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Abstract

We consider the canonical basis for an integrable highest-weight module of the quantum algebra
Uv(ŝle); we show how the relationship between different canonical bases is controlled by the weight
of a multipartition, generalising a theorem of Lascoux, Leclerc and Thibon for the level 1 case.

1 Introduction

Let F be a field, and n, r positive integers. The Ariki–Koike algebra (also called the cyclotomic
Hecke algebra) is a finite-dimensional F-algebra Hn, whose definition depends on certain parameters
q,Q1, . . . ,Qr in F. This arises as a deformation of the group algebra of the wreath product Cr o Sn, i.e.
the imprimitive complex reflection group of type G(r, 1, n); the usual presentation of Hn is obtained by
modifying the relations in the standard ‘Coxeter-like’ presentation of this group. The Iwahori–Hecke
algebras of types An−1 and Bn arise as the special cases r = 1 and r = 2.

The Ariki–Koike algebra was introduced by Ariki and Koike [6], and independently by Broué and
Malle [8]. The representation theory of this algebra has seen a surge in interest in recent years, and
(as long as the parameters q,Q1, . . . ,Qr are non-zero and q , 1) seems to generalise the much-studied
representation theory of the Iwahori–Hecke algebra Hn of type A in many natural ways. In particular,
the indexing of Hn-modules by partitions generalises to an indexing of Hn-modules by multipartitions
with r components, and a lot of attention centres on finding the appropriate generalisations of aspects
of the combinatorics of partitions. As with the Iwahori–Hecke algebra, the main problem of interest
in the representation theory of the Ariki–Koike algebra is the decomposition number problem, which
asks for the composition multiplicities of the simple modules in the so-called Specht modules. By
far the most significant theorem in this regard is Ariki’s theorem, which says that, as long as F has
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infinite characteristic, the decomposition numbers equal the values at v = 1 of certain coefficients in the
canonical basis for a given integrable highest-weight module for the quantum group Uv(ŝle), where e is
the multiplicative order of the parameter q.

In an attempt to generalise the notion of the e-weight of a partition, which plays an important rôle in
the representation theory of Hn, the author [11] introduced the notion of the weight of a multipartition.
This yields a block invariant forHn, and seems to provide the same measure of the complexity of a block
that the e-weight does for blocks of Hn. In fact, the blocks of Hn have only recently been classified by
Lyle and Mathas [20], and the author’s work [11, 12] on the weight of a multipartition plays an important
part in the proof.

The purpose of this note is to connect the notion of weight to canonical bases, by generalising a
theorem of Lascoux, Leclerc and Thibon which shows how to read off the e-weight of a partition from
the corresponding canonical basis element. This manifestation of the weight of a multipartition was in
fact the initial motivation for the definition of weight, and the main theorem here answers a question
raised by several interested colleagues upon learning about the definition of weight.

The theorem of Lascoux, Leclerc and Thibon really reflects the symmetry of the decomposition
matrix of Hn which arises from tensoring with the one-dimensional ‘sign’ representation. We address
the analogue of this symmetry for Hn, but the details here are more awkward, and involve comparing
two different Ariki–Koike algebras. Much of this paper is devoted to working through details which
many readers will find straightforward, but which do not seem to be written down.

For the remainder of this introduction, we summarise the background details we shall need, both
from the representation theory of the Ariki–Koike algebra and the theory of canonical bases. In the
interests of brevity, we unashamedly restrict attention to the special cases which interest us. In Section
2, we prove our main theorem on canonical bases. In Section 3, we see how this theorem relates to
decomposition numbers for Ariki–Koike algebras.

1.1 Background on Ariki–Koike algebras

1.1.1 The Ariki–Koike algebra

From now on we fix a field F, a positive integer r and non-zero elements q,Q1, . . . ,Qr of F with
q , 1. For any n > 0, the Ariki–Koike algebra Hn is the (unital associative) F-algebra with generators
T0, . . . ,Tn−1 and relations

(Ti + q)(Ti − 1) = 0 (1 6 i 6 n − 1)

(T0 − Q1) . . . (T0 − Qr) = 0

TiT j = T jTi (0 6 i, j 6 n − 1, |i − j| > 1)

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2)

T0T1T0T1 = T1T0T1T0.

