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Abstract

We consider representations of the Ariki–Koike algebra, a q-deformation of the group algebra
of the complex reflection group Cr oSn. The representations of this algebra are naturally indexed
by multipartitions of n, and for each multipartition λ we define a non-negative integer called the
weight of λ. We prove some basic properties of this weight function, and examine blocks of small
weight.
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1 Introduction

Let Sn denote the symmetric group on n letters. This has the famous Coxeter presentation with
generators T1, . . . ,Tn−1 and relations

T2
i = 1 (1 6 i 6 n − 1)

TiT j = T jTi (1 6 i, j 6 n − 1, |i − j| > 1)

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2).

If we view this as a presentation for a (unital associative) algebra over a field F, then of course the
algebra we get is the group algebra FSn. Now we can introduce a ‘deformation’, by replacing the
relation T2

i = 1 with
(Ti + q)(Ti − 1) = 0

for each i. The resulting algebra Hn = Hn,q(Sn) is the Iwahori–Hecke algebra (ofSn). This algebra arises
naturally in the study of groups with BN-pairs, and its representation theory has been extensively
studied. An excellent introduction to this theory is provided by Mathas’s book [17]. As long as q
is non-zero, the representation theory of Hn bears a remarkable resemblance to the representation
theory of Sn.

Now let G be the complex reflection group Cr o Sn. This has a ‘Coxeter-like’ presentation with
generators T0, . . . ,Tn−1 and relations

T2
i = 1 (1 6 i 6 n − 1)

Tr
0 = 1

TiT j = T jTi (0 6 i, j 6 n − 1, |i − j| > 1)

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2)

T0T1T0T1 = T1T0T1T0.

Let F be a field, suppose q,Q1, . . . ,Qr are elements of F, with q non-zero. The Ariki–Koike algebraHn
is defined to be the unital associative F-algebra with presentation

(Ti + q)(Ti − 1) = 0 (1 6 i 6 n − 1)

(T0 −Q1) . . . (T0 −Qr) = 0

TiT j = T jTi (0 6 i, j 6 n − 1, |i − j| > 1)

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2)

T0T1T0T1 = T1T0T1T0.

This algebra was introduced by Ariki and Koike [3], and independently by Broué and Malle [5]. It
is less well-studied than the Iwahori–Hecke algebra, but many facts are known about it. Ariki gave
a necessary and sufficient criterion in terms of the parameters q,Q1, . . . ,Qr forHn to be semi-simple,
and described the simple modules in this case. These are indexed by multipartitions of n with r
components, and in general the combinatorics underpinning the representation theory ofHn seems
to be analogous to that of the Iwahori–Hecke algebra, but extended from partitions to multipartitions.
It has been shown that Hn is a cellular algebra (in the sense of Graham and Lehrer [12]), and this
provides a great deal of information about the representation theory of Hn. In particular, it gives
us a classification of the simple modules of Hn, in terms of ‘Kleshchev multipartitions’, although at
present we only have a recursive definition of these. An alternative non-recursive parameterisation
of the simple modules ofHn has been given by Foda et al. [11].

One of the deepest results concerning the Ariki–Koike algebras is Ariki’s theorem [1] which
describes the decomposition matrix ofHn in the case where F has infinite characteristic. This is done
via a ‘Fock space’ representation of the quantum algebra Uv(ŝle).
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The purpose of this paper is to provide further generalisation of the combinatorics of Hn to that
ofHn by introducing a notion of ‘weight’ for multipartitions. If we let e be the least positive integer
such that 1 + q + · · · + qe−1 = 0 in F, then the ‘e-weight’ (or simply the weight) of a partition is a non-
negative integer defined in a simple combinatorial way. It was introduced by James in the context of
representation theory of symmetric groups (though it generalises immediately to the Iwahori–Hecke
algebras). The weight of a partition turns out to be a block invariant (throughout this paper, we shall
speak of a partition (or multipartition) λ as lying in a block of Hn (or Hn, respectively) by which
we shall mean that the corresponding Specht module Sλ lies in that block), and so we may define
the weight of a block of Hn, and this turns out to be an excellent measure of how ‘complicated’
the representation theory of that block is. Indeed, for the representation theory of the symmetric
groups over a field of characteristic p (where e = p), the weight of a block equals the defect of that
block provided the defect group is abelian, and in general the defect group of a block of weight w is
isomorphic to a Sylow subgroup of Swp.

Much more is true: for fixed choices of F, e and w (but allowing n to vary), all blocks of weight
w contain the same numbers of Specht modules and simple modules, and the ‘Scopes isometries’
provide Morita equivalences between many of these blocks, so that there are in fact only finitely
many blocks of weight w up to Morita equivalence.

Much of the study of the modular representation theory of the symmetric groups has adopted a
‘bottom up’ approach, restricting attention to blocks of small weight, and these are now understood
to greater or lesser extents. Blocks of weight 0 are simple (and indeed, every simple block has weight
zero). Blocks of weight 1 have been very well understood for some time; the key facts are summarised
in Theorem 4.2 below. Blocks of weight 2 were first studied by (Erdmann and) Martin [16, 8] and then
by Richards [18], who gave a combinatorial description of the decomposition numbers of these blocks
(in the cases where the characteristic of F is not 2), showing that these decomposition numbers are
bounded above by 1. Blocks of weight 3 have been studied by several authors, and the present author
finally showed [9] that, as long as the characteristic of F is not 2 or 3, the decomposition numbers for
weight three blocks are all at most 1.

Given the richness of this weight function for partitions, it seems odd that, as far as the author can
tell, no definition of weight has been given for multipartitions until now. We do this in this paper, and
examine some of the properties of our weight function. We begin by showing in Section 2 that our
definition really is a generalisation of the weight of a partition. Then in Section 3 we introduce the
abacus for a multipartition. This is a generalisation of James’s abacus for partitions, which is a very
useful combinatorial device for studying the partitions in a given block. We show how to calculate
the weight of a multipartition from its abacus display, and as a consequence we find that the weight
is non-negative (which is not at all obvious from our definition). Finally, in Section 4, we begin to
study blocks of small weight, by looking at blocks of weight at most 1. In a subsequent paper [10] we
examine blocks of weight 2 in the case r = 2.

Remarks.
1. The version of this paper published in Advances in Mathematics contains a reference to a (now

discredited) preprint by Grojnowski containing a purported proof of the classification of the
blocks of the Ariki–Koike algebra. This classification has now been proved by Lyle and Mathas
[15, Theorem 2.11], but their proof uses the results of the present paper. Accordingly, we cannot
assume this classification in this paper. This is not critical, but it necessitates changing some of
the statements of results in this paper, so that they refer to ‘combinatorial blocks’ rather than
(algebraic) blocks. The part of the block classification proved by Graham and Lehrer tells us
that a combinatorial block is a union of blocks, but we cannot assume here that a combinatorial
block is a single block. Of course, when re-reading this paper in the light of the work of Lyle
and Mathas, the word ‘combinatorial’ may be ignored.

2. The results in this paper apply equally well to the ‘cyclotomic q-Schur algebra’ Sn of Dipper,
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James and Mathas [6]. This plays the same rôle for Hn as the q-Schur algebra does for Hn,
and much of the combinatorics inherent in the representation theory is the same. In particular,
representations of Sn are indexed by multipartitions of n, and we may define a combinatorial
block of Sn in the same way as forHn. So all the combinatorial results in this paper (Sections 2
and 3) apply toSn. The representation-theoretic results of Section 4 are slightly different (because
there are simple Sn-modules for all multipartitions of n, not just Kleshchev multipartitions),
and we shall indicate the differences when we state the results.

Acknowledgement. The author wishes to thank the referee for useful insights and detailed criticism.

1.1 Background and notation

From now on, we fix a field F and elements q,Q1, . . .Qr of F, with q non-zero, and we let Hn
denote the Ariki–Koike algebra defined above. We refer to Q1, . . . ,Qr as the ‘cyclotomic parameters’
ofHn. We assume in this paper that q is not equal to 1, and that none of the Qi equals 0. Much of the
representation theory ofHn is unchanged without these restrictions, but certain technical differences
make them essential for this paper. We let e denote the multiplicative order of q in F; our assumptions
on q mean that e ∈ {2, 3, . . . ,∞}.

