 of the abacus display for λ. Then:
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• Φ gives a bijection between the set of partitions in A and the set of partitions in B;

• Φ(λ) is e-regular if and only if λ is;

• for partitions λ and µ in A with µ e-regular, we have [S λ : Dµ] = [S Φ(λ) : DΦ(µ)];

• the correspondence Dλ ↔ DΦ(λ) gives a Morita equivalence between A and B.

Thus the difficult part of the study of blocks of weight two is to understand [2 : 1]-pairs. Suppose that A
and B form a [2 : 1]-pair, and denote by α, β, γ the following partitions in B (we indicate only runners i− 1 and
i; on all other runners the beads must be as far up as possible):

α =

...
...u uu uu β =

...
...u uuu u γ =

...
...u uuuu .

We also denote by ᾱ, β̄, γ̄ the following partitions in A:

ᾱ =

...
...u uuu u β̄ =

...
...u uu uu γ̄ =

...
...u uuuu .

Now if λ is a partition in A other than ᾱ, β̄ or γ̄, then define the partition Φ(λ) in B by interchanging runners
i and i − 1 of the abacus display for λ. Then the following result follows from [14] and [1].

Theorem 1.4. Let A, B, α, β, γ, ᾱ, β̄, γ̄,Φ be as above. Then

• Φ gives a bijection between the set of partitions in A other than ᾱ, β̄, γ̄ and the set of partitions in B other
than α, β, γ;

• Φ(λ) is e-regular if and only if λ is;

• if λ , ᾱ, β̄, γ̄, then
S λ↑B

A� S Φ(λ), S Φ(λ)↓B
A� S λ

and (if λ is e-regular)
Dλ↑B

A� DΦ(λ), DΦ(λ)↓B
A� Dλ;

• β̄ is e-regular if and only if γ is, and in this case

Dβ̄↑B
A� Dγ, Dγ↓B

A� Dβ̄;

• γ̄ is e-regular if and only if β is, and in this case

Dγ̄↑B
A� Dβ, Dβ↓B

A� Dγ̄;

• ᾱ and α are always e-regular, Dᾱ↑B
A is self-dual with socle isomorphic to Dα, and Dα↓B

A is self-dual with
socle isomorphic to Dᾱ;

• if λ, µ are partitions in A other than ᾱ, β̄, γ̄ with µ e-regular, then [S λ : Dµ] = [S Φ(λ) : DΦ(µ)];

• if λ is a partition in A other than ᾱ, β̄, γ̄ and β̄ is e-regular, then [S λ : Dβ̄] = [S Φ(λ) : Dγ];

• if λ is a partition in A other than ᾱ, β̄, γ̄ and γ̄ is e-regular, then [S λ : Dγ̄] = [S Φ(λ) : Dβ];

• if λ is a partition in A other than ᾱ, β̄, γ̄, then [S λ : Dᾱ] = [S Φ(λ) : Dα] = 0.
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1.4 Pyramids

Richards was able to understand blocks of weight two (and, in particular, to classify all possible cases of
the Jantzen–Schaper formula for these blocks) using the combinatorics of pyramids.

Given a block B ofHn of weight two, take an abacus for (the e-core of) B and let p0 < · · · < pe−1 be those
integers such that there is a bead at position pi but no bead at position pi + e, for each i. Thus exactly one of
p0, . . . , pe−1 will lie in each (mod e) congruence class. Now, for 0 6 i 6 j 6 e − 1, define

iB j =

1 (p j < pi + e)

0 (p j > pi + e).

We also define −1Bi = iBe = 0 for all i. The set of integers iB j then called the pyramid for B. We shall use
shorthand notation such as i0 j1k to indicate iB j = 0, jBk = 1, when it is clear which block B is.