We refer to Q1, . . . ,Qr as the cyclotomic parameters ofHn, and to T0, . . . ,Tn−1 as the standard genera-
tors.
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1.1.2 Partitions, multipartitions and Specht modules

A partition is defined to be a sequence λ = (λ1, λ2, . . . ) of non-negative integers such that λ1 >

λ2 > . . . and |λ| =
∑∞

i=1 λi is finite. When writing partitions, we may group equal parts and omit trailing
zeroes, and we write the partition (0, 0, . . . ) as �.

A multipartition (with r components) is an r-tuple λ = (λ(1), . . . , λ(r)) of partitions. We write |λ| =
|λ(1)| + · · · + |λ(r)|, and say that λ is a multipartition of |λ|. We write Pr for the set of all multipartitions
(with r components), and Pr(n) for the set of all λ ∈ Pr with |λ| = n. We use ∅ for the multipartition
(�, . . . ,�).

If λ is a multipartition, the Young diagram of λ is a subset of N2 × {1, . . . , r}; we refer to elements
of the latter set as nodes, and write them in the form (i, j)k, with i, j ∈ N and 1 6 k 6 r. The Young
diagram of λ is the set {

(i, j)k ∈ N
2 × {1, . . . , r}

∣∣∣∣ j 6 λ(k)
i

}
,

whose elements are called the nodes of λ. We may abuse notation by not distinguishing between λ

and its Young diagram. A node (i, j)k of λ is removable if λ \ {(i, j)k} is the Young diagram of some
multipartition, while a node (i, j)k not in λ is an addable node of λ if λ ∪ {(i, j)k} is the Young diagram
of a multipartition. We partially order the set N2 × {1, . . . , r} by saying that (i, j)k lies above or higher
than (i′, j′)k′ if either k < k′ or (k = k′ and i − j < i′ − j′). Note that this order restricts to a total order
on the set of all addable and removable nodes of a given multipartition.

With q,Q1, . . . ,Qr ∈ F as above, we define the residue of a node (i, j)k to be the element res((i, j)k) =

q j−iQk of F. We may use the term (q; Q1, . . . ,Qr)-residue if there is a danger of confusion.
The fundamentals of the representation theory ofHn arise from the fact thatHn is a cellular algebra

(as defined in [14]). To each λ ∈ Pr(n) is associated a Specht module S λ for Hn. This has a naturally-
defined submodule S λ⊥, and the quotient Dλ = S λ/S λ⊥ is either zero or absolutely irreducible. The
non-zero Dλ are pairwise non-isomorphic and give a complete set of irreducibleHn-modules as λ ranges
over Pr(n).

The main problem in the representation theory ofHn is to find the decomposition numbers [S λ : Dµ]
for pairs of multipartitions λ, µ with Dµ non-zero. A fundamental result concerning decomposition
numbers is the following, which also comes from the fact that Hn is cellular. To state this, we need to
define the dominance order Q on multipartitions: given multipartitions λ and µ, we write λ Q µ if

|λ(1)| + · · · + |λ(k−1)| + λ(k)
1 + · · · + λ(k)

i > |µ
(1)| + · · · + |µ(k−1)| + µ(k)

1 + · · · + µ(k)
i

for every 1 6 k 6 r and i > 1.

Theorem 1.1. Suppose λ and µ are multipartitions of n with Dµ non-zero.

1. If µ = λ, then [S λ : Dµ] = 1.

2. If [S λ : Dµ] > 0, then λ Q µ.

1.1.3 Conjugate multipartitions

Define a bijection ′ from N2 × {1, . . . , r} to itself by

(i, j)′k = ( j, i)r+1−k.
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Now given a multipartition λ, define the conjugate multipartition

λ′ = {n′ | n ∈ λ};

that is, if λ = (λ(1), . . . , λ(r)), then λ′ = (λ(r)′, . . . , λ(1)′), where λ(i)′ is the usual conjugate partition to
λ(i). We collect together the basic facts we need on conjugation in the following lemma, whose proof is
obvious.

Lemma 1.2.
1. If m and n are two nodes with m above n, then m′ lies below n′.

2. If λ and µ are multipartitions, then λ Q µ if and only if λ′ P µ′.

3. If n is a node (or an addable node) of λ with (q; Q1, . . . ,Qr)-residue f , then n′ is a node (or an
addable node, respectively) of λ′ with (q−1; Qr, . . . ,Q1)-residue f .