Given a non-negative integer m, a partition of m is a sequenceλ = (λ1, λ2, . . . ) of (weakly) decreasing
non-negative integers summing to m. We often write partitions grouping together equal parts and
omitting zeroes, so that (5, 4, 3, 3, 3, 0, 0, 0, 0, . . . ) is written as (5, 4, 33). The unique partition of 0 is
usually written ∅. If λ is a partition of m, we write |λ| = m.

A multipartition of n with r components is an r-tuple λ = (λ(1), . . . , λ(r)) of partitions such that
|λ(1)
|+ · · ·+ |λ(r)

| = n. If r is understood, we shall just call this a multipartition of n. As with partitions,
we write the unique multipartition of 0 as ∅, and if λ is a multipartition of n then we write |λ| = n.

1.1.1 Residues and Kleshchev multipartitions

Given a multipartition λ = (λ(1), . . . , λ(r)), we define its Young diagram [λ] to be the subset

[λ] = {(i, j, k) ∈N3
| j 6 λ(k)

i }

ofN ×N × {1, . . . , r}, whose elements we call nodes. We may abuse notation by not distinguishing a
multipartition from its Young diagram. We say that a node (i, j, k) of [λ] is removable if [λ] \ {(i, j, k)} is
the Young diagram of a multipartition. We say that a triple (i, j, k) not in [λ] is an addable node of [λ] if
[λ]∪ {(i, j, k)} is the Young diagram of a multipartition. We emphasise the potentially confusing point
that an addable node of [λ] is not a node of [λ]. We define the residue of the node (i, j, k) to be the
element q j−iQk of F.

Now we describe a certain subset K of the set of all multipartitions, which will index the simple
modules forHn. Given a multipartition λ and an element f ofF, we totally order the set of all addable
and removable nodes of [λ] of residue f by stipulating that (i, j, k) < (i′, j′, k′) if and only if k < k′

or (k = k′ and i < i′). We define the f -signature of λ to be the sequence of + and − signs obtained
by examining the addable and removable nodes of residue f in increasing order and writing a + for
each addable node and a − for each removable node. From this, we form the reduced f -signature by
successively deleting all adjacent pairs −+. If there are any − signs in the reduced f -signature, then
the removable node of [λ] corresponding to the first of these is referred to as a good node of [λ].

Now define the setK of Kleshchev multipartitions by saying that a multipartition λ of n lies inK if
and only if there is a sequence λ = λ(n),λ(n − 1), . . . ,λ(0) = ∅ such that each λ(i) has a good node n
with [λ(i)] \ {n} = [λ(i − 1)]. That is, λ is Kleshchev if and only if we can get from the Young diagram
for λ to the empty Young diagram by successively removing good nodes. Obviously, the definition
of a Kleshchev multipartition depends on the parameters q,Q1, . . . ,Qr (and indeed on the order of
Q1, . . . ,Qr), but we shall simply say ‘Kleshchev’ without fear of confusion.
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We shall need a slightly stronger statement about which multipartitions are Kleshchev.

Proposition 1.1. Suppose λ is a multipartition with a good node n, and let µ be the multipartition with
[µ] = [λ] \ {n}. Then λ is Kleshchev if and only if µ is.

Proof. This follows from [4, Theorem 2.9 & Corollary 2.11], in which it is shown that the crystal
graph of a certain highest weight module for Uv(ŝle) (or for Uv(sl∞), if e = ∞) has vertices indexed by
Kleshchev multipartitions and edges corresponding to removal of good nodes. �

In the case r = 1, the classification of Kleshchev (multi)partitions is very easy. Say that a partition
λ is e-restricted if and only if λi−λi+1 < e for all i. (For e = ∞, we say that every partition is e-restricted.)
The following is then a simple exercise.

Lemma 1.2. If r = 1, then the multipartition (λ) is Kleshchev if and only if λ is e-restricted.

1.1.2 Specht modules and simple modules

For each multipartition λ of n, one defines a Specht module Sλ for Hn. If Hn is semi-simple, then
the Specht modules provide a complete set of irreducible modules forHn. IfHn is not semi-simple,
then the Specht modules are no longer necessarily irreducible. In this case, for each Kleshchev
multipartition λ, the Specht module Sλ has an irreducible cosocle Dλ, and the Dλ provide a complete
set of irreducible modules forHn asλ ranges over the set of Kleshchev multipartitions of n [2, Theorem
4.2].

The decomposition matrix of Hn records the composition multiplicities [Sλ : Dµ]. It follows from
the cellularity of Hn that the decomposition matrix is ‘triangular’; to state this we need to define
the dominance order on multipartitions. Given distinct multipartitions λ = (λ(1), . . . , λ(r)) and µ =
(µ(1), . . . , µ(r)) of n, we say that λ dominates µ (and write λ B µ) if and only if

|λ(1)
| + · · · + |λ(k−1)

| + λ(k)
1 + · · · + λ(k)

i > |µ
(1)
| + · · · + |µ(k−1)

| + µ(k)
1 + · · · + µ(k)

i

for every (i, k) ∈N × {1, . . . , r}. Then we have the following.

Theorem 1.3. Suppose λ and µ are multipartitions with µ Kleshchev.

1. If µ = λ, then [Sλ : Dµ] = 1.

2. If [Sλ : Dµ] > 0, then λ Q µ.

1.1.3 Induction and restriction

If n > 1, then Hn−1 is naturally a submodule of Hn, and in fact Hn is free as an Hn−1-module.
So there are well-behaved induction and restriction functors between the module categories ofHn−1
and Hn. Given modules M,N for Hn−1 and Hn respectively, we write M ↑Hn and N↓Hn−1

for the
induced and restricted modules. If B and C are blocks (or perhaps direct sums of blocks) ofHn−1 and
Hn respectively, then we may write M ↑C and N↓B for the projections of the induced and restricted
modules onto C and B. We need to know the effect of induction and restriction on Specht modules.

Theorem 1.4. [1, Lemma 2.1]
1. Suppose λ is a multipartition of n−1, and let n1, . . . , ns be the addable nodes of [λ]. For each i = 1, . . . , s,

let λ+i be the multipartition of n with [λ+i] = [λ]∪ {ni}. Then Sλ↑Hn has a filtration in which the factors
are Sλ

+1
, . . . ,Sλ

+s
.

2. Suppose λ is a multipartition of n, and let n1, . . . , nt be the removable nodes of [λ]. For each i = 1, . . . , t,
let λ−i be the multipartition of n − 1 with [λ−i] = [λ] \ {ni}. Then Sλ↓Hn−1

has a filtration in which the
factors are Sλ

−1
, . . . ,Sλ

−t
.
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1.1.4 The blocks ofHn

The blocks of the Iwahori–Hecke algebra are classified by the so-called ‘Nakayama conjecture’,
but the blocks of the Ariki–Koike are rather harder to classify. It follows from the cellularity of Hn
that each Specht module Sλ lies in one block, and so to classify the blocks, one seeks the appropriate
partition of the set of multipartitions of n. Indeed, we abuse notation by saying that a multipartition
λ lies in a block B ofHn if Sλ lies in B.

Given a multipartition λ and an element f of F, let c f (λ) denote the number of nodes in [λ] of
residue f . Now say that two multipartitions λ and µ lie in the same combinatorial block (of Hn) if
c f (λ) = c f (µ) for all f ∈ F. Then we have the following.

Theorem 1.5. [12, Proposition 5.9(ii)] Suppose λ and µ are two multipartitions of n. Then λ and µ lie in
the same block ofHn only if they lie in the same combinatorial block.

Graham and Lehrer conjectured that the converse to this theorem is true, namely that two multi-
partitions lying in the same combinatorial block actually lie in the same block. As mentioned in the
introduction, this has now been proved by Lyle and Mathas, but since their proof uses the results in
the present paper, we cannot assume their result here. So this paper will be largely concerned with
studying combinatorial blocks ofHn.

1.1.5 The weight of a partition

We now recall the usual notion of e-weight for a partition. If e = ∞, then a partition is defined to
have e-weight zero. If e is finite, then we define the the weight of λ using beta-numbers. Let a be an
integer, and define β1, β2, . . . by

βi = λi + a − i.