Now, given a partition λ in B, we encode it with a pair of integers:

• if λ is obtained by moving beads down from positions pi and p j one space each, then we write λ as
{2i + 1, 2 j + 1};

• if λ is obtained by moving beads down from positions pi and pi − e, then we define k to be the integer
such that

k−10i, k1i,

and write λ as {2k, 2i + 1};

• if λ is obtained by a moving a bead down two spaces from position pi, let k be the integer such that

i1k, i0k+1,

and write λ as {2i + 1, 2k + 2}.

Lemma 1.5. [12, Lemma 4.5] Suppose {a, b} and {c, d} are two partitions written as above. Then (assuming
a < b and c < d) {a, b} dominates {c, d} if and only if a > c and b > d.

Given a partition λ of weight two, we may remove two rim hooks of length e from the Young diagram of λ
to obtain the Young diagram for the e-core of λ. The difference between the leg lengths of these rim hooks is
independent of the way in which they are chosen, and we call this value ∂λ.

Using these combinatorial data, Richards was able to describe the partition µ�′ for each e-regular partition
µ of weight two, and to find all partitions λ with µ Q λ Q µ�′. The Mullineux algorithm depends only on
e, and not on the underlying field, and so Richards’s results are of use to us. These are summarised in Table
1, which is essentially Tables 1 and 2 of [12]. Note that we have made some changes to these tables in order
to aid clarity. In labelling the rows, we identify ‘conjugate pairs’: thus if λ satisfies the conditions given in
row A, then λ� satisfies the conditions given in row A�. Those rows for which no conjugate is given are ‘self-
conjugate’. For partitions whose existence imposes certain conditions on the pyramid, we have given these
conditions (between parentheses), in order to make it clear that the table exhausts all possibilities; for example,
the partition {2i + 1, 2i + 2} only exists if i0i+1. Finally, note that row P of Table 1 corresponds to two almost
identical rows of Richards’s Table 2.

By analysing each of these cases, Richards showed that, in the case where char(F) > 2, the Jantzen–Schaper
formula completely determines the decomposition numbers. If λ and µ are partitions with µ e-regular, say that
λ and µ are adjacent if µ Q λ Q µ�′ and |∂λ − ∂µ| = 1. Then we have the following.
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µ Conditions µ�′ ∂λ − ∂µ = −2 ∂λ − ∂µ = −1 ∂λ − ∂µ = 0 ∂λ − ∂µ = 1 ∂λ − ∂µ = 2 ∂λ − ∂µ = 3
A {2i + 1, 2 j + 1} i1 j {2i, 2 j − 1} — {2i + 1, 2 j − 1} — {2i, 2 j + 1} — —

0 6 i 6 j − 2 6 e − 3 i−10 j−1
B {2i + 1, 2 j + 1} i1 j {2i − 1, 2 j − 1} — {2i + 1, 2 j − 1} — {2i, 2 j + 1} {2i − 1, 2 j + 1} —

1 6 i 6 j − 2 6 e − 3 i−10 j {2i − 1, 2 j}

i−11 j−1
C {2i + 1, 2 j + 1} i−11 j {2i − 1, 2 j − 1} — {2i + 1, 2 j − 1} — {2i − 1, 2 j + 1} — —

1 6 i 6 j − 2 6 e − 3
D {2i + 1, 2 j + 1} i0 j {2i − 1, 2 j} — {2i + 1, 2 j} — {2i − 1, 2 j + 1} — —

1 6 i 6 j − 1 6 e − 2 i−11 j−1
E {2i + 1, 2 j + 1} i0 j {2i − 1, 2 j − 1}{2i + 1, 2 j − 1} {2i + 1, 2 j} — {2i − 1, 2 j + 1} — —

1 6 i 6 j − 2 6 e − 3 i1 j−1 {2i, 2 j − 1}

i−10 j−1
F {2i + 1, 2i + 3} i0i+1 {2i − 1, 2i + 1} — {2i + 1, 2i + 2} — {2i − 1, 2i + 3} — —