1.1.4 The weight of a multipartition

The weight of a multipartition was introduced by the author in [11]; this is a generalisation of James’s
‘e-weight’ for the case r = 1, and is a block invariant forHn in the sense that if two Specht modules S λ

and S µ lie in the same block of Hn, then λ and µ have the same weight (note that each Specht module
lies in one block ofHn, and each block contains at least one Specht module, so in order to describe the
blocks of Hn it suffices to give the appropriate partition of the set of Specht modules). The weight of a
multipartition depends on the parameters q; Q1, . . . ,Qr forHn. Given λ ∈ Pr, define

c f (λ) = |{(i, j)k ∈ λ | res((i, j)k) = f } |

for any f ∈ F. Now define the weight of λ to be

w(λ) =

r∑
k=1

cQk (λ) −
1
2

∑
f∈F

(
c f (λ) − cq f (λ)

)2
.

Several basic properties of this function are described in [11]. The main aim of this paper is to show
how the weight of a multipartition appears in the setting of canonical bases. The only result we need
from [11] is the following, which is a special case of [11, Lemma 3.6].

Lemma 1.3. Suppose λ and µ are multipartitions, and that µ is obtained from λ by adding a node of
residue f ∈ F. Let δ f (µ) equal the number of removable nodes of µ of residue f minus the number of
addable nodes of µ of residue f . Then

w(µ) − w(λ) = 1 − δ f (µ).

Example. Suppose r = 3, that q is a primitive fifth root of unity in F, and that (Q1,Q2,Q3) = (1, 1, q3).
Suppose λ = (�, (2), (2)) and µ = ((1), (2), (2)). Then µ is obtained from λ by adding the node (1, 1)1

of residue 1. The Young diagram of µ, with the residues of nodes and addable nodes marked, may be
drawn as follows:

q4

1 q

q4

1 q q2

q2

q3 q4 1
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µ has one removable node of residue 1 and one addable node of residue 1 (namely, (1, 3)3). So δ1(µ) = 0
and by Lemma 1.3 we should have w(µ) − w(λ) = 1. And indeed one can easily calculate that w(µ) = 3
and w(λ) = 2.

1.2 Background on canonical bases

Now we introduce the higher-level Fock spaces and canonical bases for the corresponding highest-
weight representations. By a theorem of Ariki, these bases encode the decomposition numbers of Ariki–
Koike algebras over fields of infinite characteristic. We assume the reader has a basic familiarity with
integrable highest-weight modules for quantised enveloping algebras of symmetrisable Kac–Moody al-
gebras; the book by Kashiwara [18] provides a sufficient introduction, tailored to our needs.

We let e denote the multiplicative order of q in F; by our assumption that q , 1, we have e ∈
{2, 3, . . . } ∪ {∞}. In some of what follows we make a tentative assumption that e is finite, though really
this assumption is purely to simplify notation. All the results that follow hold when e = ∞ (and, as long
as r > 1, are non-trivial), though a few of the definitions (chiefly, those concerning the algebra Uv(ŝle))
need to be modified. Therefore we will assume that e < ∞ without comment when it is convenient,
leaving the reader to make the necessary modifications. We may abuse notation by not distinguishing
between an integer and its residue modulo e.

We also make a more significant assumption for the rest of the paper, namely that each of the cyclo-
tomic parameters Q1, . . . ,Qr is a power of q. Since these parameters may be simultaneously re-scaled
without affecting the isomorphism type of Hn, this assumption really just says that Q1, . . . ,Qr are q-
connected, i.e. Qi/Q j is a power of q for each i, j. This assumption is justified by a theorem of Dipper
and Mathas [10, Theorem 1.1], which says that if Q1, . . . ,Qr are not q-connected then Hn is Morita
equivalent to a tensor product of smaller Ariki–Koike algebras. The implications of this assumption for
combinatorial notions (such as Kleshchev multipartitions, or the weight of a multipartition) are easy to
work out (and partly discussed in [11, §3.1]), and we leave the details to the reader. We now choose and
fix integers a1, . . . , ar such that Qi = qai for each i. Note that with this assumption, the (q; Q1, . . . ,Qr)-
residue of any node n is a power of q; we call a node of residue qi an i-node.

1.2.1 The algebra Uv(ŝle) and the Fock space

Let v be an indeterminate over Q, and let U be the quantum algebra Uv(ŝle). This has generators
ei, fi, vhi , vD for i ∈ Z/eZ. Defining relations are given in [19, §4.1] (where e and v are written as n and
q, respectively).