Then β1, β2, . . . are distinct, and the set B(λ) = {β1, β2, . . . } is a set of integers of which exactly N + a
elements are greater than or equal to −N, for sufficiently large N. Clearly, any such set of integers is
the set of beta-numbers of some partition. We define the weight of λ recursively as follows: if there
is some i such that i ∈ B(λ) = i − e, then we let λ̂ be the partition with B(λ̂) = B(λ) ∪ {i − e} \ {i}, and
we define weight(λ) to be weight(λ̂) + 1. If there is no such i, then we define weight(λ) = 0. It is not
totally obvious that this definition of weight does not depend on the choice of i, but it is easy to show
by induction that, irrespective of the value of i chosen at each stage, we end up with

weight(λ) =
∣∣∣∣{(i, j) ∈ Z ×Z

∣∣∣ i > j, i ≡ j (mod e), i ∈ B(λ) = j
}∣∣∣∣ ,

and so weight is well-defined. A partition of e-weight 0 is referred to as an e-core.
The procedure of reducing a beta-number by e is equivalent to ‘removing a rim e-hook’, which

we now define. The rim of [λ] is defined to be the set of nodes (i, j) of λ such that (i + 1, j + 1) is not a
node of [λ]. A rim e-hook is a connected subset of the rim of [λ] containing e nodes. Removing a rim
e-hook from [λ] gives the Young diagram of some partition λ̂ of n − e.

Lemma 1.6. [14, §2.7] [λ] has a rim e-hook whose highest node (that is, the node (i, j) with the smallest value
of i) lies in row l if and only if βl(λ) − e < B(λ). If λ̂ is the partition whose Young diagram is obtained by
removing a rim e-hook whose highest node lies in row l, then we have

B(λ̂) = B(λ) ∪ {βl(λ) − e} \ {βl(λ)}.

1.1.6 Miscellaneous notation

Throughout this paper, we shall use the notation 1[S] to denote the indicator function of the truth
of a statement S.



Weights of multipartitions and representations of Ariki–Koike algebras 7

2 The weight of a multipartition

2.1 The definition of the weight of a multipartition

Given a multipartition λ and given q,Q1, . . . ,Qr, define the Young diagram [λ], the residue of each
node in [λ] and the integers c f (λ) as in Section 1.1. Now define the weight w(λ) of λ to be the integer

w(λ) =

 r∑
i=1

cQi(λ)

 − 1
2

∑
f∈F

(c f (λ) − cq f (λ))2.

It is immediate that two multipartitions lying in the same combinatorial block have the same weight;
hence by Theorem 1.5 any two partitions lying in the same block have the same weight. So we may
define the weight of a block or a combinatorial block B to be the weight of any multipartition in B.

Example. Suppose r = 2, (Q1,Q2) = (1, q) and λ = ((22), (2, 1)). Then the residues of the nodes in [λ]
are

1 q

q−1 1

q q2

1 .

So we have

w(λ) =


6 (e = 2)
4 (e = 3)
2 (e = 4)
1 (e > 5).

2.2 The case r = 1

It seems that the definition of weight given above is the ‘right’ generalisation of the weight of a
partition. In order to justify this assertion, we must show first that it really is a generalisation. That
is, we prove the following result.

Proposition 2.1. Suppose r = 1. Let λ be a partition, and let λ be the multipartition (λ). Then w(λ) =
weight(λ).

In this section, we may abuse notation by not distinguishing between the partition λ and the
multipartition (λ).

Example. Suppose e = 4, and that λ = (5, 4, 33). Then we may remove three rim 4-hooks from [λ] to
reach the partition (3, 2, 1), which is a 4-core, and so weight(λ) = 3:

2 2
2 2

3 1
3 3 1
3 1 1 .

On the other hand, the residues of the nodes in [λ] are as follows, assuming Q1 = 1:

1 q q2 q3 1
q3 1 q q2

q2 q3 1
q q2 q3

1 q q2
.

So we get c1(λ) = cq2(λ) = 5, cq(λ) = cq3(λ) = 4, yielding w((λ)) = 3.
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We shall need the following simple property of e-cores.

Lemma 2.2. Suppose λ is an e-core. Then there do not exist integers i, l,m such that βl ≡ i (mod e),
βm ≡ i − 1 (mod e) and neither βl − 1 nor βm + 1 lies in B(λ).

Proof. We suppose that βl > βm; the other case is similar. We may assume βl , βm +1, so βl = βm +1+ae
for some positive integer a. Let b > 1 be minimal such that βm+1+be ∈ B(λ). Then βm+1+(b−1)e < B(λ),
so λ has positive weight; contradiction. �

It is easily seen that w((λ)) does not depend on Q1, and for the proof of Proposition 2.1, we assume
that Q1 = qa, where a is the integer used in the definition of the beta-numbers of λ. Now all residues
of nodes are powers of q, and we use the term ‘i-node’ to mean ‘node of residue qi’.

For each i ∈ Z, we define δi(λ) to be the integer

δi(λ) =|{l | βl ≡ i (mod e) and βl − 1 < B(λ)}|

−|{l | βl ≡ i − 1 (mod e) and βl + 1 < B(λ)}|.

It is easy to see that if βl − 1 < B(λ), then replacing βl with βl − 1 corresponds to removing a
removable node of residue qβl from [λ]. So δi(λ) is the number of removable i-nodes of [λ] minus the
number of addable i-nodes.

Lemma 2.3. For each i = 0, . . . , e − 1, we have

δi(λ) = 2cqi(λ) − cqi−1(λ) − cqi+1(λ) − 1[i ≡ a (mod e)].

Proof. Let γi
l denote the number of i-nodes in row l of [λ]. Then it is easy to check that

2γi
l − γ

i−1
l − γi+1

l = 1[λl > 0] (1[a + 1 − l ≡ i] − 1[a + 1 − l ≡ i + 1] + 1[a + λl − l ≡ i] − 1[a + λl − l ≡ i − 1]) ;

here, and for the rest of this proof, all congruences are taken modulo e. The sum∑
l>1

1[λl > 0] (1[a + λl − l ≡ i] − 1[a + λl − l ≡ i − 1])

equals
δi(λ) + 1[the smallest integer not in B(λ) is congruent to i modulo e].

On the other hand, the sum ∑
l>1

1[λl > 0] (1[a + 1 − l ≡ i] − 1[a + 1 − l ≡ i + 1])

equals
1[i ≡ a] − 1[the largest l such that λl > 0 satisfies a + 1 − l ≡ i + 1].

The result follows. �

Proof of Proposition 2.1. First suppose that e = ∞. It is clear that c f (λ) = 0 unless f = qi for some
i ∈ Z, and that cqi(λ) = 0 for i sufficiently large and for i sufficiently small. Now we consider the
relationship between cqi(λ) and cqi±1(λ). If i > a, then all the i-nodes lie above the diagonal in the
Young diagram of λ. So each i-node has an (i − 1)-node to its immediate left, and each i-node apart
from the one in the top row of [λ] has an i + 1-node immediately above it. Similar statements apply
for i < a (in which case the i-nodes lie below the diagonal), and we deduce that:

• if i > a, then cqi−1(λ) > cqi(λ) > cqi−1(λ) − 1;

• if i < a, then cqi+1(λ) > cqi(λ) > cqi+1(λ) − 1.
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Hence we find that (c f (λ)− cq f (λ)) equals +1 for exactly cqa(λ) values of f , equals −1 for another cqa(λ)
values of f , and equals 0 otherwise. So we have w((λ)) = 0.

Now suppose that e is finite. If weight(λ) > 0, then by Lemma 1.6 [λ] has a rim e-hook; let λ̂ be
the partition obtained by removing this rim e-hook. It is easily seen that a rim hook contains exactly
one node of each of the residues 1, q, . . . , qe−1. So we have

c f ((λ̂)) =

c f (λ) − 1 ( f ∈ {1, q, . . . , qe−1
})

c f (λ) = 0 ( f < {1, q, . . . , qe−1
}),

Hence w((λ))−w((λ̂)) = 1 = weight(λ)−weight(λ̂). So by induction we may assume that weight(λ) = 0.
If λ = ∅, then the result is obvious, so assume otherwise. [λ] has a removable i-node for some i.