1 6 i 6 e − 2 i−10i {2i, 2i + 1}
G {2i + 1, 2 j + 1} i0 j−1 {2i − 1, 2 j − 1} — {2i + 1, 2 j − 1} — {2i − 1, 2 j + 1} — —

1 6 i 6 j − 2 6 e − 3
H {2i + 1, 2i + 3} i1i+1 {2i − 2, 2i − 1} — — {2i, 2i + 1} {2i, 2i + 3} {2i − 1, 2i + 3} —

1 6 i 6 e − 2 i−10i {2i − 1, 2i} {2i − 1, 2i + 1}

i−20i−1
I {2i + 1, 2i + 3} i1i+1 {2i − 3, 2i − 1} — — {2i, 2i + 1} {2i, 2i + 3} {2i − 1, 2i + 3}{2i − 3, 2i + 3}

2 6 i 6 e − 2 i−10i {2i − 1, 2i} {2i − 1, 2i + 1} {2i − 3, 2i + 1}

i−21i−1 {2i − 3, 2i}
J {2i + 1, 2i + 3} i1i+1 {2i − 2, 2i − 1} — — {2i − 1, 2i + 1} {2i, 2i + 3} {2i − 1, 2i + 3} —

1 6 i 6 e − 2 i−10i+1 {2i − 1, 2i + 2}

i−11i {2i − 2, 2i + 1}

i−20i−1
K {2i + 1, 2i + 3} i1i+1 {2i − 3, 2i − 1} — — {2i − 1, 2i + 1} {2i, 2i + 3} {2i − 1, 2i + 3}{2i − 3, 2i + 3}

2 6 i 6 e − 2 i−10i+1 {2i − 1, 2i + 2} {2i − 3, 2i + 1}

i−11i {2i − 2, 2i + 1}

i−20i {2i − 3, 2i}

i−21i−1
L {2i + 1, 2i + 3} i1i+1 {2i − 3, 2i − 1} — — {2i − 1, 2i + 1} {2i, 2i + 3} {2i − 1, 2i + 3}{2i − 3, 2i + 3}

2 6 i 6 e − 2 i−10i+1 {2i − 1, 2i + 2} {2i − 3, 2i + 2}

i−21i {2i − 3, 2i + 1}
M {2i + 1, 2i + 3} i−11i+1 {2i − 2, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 3} {2i − 2, 2i + 3} —

1 6 i 6 e − 2 i−20i−1 {2i − 2, 2i + 1}
L� {2i + 1, 2i + 3} i−11i+1 {2i − 3, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 3} {2i − 2, 2i + 3}{2i − 3, 2i + 3}

2 6 i 6 e − 2 i−20i {2i − 2, 2i + 1} {2i − 3, 2i + 1}

i−21i−1 {2i − 3, 2i}
N {2i + 1, 2i + 3} i−11i+1 {2i − 3, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 3} {2i − 2, 2i + 3}{2i − 3, 2i + 3}

2 6 i 6 e − 2 i−20i+1 {2i − 3, 2i + 1} {2i − 3, 2i + 2}

i−21i
O {2i + 1, 2i + 3} i−21i+1 {2i − 3, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 3} {2i − 3, 2i + 3}

2 6 i 6 e − 2 {2i − 3, 2i + 1}
P {2k, 2i + 1} ( k1i) {2k − 1, 2i} — — — {2k − 1, 2i + 1} — —

1 6 k 6 i 6 e − 1 k−11i−1
( k−10i)

D� {2k, 2i + 1} ( k1i) {2k − 1, 2i − 1} — {2k, 2i − 1} — {2k − 1, 2i + 1} — —
1 6 k 6 i − 1 6 e − 2 k−10i−1

R {2i + 1, 2k + 2} ( i0k+1) {2i, 2k + 1} — {2i + 1, 2k + 1} — — — —
0 6 i 6 k − 1 6 e − 2 ( i1k)

i−10k
A� {2i + 1, 2k + 2} ( i0k+1) {2i − 1, 2k + 1} — {2i + 1, 2k + 1} — {2i − 1, 2k + 2} — —