The Fock space F = F (q; Q1, . . . ,Qr) is defined to be the Q(v)-vector space with basis the set of
multipartitions:

F =
⊕
λ∈Pr

Q(v)λ.

This has the structure of aU-module; it suffices for our purposes to describe the action of the generators

fi (i ∈ Z/eZ) for the negative part of U. Given two multipartitions λ and µ, we write λ
i
→ µ if there is

an addable i-node n of λ such that µ = λ ∪ {n}. If this is the case, then we define the integer

Ni(λ, µ) = (number of addable i-nodes of µ below n) − (number of removable i-nodes of µ below n).



6 Matthew Fayers

Now for any multipartition λ and any i ∈ Z/eZ, the action of fi is given by

fiλ =
∑
λ

i
→µ

vNi(λ,µ)µ. (1.2.1)

This is due to Ariki and Mathas [7, Proposition 2.5], generalising the statement for r = 1 given by
Hayashi [17] (and transferred to the present combinatorial setting by Misra and Miwa [23]).

Let M denote the submodule of F generated by the empty multipartition ∅. M is isomorphic to the
integrable highest-weight module M(Λa1 + · · · + Λar ) for U, where a1, . . . , ar are as above; we regard
this highest-weight module as being embedded in F via (the inverse of) such an isomorphism.

1.2.2 The crystal basis at v = 0

Let A ⊂ Q(v) denote the set of rational functions which do not have a pole at v = 0. The crystal
basis of F at v = 0 is the pair (L, B), where L is the lattice

L =
⊕
λ∈Pr

Aλ

and B is the basis
B = {λ + vL | λ ∈ Pr}

of the Q-vector space L/vL. The important feature of the crystal basis is that the set B ∪ {0} is invariant
under Kashiwara’s ‘crystal operators’ ẽi, f̃i, for i ∈ Z/eZ. These operators are defined using the decom-
position of F into irreducible Ui-modules, where Ui is the subalgebra of U generated by ei and fi,
isomorphic to Uv(sl2); see [18] for more details. The crystal operators endow B with the structure of a
crystal, and their action has a simple combinatorial description. Given λ ∈ Pr, define the i-signature
of λ to be the sequence of signs obtained by examining the addable and removable i-nodes of λ in turn
from higher to lower, writing a + for each addable i-node and a − for each removable i-node. Now con-
struct the reduced i-signature by successively deleting adjacent pairs −+. If there are any − signs in the
reduced i-signature, then the removable node corresponding to the leftmost of these is called the good
i-node of λ, and if there are any + signs in the reduced i-signature, then the addable node corresponding
to the rightmost of these is called the cogood i-node of λ. Now we have the following. This is due to
Misra and Miwa [23] in the case r = 1; the generalisation is due to Ariki and Mathas [7, Theorem 2.9].

Theorem 1.4. Suppose λ ∈ Pr.

1. If λ does not have a good i-node, then ẽi(λ + vL) = 0. Otherwise, ẽi(λ + vL) = µ + vL, where µ is
the multipartition obtained by removing the good i-node from λ.

2. If λ does not have a cogood i-node, then f̃i(λ + vL) = 0. Otherwise, f̃i(λ + vL) = µ + vL, where µ
is the multipartition obtained by adding the cogood i-node to λ.

The crystal graph of F is defined to be the directed labelled graph with vertex set Pr, and an edge
labelled with i ∈ Z/eZ from λ to µ if and only if f̃i(λ+vL) = µ+vL (or equivalently, if ẽi(µ+vL) = λ+vL).
The crystal graph of the highest-weight module M is the connected component of this graph containing
the empty multipartition ∅. A vertex of the crystal graph of M is called a Kleshchev multipartition. Of
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course, this definition depends on q,Q1, . . . ,Qr, and we may use the term ‘(q; Q1, . . . ,Qr)-Kleshchev’
if there is a danger of ambiguity. We write K(q; Q1, . . . ,Qr) for the set of (q; Q1, . . . ,Qr)-Kleshchev
multipartitions.

By definition, a multipartition λ lies inK(q; Q1, . . . ,Qr) if and only if we can reach λ from the empty
multipartition by successively adding good nodes. In the case r = 1, it is straightforward to show that
the multipartition (λ(1)) is Kleshchev if and only if λ(1) is an e-restricted partition, i.e. λ(1)

i − λ
(1)
i+1 < e for

all i. In the case r = 2, a non-recursive characterisation of Kleshchev multipartitions has recently been
given by Ariki, Kreiman and Tsuchioka [5], but it remains an open problem to do this for r > 3.