Since weight(λ) = 0, Lemma 2.2 implies that [λ] has no addable i-nodes. So δi(λ) is the number of
removable i-nodes of λ. If we define the partition λ− by removing all the removable i-nodes, then we
have weight(λ−) = 0, and by induction w((λ−)) = 0. We also have

c f (λ−) =

c f (λ) − δi(λ) ( f = qi)
c f (λ) (otherwise),

whence

w((λ−)) − w((λ)) =
1
2

(
(cqi−1(λ) − cqi(λ))2 + (cqi(λ) − cqi+1(λ))2

− (cqi−1(λ) − cqi(λ) + δi(λ))2
− (cqi(λ) − δi(λ) − cqi+1(λ))2

)
− δi(λ)1[i ≡ a (mod e)]

= δi(λ)
(
2cqi(λ) − 2cqi−1(λ) − δi(λ) − 1[i ≡ a (mod e)]

)
= 0,

by Lemma 2.3. So
w((λ)) = w((λ−)) = 0. �

Example. Beginning with the core (3, 2, 1) of the partition in the last example, we proceed through the
following sequence of cores:

c1 cq cq2 cq3

1 q q2

q3 1
q2

2 1 2 1

1 q
q3 1

2 1 0 1

1 q
q3

1 1 0 1

1 q 1 1 0 0

1 1 0 0 0

∅ 0 0 0 0

.

3 The abacus

In this section, we define the abacus display of a multipartition, analogously with James’s def-
inition of the abacus display for a partition, and we show that the weight of a multipartition can
be calculated in a simple way from its abacus display. The abacus for a multipartition was briefly
introduced in [2].



10 Matthew Fayers

3.1 q-connected cyclotomic parameters

Suppose Q1, . . . ,Qr are the cyclotomic parameters of Hn. We say that {Q1, . . . ,Qr} is q-connected
if there exist integers ai j such that Qi = qai jQ j for all i, j. Dipper and Mathas [7] have shown that if
{Q1, . . . ,Qr} is not q-connected, thenHn is Morita equivalent to a direct sum of tensor products of Ariki–
Koike algebras defined for smaller values of r; as a consequence, to understand the representation
theory ofHn in general, it suffices to consider the case where {Q1, . . . ,Qr} is q-connected.

It will also suffice for our purposes – calculating and working with weights of multipartitions –
to consider the case where the set of cyclotomic parameters ofHn is q-connected. For if it is not, then
we have {1, . . . , r} = I t J, where I and J are non-empty sets such that for i ∈ I and j ∈ J, there is no
integer a such that Qi = qaQ j. Now write

I = {i1 < · · · < is}, J = { j1 < · · · < jt}

and given a multipartition λ = (λ(1), . . . , λ(r)), define the multipartitions

λI = (λ(i1), . . . , λ(is)), λJ = (λ( j1), . . . , λ( jt)),

and calculate the weights w(λI) and w(λJ) using the parameter sets (Qi1 , . . . ,Qis) and (Q j1 , . . . ,Q jt)
respectively. Then it follows immediately from the definition of w that w(λ) = w(λI) + w(λJ).

So we assume from now on that the set {Q1, . . . ,Qr} is q-connected. In fact, by re-scaling the
generator T0, we may assume that each Q j is a power of q, so we let a1, . . . , ar be integers such that
Q j = qa j for all j. We continue to refer to a node of residue qi as an i-node.

3.2 Beta-numbers and the abacus

Given a multipartition λ = (λ(1), . . . , λ(r)), we define β( j)
1 , β

( j)
2 , . . . to be the beta-numbers

β
( j)
i = λ

( j)
i + a j − i

of λ( j), for j = 1, . . . , r, and as above we define B(λ( j)) = {β
( j)
i | i = 1, 2, . . . }.

As above, we can see that if β( j)
l is congruent to i modulo e and β( j)

l − 1 < B(λ( j)), then replacing

β
( j)
l with β( j)

l − 1 corresponds to removing an i-node from [λ( j)]. Recalling the definition of δi(λ) from
above, we define δi(λ) =

∑r
j=1 δi(λ( j)).

The crucial property of the integers δi(λ) is that (together with n) they determine the combinatorial
block in which a multipartition lies. First we obtain an expression for δi(λ) in terms of the integers
cqk(λ).

Lemma 3.1.
δi(λ) = 2cqi(λ) − cqi−1(λ) − cqi+1(λ) − |{ j | Q j = qi

}|.

Proof. If we put c f (λ) = c f (λ(1)) + · · · + c f (λ(r)), then by Lemma 2.3, we have

δi(λ( j)) = 2cqi(λ( j)) − cqi−1(λ( j)) − cqi+1(λ( j)) − 1[Q j = qi],

and the result follows by summing. �

Proposition 3.2. Suppose λ = (λ(1), . . . , λ(r)) and µ = (µ(1), . . . , µ(r)) are two multipartitions of n, and define
δi(λ) and δi(µ) as above. Then λ and µ lie in the same combinatorial block ofHn if and only if δi(λ) = δi(µ) for
all i.
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Proof. By Lemma 3.1, the integers c f (λ) determine the integers δi(λ), and the ‘only if’ part of the
proposition is proved. On the other hand, it is a standard fact from Lie theory that if e < ∞ then the
matrix with entries (ai j)06i, j6e−1 given by

ai j = 21[i ≡ j (mod e)] − 1[i ≡ j − 1 (mod e)] − 1[i ≡ j + 1 (mod e)]

has nullity 1, and so the δi(λ) determine the cqi(λ) up to addition of a scalar; a similar statement
applies when e = ∞. Hence the δi(λ) together with n =

∑
cqi(λ) determine the cqi(λ) and hence the

combinatorial block in which λ lies. �

Given a multipartition λ, we refer to the sequence of integers δi(λ) as the hub of λ. If λ lies in a
combinatorial block B, then in view of Proposition 3.2, we may also refer to this sequence as the hub
of B, or indeed of any block contained in B.

Given a set of beta-numbers for a partition λ, we can create an abacus display. We take an abacus
with e infinite vertical runners, which we label 0, 1, . . . , e − 1 from left to right (or . . . ,−1, 0, 1, . . . from
left to right, if e = ∞), and we mark positions on runner i and label them with the integers congruent
to i modulo e, so that (if e < ∞) position (x + 1)e + i lies immediately below position xe + i, for each
x. For each l, we then place a bead at position βl. The resulting diagram is referred to as the abacus
display for λ.

Example. Suppose λ = (3, 1, 1), and a = 0. Then we have

B(λ) = {2,−1,−2,−4,−5,−6, . . . },

so the abacus display with e = 5 is
0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u u uu

...
...
...
...
...

,

while the abacus display with e = ∞ is

. . .
−5 −4 −3 −2 −1 0 1 2 3 4u u u u u . . . .

Given a multipartition λ = (λ(1), . . . , λ(r)) (and assuming still that Q j = qa j for j = 1, . . . , r), we
calculate the beta-numbers of λ(1), . . . , λ(r) using a1, . . . , ar as above, and form the corresponding
abacus displays. This r-tuple of abacus displays is then referred to as the abacus display for λ.

3.3 The weight of a multipartition and the abacus

The aim of the rest of this section is to find a simple way to calculate w(λ) from the abacus display
for λ. We begin with a simple lemma which relates the weights of two multipartitions with the same
hub.

Lemma 3.3. Suppose λ is a multipartition of n and µ a multipartition of m, and that λ and µ have the same
hub. If e = ∞, then n = m and w(λ) = w(µ). If e is finite, then

w(λ) − w(µ) =
r(n −m)

e
.
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Proof. As noted in the proof of Proposition 3.2, the hub of λ determines the integers cqi(λ) up to
addition of a scalar, so there exists C ∈ Z such that

cqi(λ) = cqi(µ) + C

for all i, which gives w(λ) = w(µ) + rC. But we also have

m =
∑

i∈Z/eZ

cqi(λ), n =
∑

i∈Z/eZ

cqi(µ).

Hence when e = ∞, we must have C = 0 (since cqi(λ) = cqi(µ) = 0 for sufficiently large i), while for
finite e, we must have C = n−m

e . The result follows. �

Next we consider removing rim e-hooks, if e is finite. Suppose that in the abacus display for λ( j),
there is a bead with an empty space immediately above it. Sliding this bead up into the empty space
corresponds to reducing by e the corresponding beta-number for λ( j), and, as we saw above, this
corresponds to removing a rim e-hook from [λ( j)]. Lemma 3.3 tells us the change in weight.

Corollary 3.4. Suppose λ is a multipartition, and that λ− is obtained from λ by removing a rim e-hook from
some λ( j). Then w(λ) = w(λ−) + r.

Now we consider the case where each λ( j) is an e-core, so that no rim e-hooks can be removed from
[λ]. We refer to such a multipartition as a multicore. When e = ∞, every multipartition is a multicore.
Of course, when r = 1 a multicore is simply a core, and has weight zero. But when r > 2, calculating
the weight of a multicore is non-trivial. Our next result shows that we can reduce to the case r = 2.