1 6 i 6 k − 1 6 e − 2 i−11k
S {2i + 1, 2i + 2} ( i0i+1) {2i − 2, 2i − 1} — — {2i, 2i + 1} {2i − 1, 2i + 1} — —

1 6 i 6 e − 1 i−10i {2i − 1, 2i}

i−20i−1
H� {2i + 1, 2i + 2} ( i0i+1) {2i − 3, 2i − 1} — — {2i, 2i + 1} {2i − 1, 2i + 1} {2i − 3, 2i + 1} —

2 6 i 6 e − 1 i−10i {2i − 1, 2i} {2i − 3, 2i}

i−21i−1
T {2i + 1, 2i + 2} ( i0i+1) {2i − 2, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 2} — —

1 6 i 6 e − 1 i−11i {2i − 2, 2i + 1}

i−20i−1
J� {2i + 1, 2i + 2} ( i0i+1) {2i − 3, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 2} {2i − 3, 2i + 1} —

2 6 i 6 e − 1 i−11i {2i − 2, 2i + 1}

i−20i {2i − 3, 2i}

i−21i−1
M� {2i + 1, 2i + 2} ( i0i+1) {2i − 3, 2i − 1} — — {2i − 1, 2i + 1}{2i − 1, 2i + 2} {2i − 3, 2i + 2} —

2 6 i 6 e − 1 i−21i {2i − 3, 2i + 1}

Table 1
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Theorem 1.6. [12, Theorem 4.4] Let B be a block of weight two, and suppose char(F) > 2. If λ and µ are
partitions in B with µ e-regular, then [S λ : Dµ] equals 1 if λ = µ, λ = µ�′ or λ and µ are adjacent, and 0
otherwise.

2 Decomposition numbers

In this section, we find the decomposition numbers of weight two blocks in characteristic two. Here we
find that the decomposition numbers are not completely determined by the Jantzen–Schaper formula, and we
have to analyse some [2 : 1]-pairs. To begin with, we find what we can from the Jantzen–Schaper formula.

Proposition 2.1. Suppose that char(F) = 2, B is a block ofHn of weight two, and µ is an e-regular partition in
B.

1. Suppose µ is of the form {2i + 1, 2i + 2 + iBi+1} and that i−10i. Then:

(a) if λ = {2i − 1, 2i} or {2i, 2i + 1} then [S λ : Dµ] = 1;

(b) if λ = {2i − 1, 2i + 1} then [S λ : Dµ] = 2;

(c) for any other partition λ in B, [S λ : Dµ] equals 1 if λ = µ, λ = µ�′ or λ and µ are adjacent, and 0
otherwise.

2. Suppose µ is of the form {2i + 1, 2i + 2 + iBi+1} and that i−11i and i−20i. Then there exists an integer
aµ ∈ {0, 1} such that:

(a) if λ = {2i − 1, 2i} or {2i, 2i + 1} then [S λ : Dµ] = 1 + aµ;

(b) if λ = {2i − 1, 2i + 1} then [S λ : Dµ] = aµ;

(c) for any other partition λ in B, [S λ : Dµ] equals 1 if λ = µ, λ = µ�′ or λ and µ are adjacent, and 0
otherwise.

3. Suppose µ is not of one of the forms listed in (1) or (2). Then for any partition λ in B, [S λ : Dµ] equals 1
if λ = µ, λ = µ�′ or λ and µ are adjacent, and 0 otherwise.