An important property of Kleshchev multipartitions is the following.

Theorem 1.5. [3, Theorem 4.2] Suppose λ ∈ Pr(n), and let Dλ be the correspondingHn-module. Then
Dλ is non-zero if and only if λ is a Kleshchev multipartition.

1.2.3 The bar involution and the canonical basis

U possesses an important Q(v + v−1)-linear involution – the bar involution – given by

v = v−1, ei = ei, fi = fi, vhi = v−hi , vD = v−D

for i ∈ Z/eZ. This gives rise to a bar involution on M, defined by setting ∅ = ∅ and um = u m for u ∈ U
and m ∈M.

Now we can define the Lusztig–Kashiwara canonical basis of M, which is the main object of study
in this paper. For each Kleshchev multipartition µ, there is an element G(µ) of M uniquely determined
by the properties

G(µ) ≡ µ (mod vL)

and
G(µ) = G(µ).

The set {G(µ) | µ ∈ K(q; Q1, . . . ,Qr)} is the canonical basis of M. Expanding each G(µ) as

G(µ) =
∑
λ

dλµ(v)λ

yields polynomials dλµ(v), which have become known as ‘v-decomposition numbers’, in view of the
following deep theorem.

Theorem 1.6. [1, Theorem 4.4] Suppose F has infinite characteristic. Suppose λ, µ ∈ Pr(n) and that µ
is (q; Q1, . . . ,Qr)-Kleshchev. Then

[S λ : Dµ] = dλµ(1).

2 The main result

Our aim in this paper is to generalise [19, Theorem 7.2], which describes the symmetry of the canon-
ical basis of a level 1 Fock space arising from conjugation of partitions; this corresponds to tensoring
with the one-dimensional ‘sign’ representation of the Iwahori–Hecke algebra of type A. The e-weight
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of a partition is fundamental to this theorem, and in fact the theorem makes it very easy to read off the
e-weight of an e-regular partition from the corresponding canonical basis element. We shall generalise
this result using the weight of a multipartition.

This section closely follows [19, §7]. We take from there the definition of the involutory automor-
phism # ofU given by

e#
i = e−i, f #

i = f−i, (vhi)# = vh−i , (vD)# = vD.

This yields a linear bijection

? : M(Λa1 + · · · + Λar ) −→ M(Λ−ar + · · · + Λ−a1)

which is uniquely specified by
(xΛa1 +···+Λar

)? = xΛ−ar +···+Λ−a1

and
(um)? = u#m?

for u ∈ U and m ∈ M, where xΛa1 +···+Λar
and xΛ−ar +···+Λ−a1

denote highest-weight vectors. Our aim is
to describe this map explicitly (i.e. non-recursively) in terms of the embeddings of these highest-weight
modules in appropriate Fock spaces. The module M(Λa1 + · · · + Λar ) we identify with the submodule
M of the Fock space F as above, while for the module M(Λ−ar + · · · + Λ−a1), we use the submodule
M̂ generated by the empty multipartition in the Fock space F̂ = F (q−1; Qr, . . . ,Q1). The action of
the generators fi on F̂ is given by equation (1.2.1), but note that we must read ‘i-node’ to mean ‘node
whose (q−1; Qr, . . . ,Q1)-residue is (q−1)i’; the same warning applies to the description of the crystal
graph of M̂. Keeping in mind the embeddings of the highest-weight modules in these Fock spaces, we
may replace both xΛa1 +···+Λar

and xΛ−ar +···+Λ−a1
with ∅ above.

It is easy to check that the map ? respects the crystal operators, in the sense that

(ẽim)? = ẽ−i(m?), ( f̃im)? = f̃−i(m?)

for every i and every m ∈M. Since ? is a #-twisted isomorphism, there is therefore a bijection between
the crystal graphs of M and M̂, under which the labels of arrows are negated. That is, there is a bijection
� from K(q; Q1, . . . ,Qr) to K(q−1; Qr, . . . ,Q1), with the properties that

• ∅� = ∅, and

• if λ is a multipartition with a good i-node n, then λ� has a good −i-nodem, and (λ\{n})� = λ�\{m}.