Proposition 3.5. Suppose that λ = (λ(1), . . . , λ(r)) is a multicore. For each 1 6 k < l 6 r, define the weight
w((λ(k), λ(l))) using the cyclotomic parameters Qk,Ql. Then

w(λ) =
∑

16k<l6r

w((λ(k), λ(l))).

Example. Suppose r = 3, (Q1,Q2,Q3) = (q, 1, q2), and let λ = ((12), (2), (2, 1)), which is a multicore as
long as e > 4. The e-residue diagram of λ is

q
1

1 q q2 q3

q ,

and we may easily calculate the following:

w((λ(1), λ(2))) w((λ(1), λ(3))) w((λ(2), λ(3))) w(λ)
e = 4 0 2 1 3
e > 5 0 1 0 1

.

The reader may care to check that for e = 2, 3, the relation w(λ) = w((λ(1), λ(2))) + w((λ(1), λ(3))) +
w((λ(2), λ(3))) does not hold – so it is essential in Proposition 3.5 that λ is a multicore.

In order to prove Proposition 3.5, we prove an important lemma which we shall use later. It tells
us the effect on the weight of a multipartition of removing nodes of a given residue.

Lemma 3.6. Suppose λ and µ are multipartitions, and that the Young diagram of µ is obtained from that of λ
by removing some u removable i-nodes. Then

w(µ) − w(λ) = u(δi(λ) − u).
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Proof. By performing a similar calculation to that used in the proof of Proposition 2.1, we find that

w(µ) − w(λ) = u
(
2cqi(λ) − cqi−1(λ) − cqi+1(λ) − u − |{ j | Q j = qi

}|

)
.

The result now follows by Lemma 3.1. �

Proof of Proposition 3.5. We proceed by induction on n. The unique multipartition of 0 has weight
0 whatever the values of Q1, . . . ,Qr, and so we suppose that n > 0. Then we can choose some i, j
such that [λ( j)] has removable i-nodes; by Lemma 2.2 [λ( j)] cannot also have addable i-nodes, so
δi(λ( j)) > 0. Let λ− = (λ(1), . . . , λ( j−1), λ( j)−, λ( j+1), . . . , λ(r)) be the multipartition obtained by removing
all the removable i-nodes from [λ( j)]. By Lemma 3.6, we have

w(λ−) − w(λ) = δi(λ( j))
(
δi(λ) − δi(λ( j))

)
.

On the other hand, writing wkl(λ) for w((λ(k), λ(l))), and similarly wkl(λ−), Lemma 3.6 also gives

wkl(λ−) − wkl(λ) =

δi(λ( j))(δi((λ(k), λ(l))) − δi(λ( j))) (if j = k or l)
0 (otherwise).

We obtain ∑
16k<l6r

(
wkl(λ−) − wkl(λ)

)
=

∑
k, j

δi(λ( j))(δi(λ(k)) + δi(λ( j)) − δi(λ( j)))

= δi(λ( j))

∑
k, j

δi(λ(k))


= δi(λ( j))(δi(λ) − δi(λ( j)))

= w(λ−) − w(λ).

By induction we have
w(λ−) =

∑
k,l

wkl(λ−),

and the result follows. �

3.4 The case r = 2

In view of Proposition 3.5, we examine the case r = 2. A multipartition when r = 2 is usually
referred to as a bipartition, and we shall refer to a multicore with r = 2 as a bicore.

Suppose λ = (λ(1), λ(2)) is a bicore, and define integers γi(λ) for i ∈ Z as follows:

γi(λ) =
∑
j∈Z

1[q j = qi](1[ j ∈ B(λ(1))] − 1[ j ∈ B(λ(2))]).

(Informally, γi(λ) is the ‘difference between the number of beads on runner i of the abacus for λ(1)

and the number of beads on runner i of the abacus for λ(2)’.) Now suppose we are given i , j ∈ Z
such that i . j (mod e) and such that if e = ∞, then i ∈ B(λ(1)) = j ∈ B(λ(2)) = i. Let l1 be the largest
element of B(λ(1)) which is congruent to i modulo e, and let l2 be the largest element of B(λ(2)) which is
congruent to j modulo e. Let m1 be the smallest integer not in B(λ(1)) which is congruent to j modulo
e, and let m2 be the smallest integer not in B(λ(2)) which is congruent to i modulo e (note that the extra
assumption on i, j in the case where e = ∞ guarantees that l1, l2,m1,m2 are defined). Define si j(λ) to
be the bipartition obtained by moving a bead from position lk to position mk in the abacus display for
λ(k), for k = 1 and 2. If e < ∞, then we may regard si j(λ) as being obtained by moving all the beads on
runner i up one position and all the beads on runner j down one position on the abacus for λ(1), and
vice versa on the abacus for λ(2). Then we have the following.
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Lemma 3.7.
1. si j(λ) has the same hub as λ.

2.

γl(si j(λ)) =


γl(λ) − 2 (l = i)
γl(λ) + 2 (l = j)
γl(λ) (otherwise).

3. w(si j(λ)) = w(λ) + 2(γ j(λ) − γi(λ) + 2).

Proof. (1) and (2) are obvious. For (3), we need to apply Lemma 3.3: for e = ∞, the result is immediate,
since by assumption we have γi(λ) = 1, γ j(λ) = −1. If e < ∞, we find

|si j(λ)| − |λ| = (m1 − l2) + (m2 − l1)

= e
(
(1 + γ j(λ)) + (1 − γi(λ))

)
and the result follows. �

Example. Recalling the multipartition λ from the last example, we examine the bicore (λ(1), λ(3)) =
((12), (2, 1)) when e = 4. An abacus display for this bicore is

λ(1) λ(3)

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

.

We may read off (γ0, γ1, γ2, γ3) = (1, 0, 0,−2); in particular, γ0−γ3 = −3; the bipartition s03((λ(1), λ(3))) =
((1),∅) has abacus display

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

,

and we have w((λ(1), λ(3))) = w(s03((λ(1), λ(3)))) + 2.

Using Lemma 3.7, we may reduce the calculation of the weight of a bicore λ to the case where
γi(λ) − γ j(λ) 6 2 for all i, j: for if we have γi(λ) − γ j(λ) > 3, then by induction on

∑
k,l |γk(λ) − γl(λ)|we

know the weight of si j(λ), and so we can calculate the weight of λ. So we are left with the case where
γi(λ) − γ j(λ) 6 2 for all i, j. The weight in this case is given by the following proposition.

Proposition 3.8. Suppose λ = (λ(1), λ(2)) is a bicore, and that the integers γi(λ) defined above satisfy

γi(λ) − γ j(λ) 6 2

for all i, j. Define

I = {i | γi(λ) − γ j(λ) = 2 for some j}, J = { j | γi(λ) − γ j(λ) = 2 for some i}.

Then w(λ) = min{|I|, |J|}.
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Proof. We proceed by induction on n, with the case n = 0 being trivial. For n > 0, suppose that for
some i, [λ] has at least one removable i-node but no addable i-nodes. Then the number of removable
i-nodes is δi(λ); let λ− be the multicore obtained by removing all these nodes. Then by Lemma 3.6 we
have w(λ−) = w(λ), and

γk(λ−) =


γi(λ) (k = i − 1)
γi−1(λ) (k = i)
γk(λ) (k , i, i − 1).

So the result follows by induction.
So we may assume that there is no i such that [λ] has removable i-nodes but no addable i-nodes.

We now proceed by induction on |λ(1)
|, supposing first that |λ(1)

| > 0. Choose some i such that [λ(1)]
has removable i-nodes. λ(1) is an e-core, so it cannot also have addable i-nodes, and so [λ(2)] must
have addable i-nodes. If [λ(1)] has t removable i-nodes and [λ(2)] has s addable i-nodes, then we find
that

2 6 s + t = γi(λ) − γi−1(λ) 6 2,

so we must have s = t = 1 and γi(λ) − γi−1(λ) = 2. Lemma 3.7 then implies that w(si(i−1)(λ)) = w(λ),
while

γk(si(i−1)(λ)) =


γi(λ) (k = i − 1)
γi−1(λ) (k = i)
γk(λ) (k , i, i − 1).

The result follows by induction on |λ(1)
|.