Proof. We simply check through the cases in Table 1, trying to find possible decomposition numbers which
satisfy the Jantzen–Schaper formula. (1) corresponds to cases H, I, S and H�, (2) corresponds to cases J, K, T
and J�, and (3) covers all the remaining cases. We consider ‘conjugate pairs’ of cases simultaneously, bearing
in mind that [S λ : Dµ] = [S λ′ : Dµ�]. The Jantzen–Schaper formula is then sufficient to prove the proposition,
except in case S. We illustrate this case explicitly. Putting µ = {2i+1, 2i+2} and supposing that i−20i−10i0i+1 as
in row S of Table 1, the coefficients cλ,ν which appear in the Theorem 1.2 are as follows, for µ Q ν B λ Q µ�′:

ν

{2
i+

1,
2i

+
2}

{2
i,

2i
+

1}

{2
i−

1,
2i

+
1}

{2
i−

1,
2i
}

λ

{2i, 2i + 1}
{2i − 1, 2i + 1}
{2i − 1, 2i}

{2i − 2, 2i − 1}

+1
+1 +1
−2 +2 +1
+2 −2 +1 +1

.
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Applying Theorem 1.2 simultaneously to µ and µ� = {2(e − i) + 1, 2(e − i) + 2} (whch lies in a block with

e−i−20e−i−10e−i0e−i+1), we find that the column of the decomposition matrix corresponding to Dµ is

[S {2i+1,2i+2} : Dµ]
[S {2i,2i+1} : Dµ]
[S {2i−1,2i+1} : Dµ]
[S {2i−1,2i} : Dµ]
[S {2i−2,2i−1} : Dµ]


=



1
1

1 + a
1
1


,

where a equals 0 or 1. If i > 1, then we may resolve this ambiguity by applying Theorem 1.2 to the Specht
module S {2i−3,2i+1} – we find that [S {2i−3,2i+1} : Dµ] 6 a − 1, which implies that a = 1. If i < e − 1, then we may
replace µ with µ� and apply the same argument. If e − 1 6 i 6 1, then e = 2 and we may simply look up the
decomposition number in the appendix of [6] (applying Theorem 1.3). �

To determine the decomposition numbers completely, it suffices to determine the integers aµ which appear
in Proposition 2.1. In fact, these integers are all zero; this follows from the next result.

Proposition 2.2. Suppose B is a block of Hn of weight two, and that λ, µ are partitions in B with µ e-regular
and [S λ : Dµ] = 2. Then λ is of the form {2i − 1, 2i + 1}.

Proof. We proceed by induction on n; the initial case is the block ofH2e whose core is the partition of zero and
for which i1 j whenever 0 6 i 6 j 6 e − 1. From Proposition 2.1 we can see that the decomposition numbers in
this block are all 0 or 1, and so the present proposition certainly holds.

For the inductive step, suppose blocks A and B form a [2 : k]-pair and that we have proved the proposition
for A. For a contradiction, we require aµ = 1 for some µ in B. This means that [S {2i−1,2i} : Dµ] = [S {2i,2i+1} :
Dµ] = 2 for this particular µ.

If the partition {2i − 1, 2i} is of the form Φ(ν) for some ν in A (i.e. if either k > 1 or {2i − 1, 2i} is not
one of α, β, γ), then ν is of the form {2h + 1, 2 j} for some h, j, and [S ν : Dξ] = 2 by Theorem 1.3 or 1.4,
contradicting the inductive hypothesis. Similarly if {2i, 2i + 1} is of the form Φ(ν) we get a contradiction. So
we must have k = 1, with {2i − 1, 2i} and {2i, 2i + 1} being two of α, β, γ. In fact we must have {2i − 1, 2i} = α

and {2i, 2i + 1} = γ, and the runners interchanged to get from A to B must be those on which positions pi−1 and
pi lie. But this implies that i−10i+1, contradicting our assumption. �

We may therefore state our main result, giving the decomposition numbers for blocks of weight two in
characteristic two.

Corollary 2.3. Suppose B is a block of Hn of weight two, and that char(F) = 2. Suppose µ is an e-regular
partition in B.