Example. As in the last example, suppose q is a primitive fifth root of unity and (Q1,Q2,Q3) = (1, 1, q3).
M is therefore isomorphic to the integrable highest-weight module M(2Λ0 + Λ3) for Uv(ŝl5).

If we take µ = ((1), (2), (2)) as in the last example, then the interval between ∅ and µ in the crystal
graph for M is shown in Figure 1. The corresponding subgraph for M̂ is shown in Figure 2, and we
have µ� = ((1), (1), (2, 1)).

The bijection � may be viewed as a generalisation of the Mullineux involution [24] for the case r = 1,
though it remains a problem to generalise Mullineux’s algorithm to calculate λ� non-recursively.

Now we can state our main result. We use dλµ(v) to denote a v-decomposition number in F , and
d̂λµ(v) for the corresponding v-decomposition number in F̂ . w(µ) will always indicate the (q; Q1, . . . ,Qr)-
weight of a multipartition µ.
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Figure 1

Theorem 2.1. Suppose λ and µ are multipartitions of n, with µ (q; Q1, . . . ,Qr)-Kleshchev. Then

d̂λ′µ�(v) = vw(µ)dλµ(v−1).

We continue to follow [19]. Writing G(µ) for a canonical basis element inF and Ĝ(µ) for a canonical
basis element in F̂ , we have the following.

Lemma 2.2. If µ ∈ K(q; Q1, . . . ,Qr), then

G(µ)? = Ĝ(µ�).

Proof. This is proved exactly as [19, Lemma 7.3]. �

Lemma 2.3. Suppose m is an element of M with m = m, and write

m =
∑
λ

pλ(v)λ,

with each pλ ∈ Q(v). Then

m? =
∑
λ

vw(λ) pλ(v−1)λ′.

Proof. Since M is a highest-weight module, any element of M is a Q(v)-linear combination of elements
of the form

fi1 . . . fil∅.

Hence from the definition of the bar involution any bar-invariant element is a Q(v + v−1)-linear combi-
nation of such elements. Now ∅? = ∅, and the conclusion of the lemma is obviously preserved under
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Figure 2

Q(v + v−1)-linear extension, so it suffices to consider the action of each fi and show that if the lemma
holds for an element m, then it also holds for fi(m). That is, we assume that

m =
∑
λ

pλ(v)λ,

m? =
∑
λ

vw(λ) pλ(v−1)λ′,

fi(m) =
∑
µ

sµ(v)µ

for some polynomials pλ(v), sµ(v), and we must show that

f−i(m?) =
∑
µ

vw(µ)sµ(v−1)µ′.

In order to distinguish notation for the two Fock spaces F and F̂ , we write λ
i
→ µ and Ni(λ, µ) as above

for F , and we use the notation λ
i
d µ and N̂i(λ, µ) for F̂ . λ

i
d µ therefore means that µ is obtained from

λ by adding an addable node whose (q−1; Qr, . . . ,Q1)-residue is q−i. Now, using the description (1.2.1)
of the action of fi, it suffices to show that, given λ, µ ∈ Pr, we have

λ
i
→ µ if and only if λ′

−i
d µ′,

and that if these conditions hold then

vw(µ)v−Ni(λ,µ) = vw(λ)vN̂−i(λ′,µ′).

The first statement is simply Lemma 1.2(3). For the second statement, we need to show that if λ
i
→ µ

then
Ni(λ, µ) + N̂−i(λ′, µ′) = w(µ) − w(λ).
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If we write n for the unique node of µ \ λ, then by parts (1) and (3) of Lemma 1.2 we see that

N̂−i(λ′, µ′) =(number of addable nodes of µ of (q; Q1, . . . ,Qr)-residue qi above n)

− (number of removable nodes of µ of (q; Q1, . . . ,Qr)-residue qi above n).

Hence
Ni(λ, µ) + N̂−i(λ′, µ′) = 1 − δqi(µ),

and by Lemma 1.3 this equals w(µ) − w(λ). �

Combining Lemma 2.2 with Lemma 2.3 yields Theorem 2.1. We now observe that as a conse-
quence of Theorem 2.1 we can read off the weight of a Kleshchev multipartition from the corresponding
canonical basis vector.

Corollary 2.4. If µ is a Kleshchev multipartition, then there is a multipartition λ such that the v-
decomposition number dλµ(v) equals vw(µ), while any other v-decomposition number dνµ(v) has degree
at most w(µ) − 1.