So we are left with the case where λ(1) = ∅, and where for each i either [λ] has addable i-nodes
or [λ] has no removable i-nodes. If λ(2) , ∅, then there is some i such that [λ(2)] has at least one
removable i-node. [λ(2)] cannot have any addable i-nodes, so [λ(1)] must have at least one addable
i-node, i.e. qi = Q1. So [λ(2)] has removable nodes of only one residue, and in fact, calculating as above
and using the fact that γi(λ)− γi−1(λ) 6 2, we find that [λ(2)] has only one removable node. So [λ(2)] is
a rectangular partition, say λ(2) = (vw), with the top left corner residue being Q2 and the bottom right
corner residue being Q1. In addition, λ(2) is an e-core, so v + w 6 e. So we may calculate w(λ) easily:
we have cQ1(λ) = cQ2(λ) = min{v,w} while (c f (λ) − cq f (λ)) equals +1 for exactly min{v,w} values of f ,
equals −1 for another min{v,w} value of f , and equals 0 otherwise. So

w(λ) = min{v,w}.

On the other hand, we may calculate

γ j(λ) =


C + 1 ( j = i − v, . . . , i − 1)
C − 1 ( j = i, . . . , i + w − 1)
C (otherwise)

for some constant C (depending on the values of a1, a2), and the result follows. �

Example. Returning to the example λ = ((12), (2), (2, 1)) after Proposition 3.5, we calculate the weight
of ((λ(2), λ(3))) when e = 4. An abacus display for this bicore is

λ(2) λ(3)

0 1 2 3
...
...
...
...u u u uu u uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

,



16 Matthew Fayers

from which we can read off (γ0, γ1, γ2, γ3) = (0, 0, 0,−2). So γi − γ j 6 2 for all i, j, and the sets I, J
defined in Proposition 3.8 are

I = {0, 1, 2}, J = {3}.

Hence w((λ(2), λ(3))) = 1.

3.5 The weight of a multipartition is non-negative

Corollary 3.4 and Propositions 3.5 and 3.8 give an us an algorithm for computing the weight of a
multipartition recursively from its abacus display. This may be summarised as follows.

1. If e is finite, slide all the beads up their runners as far as they will go, and calculate the weight
change using Corollary 3.4.

2. For each k < l, calculate the weight of the bicore λkl = (λ(k), λ(l)):

(a) calculate the integers γi(λkl);

(b) if γi(λkl) − γ j(λkl) > 3 for any i, j, replace λkl with si j(λkl) (and calculate the weight change
using Lemma 3.7); repeat until si j(λkl) − si j(λkl) 6 2 for all i, j;

(c) now calculate w(λkl) using Proposition 3.8.

3. Finally, add together all the w(λkl) and appeal to Proposition 3.5.

This enables us to prove the following result, which gives us further reassurance that our definition
of weight is an appropriate generalisation of the weight of a partition.

Corollary 3.9. For any multipartition λ, we have w(λ) > 0.

Proof. By Proposition 3.8, any bicore λ with γi(λ) − γ j(λ) 6 2 for all i, j has non-negative weight.
Lemma 3.7 then guarantees that any bicore has non-negative weight. Proposition 3.5 then shows that
any multicore has non-negative weight, and then Corollary 3.4 then shows that the same is true of
any multipartition. �

4 Blocks of small weight

In this section, we examine blocks ofHn of weight 0 and 1; we describe the partitions and simple
modules in a combinatorial block of weight 0 or 1, and calculate the decomposition numbers. As a
consequence, we find that the converse of Theorem 1.5 holds for blocks of weight 0 and 1; that is, a
combinatorial block is a block. The behaviour of blocks of weight 0 and 1 is analogous to the case
r = 1, except that, as we shall see, the number of partitions in a block of weight 1 is not always e.

We continue to assume that the parameter set {Q1, . . . ,Qr} is q-connected – the corresponding
results when it is not follow easily from the discussion at the start of Section 3.

4.1 Blocks of weight 0

For blocks of weight zero, we prove the following theorem, which is well known in the case r = 1
(that is, for the Iwahori–Hecke algebras).

Theorem 4.1. Let B be a combinatorial block ofHn. Then B contains exactly one multipartition if and only if
it has weight 0.

Note that Theorem 4.1 implies that every multipartition of weight 0 is Kleshchev, which is not at
all obvious from the definitions. Theorem 4.1 also implies that a combinatorial block ofHn of weight
0 is also a block of Hn, and that this block is simple. The same statement applies for the cyclotomic
q-Schur algebra Sn.
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Proof.
(⇐) We use induction on n, with the case n = 0 being trivial. Assuming n > 0, suppose that λ and µ

are partitions of weight 0 lying in the same combinatorial block. The fact that n > 0 guarantees
that [λ] has at least one removable i-node, for some i. Take such an i, and suppose [λ] has t
removable i-nodes and s addable i-nodes; let λ− be the partition obtained by removing all the
removable i-nodes. Then Lemma 3.6 implies that

w(λ−) = w(λ) + t(t − s − t) = −st,

and so by Corollary 3.9, we must have s = 0, whence t = δi(λ) and w(λ−) = 0.

Now suppose [µ] has v removable i-nodes and u addable i-nodes, and define µ− by removing
all the removable i-nodes. As above, if uv > 0 then we find that w(µ−) < 0, so we must have u
or v equal to 0. But v − u = δi(µ) = δi(λ) by Proposition 3.2, and so we have v = δi(λ), u = 0. So
λ− and µ− both lie in the same combinatorial block; they both have weight 0, and so λ− = µ− by
induction. λ and µ can easily be recovered from λ− and µ−, and we find that λ = µ.

(⇒) Suppose λ = (λ(1), . . . , λ(r)) is a multipartition of positive weight; we shall construct a different
multipartition in the same combinatorial block as λ.

If λ is not a multicore, then some bead in the abacus display for λ can be moved up one space.
This gives a multipartition of n − e with the same hub as λ. Now we can move a different bead
down one space to get a multipartition of n distinct from λ but with the same hub, and we are
done.

So we assume that λ is a multicore. By Proposition 3.5, we then have w((λ(k), λ(l))) > 0 for
some k, l (where w((λ(k), λ(l))) is calculated using the cyclotomic parameters Qk,Ql). If we can
construct some other bipartition (µ(k), µ(l)) in the same combinatorial block as (λ(k), λ(l)), then the
multipartition

µ = (λ(1), . . . , λ(k−1), µ(k), λ(k+1), . . . , λ(l−1), µ(l), λ(l+1), . . . , λ(r))

will be distinct from λ but will lie in the same combinatorial block. Hence it suffices to consider
the case r = 2.

Assuming r = 2, we define the integers γi(λ) as in Section 3. Since λ has positive weight, we
must have γi(λ) − γ j(λ) > 2 for some i, j. We define the bipartition si j(λ) as in the last section.
By Lemma 3.7, si j(λ) has the same hub as λ, and weight w(λ)− 2(γi(λ)−γ j(λ)− 2). Now we take
any runner in the abacus display for si j(λ), and move the lowest bead down γi(λ) − γ j(λ) − 2
spaces. The resulting bipartition (µ(1), µ(2)) has the same weight and hub as λ. �

4.2 Blocks of weight 1

Weight 1 blocks of Iwahori–Hecke algebras are very well understood, and their properties may
be summarised in the following theorem.

Theorem 4.2. Suppose r = 1, and that B is a block of Hn of weight 1. Then e < ∞ and B contains exactly
e partitions, totally ordered by dominance: λ(1) C . . . C λ(e). λ(x) is e-restricted if and only if x < e, and the
decomposition number [Sλ

(x)
: Dλ(y)

] equals 1 if x = y or y + 1, and 0 otherwise.

We shall see that a corresponding result is true for arbitrary r, except that e need not be finite, and
the number of multipartitions in B need not equal e.



18 Matthew Fayers

4.2.1 The set of multipartitions in a combinatorial block of weight 1

To begin with, we need to describe the multipartitions in a given combinatorial block of weight 1.
Given Theorem 4.2, we may assume for the rest of this section that r > 2. From Corollary 3.4, we can
see that all multipartitions of weight 1 are multicores. The next result now follows from Proposition
3.5 and Proposition 3.8.

Lemma 4.3. Suppose λ is a multipartition of weight 1. Then there are unique 1 6 kλ < lλ 6 r such that, for
i < j,

w((λ(i), λ( j))) =

1 (i = kλ, j = lλ)
0 (otherwise).