1. Suppose µ is of the form {2i + 1, 2i + 2 + iBi+1} with i−10i. Then:

(a) if λ = {2i − 1, 2i} or {2i, 2i + 1} then [S λ : Dµ] = 1;

(b) if λ = {2i − 1, 2i + 1} then [S λ : Dµ] = 2;

(c) for any other partition λ in B, [S λ : Dµ] equals 1 if λ = µ, λ = µ�′ or λ and µ are adjacent, and 0
otherwise.

2. Suppose µ is not of the type described in (1). Then for any partition λ in B, [S λ : Dµ] equals 1 if λ = µ,
λ = µ�′ or λ and µ are adjacent, and 0 otherwise.
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Corollary 2.3 may alternatively be stated in terms of adjustment matrices. Let B be as above, and let B0

be the weight two block of HC,q(Sn) with the same e-core as B, where q is a primitive eth root of unity in C.
Let D and D0 be the decomposition matrices of B and B0 respectively. Then, by [10, Theorem 6.35], there is a
unitriangular square matrix A with non-negative integer entries such that D = D0A. A is called the adjustment
matrix for B. Corollary 2.3 now implies the following.

Corollary 2.4. Suppose B is a block ofHn of weight two, and that char(F) = 2. Let A be the adjustment matrix
for B. Then for e-regular partitions λ, µ in B we have

Aλµ =


1 (λ = µ)

1 (λ = {2i, 2i + 1}, µ = {2i + 1, 2i + 2 + iBi+1} and i−10i)

0 (otherwise).

3 Extensions between simple modules

In this section, we calculate the space Ext1B(Dλ,Dµ) for two simple modules Dλ and Dµ in a weight two
block B in characteristic two. From now on we must assume that e > 2. The corresponding results in charac-
teristic greater than two were found by Chuang and Tan in [2] and (by different methods) [3]; although their
results are stated for symmetric groups, they hold in full generality.

Theorem 3.1. [2, Theorem 2] Suppose char(F) > 2, that B is a block of Hn of weight two, and that λ and µ
are e-regular partitions in B. Then dimF Ext1B(Dλ,Dµ) equals 1 if either λ and µ are adjacent or µ and λ are
adjacent, and 0 otherwise.

The corresponding result in characteristic two is slightly different.

Theorem 3.2. Suppose char(F) = 2, that B is a block of Hn of weight two and that λ and µ are e-regular
partitions in B.

• If neither λ nor µ is of the form {2i, 2i + 1} with i−10i, then dimF Ext1B(Dλ,Dµ) equals 1 if either λ and µ
are adjacent or µ and λ are adjacent, and 0 otherwise.

• Suppose λ = {2i, 2i+1} for some i with i−10i. Then dimF Ext1B(Dλ,Dµ) equals 1 if µ = {2i+1, 2i+2+ iBi+1},
and 0 otherwise.

Say that a block of weight two is good if i−11i for all 1 6 i 6 e − 1, and bad otherwise. Corollary 2.3 and
Theorem 3.2 say that for good blocks of weight two, the decomposition matrices and Ext-quivers are the same
as for the corresponding blocks in larger characteristic. We prove Theorem 3.2 separately for good and bad
blocks.

Lemma 3.3. Suppose char(F) = 2 and that B is a good weight two block. Then there exists a sequence
A0, A1, . . . , Ar = B of good weight two blocks such that A0 is the block of H2n with e-core the partition of
zero and such that Ai−1 and Ai form a [2 : k]-pair for all i.

Proof. Certainly there exists such a chain of (not necessarily good) weight two blocks. But in fact it is easily
checked that if A and B form a [2 : k]-pair and B is good, then A is good. �

Proposition 3.4. Theorem 3.2 holds for good blocks.
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Proof. We may copy the proof of [2, Theorem 2]. This proceeds by induction via [2 : k]-pairs, with the initial
case being the weight two block ofH2n; the proof depends upon the quiver of this block, the fact that projective
modules for (good) weight two blocks are stable with Loewy length five, and the decomposition numbers for
(good) weight two blocks. The quiver of the weight two block of H2e was found by Martin in the symmetric
group case [9]; his result uses only the decomposition numbers for this block and blocks of weight one, and so
is valid in the present context, even in characteristic two. The fact that the projective modules are stable with
Loewy length five was proved by Scopes [13]; again, her results use only the decomposition numbers, and so
are valid here, in view of Corollary 2.3. �

Now we turn to the bad weight two blocks in characteristic two.