Proof. Put λ = µ�′. Then we have d̂λ′µ�(v) = d̂µ�µ�(v) = 1, while d̂νµ�(v) is divisible by v for any ν , λ′.
Now the result follows from Theorem 2.1. �

Example. We retain the set-up of the previous example, with µ = ((1), (2), (2)). It is straightforward to
calculate

G(µ) =
(

1
v+v−1

)
f1 f4 f 2

0 f3∅

=((1), (2), (2)) + v((1), (2, 1), (1)) + v2((12), (2), (1))

+ v((2), (1), (2)) + v2((2), (12), (1)) + v3((2, 1), (1), (1)).

We can immediately verify that w(µ) = 3, and we have

Ĝ(µ�) =((1), (1), (2, 1)) + v((1), (2), (12)) + v2((12), (1), (12))

+ v((1), (12), (2)) + v2((1), (2, 1), (1)) + v3((12), (12), (1)).

3 Decomposition numbers for Ariki–Koike algebras

In this section we examine the connection between the results of the previous section and decomposi-
tion numbers. We wish to compare two different Ariki–Koike algebras, and we begin by introducing no-
tation to prevent ambiguity. We letH ′n denote the Ariki–Koike algebra with parameters q−1,Qr, . . . ,Q1,
and write the standard generators ofH ′n as T ′0, . . . ,T

′
n−1. If λ ∈ Pr(n), we write the corresponding Specht

module for H ′n as Ŝ λ, and if λ ∈ K(q−1; Qr, . . . ,Q1), we write the corresponding simple H ′n-module as
D̂λ.

It is easily checked that there is an isomorphism θ : Hn → H
′
n given by

T0 7−→ T ′0, Ti 7−→ −qT ′i (i = 1, . . . , n − 1).
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This allows us to define a functor Fθ from the category ofH ′n-modules to the category ofHn-modules in
the usual way: if M is anH ′n-module, then Fθ(M) has the same underlying vector space, withHn-action
h · m = θ(h)m.

We write S ′(λ) for the image under Fθ of the Specht module Ŝ λ; this is referred to in [22, §4] as a
dual Specht module for Hn. The reason for this terminology relates to contragredient duality. There is
an anti-automorphism φ ofHn given by

φ : Ti 7−→ Ti (i = 0, . . . , n − 1),

and for any Hn-module N this allows us to make the dual vector space N∗ into an Hn-module, which
we denote N~; then we have an exact contravariant functor N 7→ N~ from the category of Hn-modules
to itself. The effect of this functor on simple modules and Specht modules is as follows.

Proposition 3.1. Suppose λ is a multipartition of n with r components.

1. (S λ)~ � S ′(λ′).

2. If λ is Kleshchev, then (Dλ)~ � Dλ.

Proof.
1. This is Corollary 5.7 of [22]. Although that reference does not refer to the isomorphism θ, the

definition of S ′(λ) is equivalent to ours. The module S ′(λ) is defined in [22] to be the cell module
arising from a cellular basis {nst} of Hn, while the Specht module Ŝ λ arises from a cellular basis
{mst} of H ′n; it is easily checked that θ(nst) equals a scalar multiple of mst, and since the defini-
tion of a cell module depends only on the space spanned by each vector in a cellular basis, the
definitions yield the same module.

2. This follows from the cellularity ofHn: the anti-automorphism φ coincides with the anti-automorphism
given by nst 7→ nts, and so by [21, Exercise 2.7(iii)] each simple module is self-dual. �

Now we can give a module-theoretic counterpart to Theorem 2.1.

Corollary 3.2. There is a bijection � from K(q; Q1, . . . ,Qr) to K(q−1; Qr, . . . ,Q1) such that for multi-
partitions λ and µ with µ (q; Q1, . . . ,Qr)-Kleshchev, we have

[S λ : Dµ] = [Ŝ λ′ : D̂µ�].

In particular,

[S λ : Dµ] =

1 (λ = (µ�)′)

0 (λ R (µ�)′).

Proof. Since θ is an isomorphism, the functor Fθ takes simple H ′n-modules to simple Hn-modules.
Hence there is a bijection � fromK(q; Q1, . . . ,Qr) toK(q−1; Qr, . . . ,Q1) such that Dµ � Fθ(D̂µ�) for all
µ ∈ K(q; Q1, . . . ,Qr). Now the first part follows from Proposition 3.1 and the fact that the functor ~ is
exact. The second part then follows by applying Theorem 1.1 toH ′n, and using Lemma 1.2(2). �
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In the case where F has infinite characteristic, we see from Theorems 1.6 and 2.1 that the two
bijections � and � coincide. We conclude this paper by showing that this is true in general.