Writing λ̂ = (λ(kλ), λ(lλ)) and calculating the integers γi(λ̂) as above, there exist unique Vλ,Wλ ⊂ Z/eZ such
that

γi(λ̂) − γ j(λ̂)

= 2 (i ∈ Vλ, j ∈Wλ)
6 1 (otherwise)

and either |Vλ| = 1 6 |Wλ| or |Vλ| > 1 = |Wλ|.

For v ∈ Vλ,w ∈Wλ we define svw(λ̂) as in §3.4, writing

svw(λ̂) = (λ(kλ)
(vw), λ

(lλ)
(vw)).

Now we write

λvw = (λ(1), . . . , λ(kλ−1), λ(kλ)
(vw), λ

(kλ+1), . . . , λ(lλ−1), λ(lλ)
(vw), λ

(lλ+1), . . . , λ(r)).

By Lemma 3.7, svw(λ̂) has the same weight and hub as λ̂, and so λvw has the same weight and hub as
λ. Now we can describe the set of multipartitions in a combinatorial block of weight 1.

Theorem 4.4. Suppose λ is a multipartition in a combinatorial block B ofHn of weight 1, and define λvw for
v ∈ Vλ,w ∈Wλ as above. Then the set of multipartitions in B is precisely

{λ} ∪ {λvw | v ∈ Vλ,w ∈Wλ}.

We shall prove Theorem 4.4 by induction on n. First we want to show that we can replace λ with
any of the λvw.

Lemma 4.5. Suppose λ is a multipartition of weight 1, and define the multipartitions λvw as above. Then, for
any v,w, Theorem 4.4 holds for λ if and only if it holds for λvw.

Proof. λvw has weight 1, and so we may calculate the data kλvw , lλvw ,Vλvw ,Wλvw defined by Lemma
4.3. We have w((λ(kλ)

(vw), λ
(lλ)
(vw))) > 0, so we must have kλvw = kλ, lλvw = lλ. By examining the differences

between the values γi(svw(λ̂)) and γi(λ̂) using Lemma 3.7, we find

Vλvw = Vλ ∪ {w} \ {v}, Wλvw = Wλ ∪ {v} \ {w}.

Furthermore, for x ∈ Vλvw , y ∈Wλvw ,

sxy(svw(λ̂)) =


svy(λ̂) (x = w, y , v)
sxw(λ̂) (x , w, y = v)
λ̂ (x = w, y = v).

Hence the set
{λvw} ∪ {(λvw)xy | x ∈ Vλvw , y ∈Wλvw}

equals the set
{λ} ∪ {λxy | x ∈ Vλ, y ∈Wλ}. �



Weights of multipartitions and representations of Ariki–Koike algebras 19

We also need the following more powerful inductive device, analogous to the ‘Scopes bijections’
[19] for Iwahori–Hecke algebras. Recall that two multipartitions λ,µ of n lie in the same combinatorial
block if and only if δi(λ) = δi(µ) for all i; accordingly, for a combinatorial block B we may define δi(B)
to equal δi(λ) for any λ in B. For any multipartition λ, define Φi(λ) by replacing any beta-number β( j)

k

for λ congruent to i modulo e with β( j)
k − 1, and replacing any β( j)

k congruent to i − 1 modulo e with

β
( j)
k + 1. Informally, Φi(λ) is obtained from λ by simultaneously removing all removable i-nodes and

adding all addable i-nodes, or by swapping the (i − 1)th and ith runners of each abacus in the abacus
display for λ.

Proposition 4.6. Suppose B is a combinatorial block ofHn, and i ∈ Z/eZ. Then there is a combinatorial block
C ofHn−δi(B) with

δ j(C) = δ j(B) + δi(B)(1[ j ≡ i − 1 (mod e)] + 1[ j ≡ i + 1 (mod e)] − 21[ j ≡ i (mod e)])

for each j. C has the same weight as B, and Φi gives a bijection between the set of multipartitions in B and the
set of multipartitions in C.

Proof. Suppose λ ∈ B. Then, using the coefficients c f (λ) from Section 1.1, we have

c f (Φi(λ)) =

cqi(λ) − δi(λ) ( f = qi)
c f (λ) (otherwise).

Lemma 3.1 then gives

δ j(Φi(λ)) = δ j(λ) + δi(λ)(1[ j ≡ i − 1 (mod e)] + 1[ j ≡ i + 1 (mod e)] − 21[ j ≡ i (mod e)])

for each j. So Φi(λ) lies in C. Φi(λ) has the same weight as λ, by Lemma 3.6. By interchanging the
rôles of B and C, we find that Φi also maps the set of multipartitions in C to the set of multipartitions
in B. Φi is also clearly an involution, so we are done. �

We apply this to proving Theorem 4.4.

Lemma 4.7. Suppose that λ is a multipartition of weight 1, and i ∈ Z/eZ. Then Theorem 4.4 holds for λ if
and only if it holds for Φi(λ).

Proof. We calculate the data specified by Lemma 4.3 for Φi(λ). Defining φi : Z/eZ→ Z/eZ to be the
involution given by

j 7−→


i ( j = i − 1)
i − 1 ( j = i)
j (otherwise),

we find

kΦi(λ) = kλ, lΦi(λ) = lλ, VΦi(λ) = {φi(v) | v ∈ Vλ}, WΦi(λ) = {φi(w) | w ∈Wλ}.

We obtain
Φi(λvw) = (Φi(λ))φi(v),φi(w)

for v ∈ Vλ,w ∈Wλ, and so Φi gives a bijection between

{λ} ∪ {λvw | v ∈ Vλ,w ∈Wλ}

and
{Φi(λ)} ∪ {(Φi(λ))vw | v ∈ VΦi(λ),w ∈WΦi(λ)}. �
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We can now prove Theorem 4.4; the structure of the proof is the same as for Proposition 3.8.

Proof of Theorem 4.4. Given λ, write k = kλ, l = lλ. We proceed by induction on n and on |λ(k)
|.

Note that if δi(B) > 0 for any i, then we may replace B with a combinatorial block of Hn−δi(B) using
Proposition 4.6 and appeal to the inductive hypothesis. So we may assume that δi(B) 6 0 for each i.

Suppose that λ(m) , ∅ for some m , k, l. Then [λ(m)] has a removable i-node for some i. Since
δi(B) 6 0, some [λ(p)] must have an addable i-node. But then (λ(m), λ(p)) has positive weight by Lemma
3.7 and Proposition 3.8; contradiction. So our assumption means that λ(m) = ∅ for all m , k, l.

Next suppose that λ(k) , ∅. Then [λ(k)] has a removable i-node for some i. Arguing as above, we
find that [λ(l)] must have an addable i-node. Supposing that [λ(k)] has t removable i-nodes and [λ(l)]
has s addable i-nodes, we find that

γi(λ̂) − γi−1(λ̂) = s + t.

Lemma 3.7 then implies that λ̂ has weight at least 2(s + t− 2); since we are assuming that w(λ̂) = 1, we
must have s = t = 1. So we have i ∈ Vλ, i − 1 ∈ Wλ, and si(i−1)(λ) is obtained from λ by removing the
removable i-node from [λ(k)] and adding the addable i-node to [λ(l)]. By Lemma 4.5 we may replace
λwith si(i−1)(λ), and we are done by induction on |λ(k)

|.
We are left with case where λ(m) = ∅ for all m , l. We cannot have λ(l) = ∅ (since then we should

get w(λ) = 0), so [λ(l)] has a removable i-node, for some i. Again, the fact that δi(λ) 6 0 implies that
[λ(m)] has an addable i-node for some m , l; that is, Qm = qi. We then get w((λ(l), λ(m))) > 0, and so in
fact m = k. So we find that [λ(l)] has removable nodes of a unique residue, namely Qk, and in fact since
δi(λ) 6 0, there can only be one removable node. So [λ(l)] is a rectangular partition, say λ(l) = (ab),
with Qk = qi and Ql = qi+b−a.

Letting c = min{a, b} and examining the residues of the nodes of [λ], we find that cqi(λ) = cqi+b−a(λ) =

c, and that (c f (λ) − cq f (λ))2 equals 1 for precisely 2c values of f , and 0 for all remaining values (note
that since λ(l) is a core, we have a + b 6 e). So the fact that w(λ) = 1 implies that c = 1 and cQm(λ) = 0
for m , k, l. Hence we find that there is some 0 < t < e such that either

1. λ(l) = (1t), Ql = qi+t−1 and [λ] contains exactly one node of each of the residues qi, qi+1, . . . , qi+t−1

(none of which equals Qm for any m , k, l)

or

2. λ(l) = (t), Ql = qi−t+1 and [λ] contains exactly one node of each of the residues qi−t+1, qi−t+2, . . . , qi

(none of which equals Qm for any m , k, l).