Lemma 3.5. Suppose B is a bad weight two block ofHn in characteristic two, that A and B form a [2 : k]-pair
with k > 2 and that Theorem 3.2 holds for A. Then Theorem 3.2 holds for B.

Proof. Let Φ be as defined in 1.3. In view of Theorem 1.3, we need only check that Φ preserves the appropriate
relationships between e-regular partitions. But in fact A and B have the same pyramid [12, Lemma 3.1], and
for each partition {a, b}, we have Φ({a, b}) = {a, b}. Moreover, ∂{a, b} depends only on a and b and the pyramid,
and so we are done. �

So in order to complete a proof of Theorem 3.2 by induction, we need only consider bad blocks B for which
there is no block A forming a [2 : k]-pair with k > 2.

Lemma 3.6. Suppose B is a bad weight two block in characteristic two, and that there is no block A forming a
[2 : k]-pair with B for k > 2. Then there is an integer i such that pi−1 = pi − e − 1.

Proof. Take any i such that i−1Bi = 0. Suppose pi−1 lies on runner 0 (adjusting the number of beads on the
abacus if necessary) and pi on runner l, and that l > 1. Suppose moreover that there are s beads on runner 0
and t beads on runner l; we have t > s, since i−10i. The number of beads on any runner between 0 and l must
be either strictly less than s or strictly greater than t, by the definition of pi−1 and pi. If there is some 1 < j < l
such that there are more than t beads on runner j and fewer than s on runner j − 1, then we may construct a
[2 : k]-pair for k > 2 by interchanging runners j−1 and j. But if this doesn’t happen, then there are either more
than t beads on runner 1, or fewer than s beads on runner l − 1. In either case, we get a [2 : k]-pair with k > 2
and a contradiction. So we must have l = 1, whence pi−1 = pi − e(t − s) − 1; we then get a [2 : t − s]-pair by
swapping runners 0 and 1, and we must have t − s = 1. �

We shall use the [2 : 1]-pair constructed in the last proof to complete the proof of Theorem 3.2.

Proposition 3.7. Suppose that A and B are weight two blocks ofHn in characteristic two, forming a [2 : 1]-pair.
Suppose that the abacus for A is obtained from that for B by interchanging runners j − 1 and j, and that in the
abacus for B, positions pl−1 and pl lie on runners j − 1 and j respectively. If Theorem 3.2 holds for A, then it
holds for B.

Proof. We may find many of the Ext1 spaces in B by the Eckmann–Shapiro relations, using Theorem 1.4.
Suppose λ and µ are e-regular partitions in B. If neither λ nor µ is the partition α defined in 1.3, then

Dλ � Dλ̄↑B
A, Dµ↓B

A� Dµ̄
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for some e-regular partitions λ̄, µ̄ in A, and we have dimF Ext1B(Dλ,Dµ) = dimF Ext1A(Dλ̄,Dµ̄). Since Theorem
3.1 is true, it must be the case that λ and µ are adjacent if and only if λ̄ and µ̄ are.

If neither λ nor µ is of the form {2i, 2i + 1} with i−1Bi = 0, then neither λ̄ nor µ̄ is of the form {2i, 2i + 1}
with i−1Ai = 0. So Theorem 3.2 holds in this case.