Proposition 3.3. Suppose µ ∈ K(q; Q1, . . . ,Qr). Then µ� = µ�.

One could prove this by combining the result in infinite characteristic with the theory of adjustment
matrices [13], but we instead prove Proposition 3.3 by induction using the recently-proved modular
branching rule. To this end we briefly address induction and restriction of simple modules. Hn is
naturally embedded inHn+1, and accordingly there are induction and restriction functors ↑Hn+1 and ↓Hn

between the module categories of these two algebras. These functors may be refined by considering
generalised eigenspaces for the Jucys–Murphy elements. These are the elements L0, . . . , Ln−1 of Hn

defined by
L j = q− jT jT j−1 . . . T1T0T1 . . . T j

for j = 0, . . . , n − 1. The symmetric polynomials in L0, . . . , Ln−1 are central elements of Hn, and so for
any Hn-module M a simultaneous generalised eigenspace for these symmetric polynomials will be a
submodule of M. Following Ariki [2], we suppose c = {c0, . . . , cn−1} is a multiset consisting of powers
of q, and denote by Pc(M) the subspacem ∈ M

∣∣∣∣∣∣ ( f (L0, . . . , Ln−1) − f (c0, . . . , cn−1))Nm = 0
for all symmetric polynomials f , for N sufficiently large

 .
Now Ariki’s ‘i-induction’ functor is defined by

fi(M) =
∑

c

Pc∪{qi}

(
Pc(M)↑Hn+1

)
,

where c∪ {qi} denotes c with a copy of qi added. There is an ‘i-restriction’ functor ei defined in a similar
way, but we do not need this.

The i-induction functor provides the following important link between the representation theory of
Hn and the crystal graph of the corresponding highest-weight module. To state this, we use use the
crystal operator f̃i (see Theorem 1.4 and the preceding discussion).

Theorem 3.4. Suppose λ ∈ K(q; Q1, . . . ,Qr) and |λ| = n. If f̃i(λ) = 0, then fi(Dλ) = 0. Otherwise, let µ
be the multipartition such that f̃i(λ+ vL) = µ+ vL. Then fi(Dλ) is an indecomposable module with socle
isomorphic to Dµ.

This theorem is known as the modular branching rule; the special case at r = 1, due to Kleshchev
and Brundan, was a major breakthrough in representation theory, and a survey of related results appears
in [9]. The version for arbitrary r was proved much more recently, by Ariki; he used previous work
of Grojnowski and Vazirani [16, 15], who had proved a modular branching rule for simple modules,
controlled by an appropriate crystal, but with no connection to the labelling by multipartitions. Ariki [4,
Theorem 6.1] completed the theorem by using a Fock space argument to show that the labellings match
up appropriately.

The proof of Proposition 3.3 rests on a comparison of i-induction functors forHn andH ′n. If we let
L′0, . . . , L

′
n−1 denote the Jucys–Murphy elements forH ′n and f ′i the i-induction functor fromH ′n-modules

toH ′n+1-modules, then it is easily checked that θ(L j) = L′j for each j, and hence that

fi(Fθ(M)) = Fθ( f ′−i(M))
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for any H ′n-module M and any i ∈ Z/eZ (note that −i appears rather than i because we use q−1 in place
of q in the definition of f ′i ).

Proof. Proof of Proposition 3.3 We proceed by induction on n = |µ|, with the case n = 0 being trivial. If
n > 0, then µ has a good i-node for some i. Let ν be the multipartition obtained by removing this node.
Then ν ∈ K(q; Q1, . . . ,Qr), and by induction ν� = ν�. By the definition of �, the multipartition ν� has a
cogood −i-node, and the multipartition µ� is obtained by adding this node to ν�.

Now using the modular branching rule we have

Dµ� � Fθ(Dµ)

� Fθ(soc( fi(Dν)))

� soc(Fθ( fi(Dν)))

� soc( f ′−i(Fθ(Dν)))

� soc( f ′−i(D
ν�))

� soc( f ′−i(D
ν�))

� Dµ� ,

as required. Induction follows. �
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