Now suppose λ is of the form {2i, 2i + 1} with i−1Bi = 0 and i , l. Then λ̄ equals {2i, 2i + 1} with

i−1Ai = 0 (the pyramid for A is identical to that for B except that l−1Al = 1). So, by Theorem 3.2 applied
to A, Ext1A(Dλ̄,Dµ̄) is one-dimensional if µ̄ = {2i + 1, 2i + 2 + iAi+1} and zero otherwise. If i , l − 1, then

iAi+1 = iBi+1, and µ̄ equals {2i + 1, 2i + 2 + iAi+1} if and only if µ equals {2i + 1, 2i + 2 + iBi+1}; so the theorem
holds in this case. If i = l − 1, then we have iAi+1 = 1, iBi+1 = 0. So Ext1A(Dλ̄,Dµ̄) is non-zero if and only if
µ̄ = {2i + 1, 2i + 3} = β̄; if µ̄ = β̄, then µ = γ = {2i + 1, 2i + 2} = {2i + 1, 2i + 2 + iBi+1}, and the theorem is
proved in this case.

It remains to determine dimF Ext1B(Dλ,Dµ) when λ = {2l, 2l + 1} = α. We do this by explicitly constructing
the projective cover P of Dλ. As in [14], P has a filtration with factors S α, S β and S γ from the top down. Using
Corollary 2.3, we write down the composition factors of these Specht modules. We assume that 2 6 l 6 e − 2;
in other cases there are fewer composition factors, but similar arguments still apply (as long as we continue to
assume e > 2). In this case, S α, S β and S γ have irreducible cosocles and (by Lemma 1.1) socles, and we may
tabulate their composition factors as follows.

cosocle heart socle
S α Dα = D{2l,2l+1} D{2l+1,2l+2+ lBl+1}, D{2l+1− lBl+1,2l+3} D{2l+3,2l+4+ l+1Bl+2}

S β Dβ = D{2l−1,2l+1} D{2l+1,2l+2+ lBl+1} (twice), D{2l−1,2l+3}, D{2l,2l+1} D{2l+1− lBl+1,2l+3}

S γ Dγ = D{2l−1,2l} D{2l+1,2l+2+ lBl+1}, D{2l−1,2l+1} Dα = D{2l,2l+1}

We may easily calculate

∂{2l + 1, 2l + 2 + lBl+1} = ∂{2l + 3, 2l + 4 + l+1Bl+2} = 0,

so, from the Ext1 spaces we have already calculated, we have

Ext1B
(
D{2l+1,2l+2+ lBl+1},D{2l+3,2l+4+ l+1Bl+2}

)
= 0.

Hence S α must be uniserial with composition factors

D{2l,2l+1}, D{2l+1,2l+2+ lBl+1}, D{2l+1− lBl+1,2l+3}, D{2l+3,2l+4+ l+1Bl+2}

from top to bottom. Similarly, S γ must be uniserial, with factors

D{2l−1,2l}, D{2l−1,2l+1}, D{2l+1,2l+2+ lBl+1}, D{2l,2l+1}

from top to bottom.
Now the only simple modules which can lie in the second Loewy layer of P are those in the second Loewy

layer of S α (namely D{2l+1,2l+2+ lBl+1}) and those in the cosocles of S β and S γ, namely D{2l−1,2l+1} and D{2l−1,2l}.
On the other hand, the only simple modules which can lie in the second socle layer of P are those in the second
socle layer of S γ (namely D{2l+1,2l+2+ lBl+1}) and those in the socles of S α and S γ, namely D{2l+3,2l+4+ l+1Bl+2} and
D{2l+1− lBl+1,2l+3}. We conclude that Ext1B(Dλ,Dµ) = 0 except when µ = {2l + 1, 2l + 2 + lBl+1}, and that in this
case Ext1B(Dλ,Dµ) is one-dimensional. �

Proof of Theorem 3.2. If B is good, then Theorem 3.2 holds by Proposition 3.4. For bad blocks, we proceed
by induction on n; if there is a block A such that A and B form a [2 : k]-pair with k > 2, then we may apply
Lemma 3.5. If there is no such, then we apply Lemma 3.6 and Proposition 3.7. �
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