We assume that we are in case (1), the other case being similar. By examining possible Young
diagrams, we then easily find that the multipartitions in B are precisely the multipartitions µ(g) =
(µ(1)(g), . . . , µ(r)(g)) given by

µ(m)(g) =


(g) (m = k)
(1t−g) (m = l)
∅ (otherwise),

for g = 0, . . . , t, where λ = µ(0). On the other hand, it is easy to calculate

γ j(λ̂) =


C + 1 ( j = i − 1)
C − 1 ( j = i, i + 1, . . . , i + t − 1)
C (otherwise)

for some constant C, so we find that Vλ = {i − 1} and Wλ = {i, . . . , i + t − 1}. We have λ = µ(0) and we
find that λ(i−1)(i+x) = µ(x + 1) for x = 0, . . . , t − 1, and the result follows. �
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We next prove that the multipartitions in a combinatorial block of weight 1 are totally ordered by
dominance. Theorem 4.4 provides a description of the multipartitions in a weight 1 combinatorial
block, but we want to make this independent of the choice of λ. Given a weight 1 combinatorial
block B containing a multipartition λ, observe from the proof of Lemma 4.5 that kλ, lλ, |Vλ|, |Wλ| and
X = Vλ ∪Wλ are independent of λ; accordingly, we write these as kB, lB, vB, wB, XB. Our description
of the multipartitions in B will depend upon which of vB or wB equals 1; if both equal 1, then both
descriptions apply.

• If vB = 1, then we choose λ in B, write Vλ = {y} and for x ∈ XB define

νx =

λvx (x ∈Wλ)
λ (x = y).

Then by the proof of Lemma 4.5, νx is independent of the choice of λ. We shall write νx(B) when
there is a danger of ambiguity.

• If wB = 1, then we choose λ in B, write Wλ = {z} and for x ∈ XB define

ξx =

λxw (x ∈ Vλ)
λ (x = z);

again, ξx is independent of the choice of λ.

Lemma 4.8. Suppose B is a combinatorial block of weight 1.

1. If vB = 1, define νx = (ν(1)
x , . . . , ν

(r)
x ) for x ∈ XB as above, and let βB(x) be the largest beta-number of ν(kB)

x
which is congruent to x modulo e. Then νx B νy if and only if βB(x) > βB(y).

2. If wB = 1, define ξx = (ξ(1)
x , . . . , ξ

(r)
x ) for x ∈ XB as above, and let βB(x) be the largest beta-number of ξ(lB)

x
which is congruent to x modulo e. Then ξx B ξy if and only if βB(x) 6 βB(y).

Proof. Suppose that vB = 1; the other case is similar. In order to change νx into νy, we move a bead
from runner x to runner y in the abacus for ν(kB)

x , and we move a bead from runner y to runner x in the
abacus for ν(l)

x . Moving a single bead corresponds to either increasing or decreasing a beta-number,
which corresponds to adding or removing a rim hook from the Young diagram, respectively. Since
kB < lB, we have νx B νy if we remove a rim hook from ν(kB)

x (and add a rim hook to ν(l)
x ), or νx C νy if

we add a rim hook to ν(kB)
x and remove a rim hook from ν(lB)

x . Now the bead we move in the abacus for
ν(kB)

x is moved from position βB(x) to position βB(y), and so the corresponding beta-number is reduced
if and only if βB(x) > βB(y). �

Example. Suppose e = 5, r = 3 and (Q1,Q2,Q3) = (1, q3, q). Letλbe the multipartition ((4, 3, 1), (4, 23), (3, 2)),
which has an abacus display

λ(1) λ(2) λ(3)

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u uu u

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u uu u uu

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u u uu u

...
...
...
...
...

.

λ has weight 1, and
kλ = 1, lλ = 2, Vλ = {0, 3, 4}, Wλ = {2}.
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So the multipartitions in the same combinatorial block as λ are

ξ3 C ξ2 C ξ0 C ξ4,

where ξ2 = λ and

ξ0 =

λ(1) λ(2) λ(3)

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u uu u

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u uu u uu

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u u uu u

...
...
...
...
...

,

ξ3 =

λ(1) λ(2) λ(3)

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u u uu

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u uu uu u

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u u uu u

...
...
...
...
...

,

ξ4 =

λ(1) λ(2) λ(3)

0 1 2 3 4
...
...
...
...
...u u u u uu u u uu u u uu u

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu uu

...
...
...
...
...

0 1 2 3 4
...
...
...
...
...u u u u uu u u u uu u u uu u

...
...
...
...
...

.

4.2.2 Decomposition numbers for blocks of weight 1

We are now in a position to prove a generalisation of Theorem 4.2. We begin with the combinatorial
blocks discussed at the end of the proof of Theorem 4.4. Assume that for some 1 6 k < l 6 r and some
1 6 t < e we have Ql = qt−1Qk, and

Qm < {Qk, qQk, . . . , qt−1Qk}

for m , k, l. We then let B0 be the combinatorial block in which all multipartitions µ have

c f (µ) = 1[ f ∈ {Qk, qQk, . . . , qt−1Qk}].

So B0 contains all of the multipartitions µ(g) defined in the proof of Theorem 4.4.

Lemma 4.9.
1. µ(g) is Kleshchev if and only if g < t.

2. µ(g) Q µ(h) if and only if g > h.

3. The decomposition number [Sµ(g) : Dµ(h)] equals 1 if g = h or h + 1, and 0 otherwise.

Proof.
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1. [µ(t)] has only one removable node, which is not good, and so µ(t) cannot be Kleshchev. For
g < t, we can remove the nodes of µ(l)(g) from bottom to top, and then remove the nodes of
µ(k)(g) from right to left; the removed node at each stage will be good, and we reach the empty
multipartition.

2. This is obvious.

3. The decomposition numbers may be calculated using the cyclotomic Jantzen–Schaper theorem
[13], or (in infinite characteristic) by calculating canonical basis vectors in the Fock space for
Uv(ŝle) and appealing to Ariki’s theorem [1]. Although applying these results is normally quite
cumbersome, it turns out to be fairly straightforward for these multipartitions. We do not
include the details here. �

By entirely similar arguments, we obtain the same result for the combinatorial blocks in the other
‘initial case’ of Theorem 4.4.

Lemma 4.10. Suppose that for some 1 6 k < l 6 r and some 1 6 t < e we have Qk = qt−1Ql, and
Qm < {Ql, qQl, . . . , qt−1Ql} for m , k, l. Let B be the combinatorial block ofHt in which all multipartitions µ
satisfy

c f (µ) = 1[ f ∈ {Ql, qQl, . . . , qt−1Ql}].

Then there are t + 1 multipartitions in B, which are totally ordered by dominance:

µ(0) C . . . C µ(t).

µ(g) is Kleshchev if and only if g < t, and the decomposition number [Sµ(g) : Dµ(h)] equals 1 if g = h or h + 1,
and 0 otherwise.

Now we prove an inductive step towards our main result.

Proposition 4.11. Suppose that B is a combinatorial block of Hn of weight 1, and that δi(B) > 0 for some i.
Let C be the combinatorial block ofHn−δi(B) defined in Proposition 4.6.

1. If λ is a multipartition in B then [λ] has exactly δi(B) removable i-nodes, and no addable i-nodes.

2. Φi(λ) is obtained by removing all the removable i-nodes, and Φi(λ) is Kleshchev if and only if λ is.

3. There exists a bijection σ between the set of Kleshchev multipartitions in B and the set of Kleshchev
multipartitions in C such that

Sλ↓B
C ∼ δi(B)!SΦi(λ), SΦi(λ)

↑
B
C ∼ δi(B)!Sλ,

Dµ↓B
C ∼ δi(B)!Dσ(µ), Dσ(µ)

↑
B
C ∼ δi(B)!Dµ

and
[Sλ : Dµ] = [SΦi(λ) : Dσ(µ)]

for any multipartition λ and any Kleshchev multipartition µ in B.

4. Φi preserves the dominance order of multipartitions in B.

Proof.
1. δi(B) is the number of removable i-nodes of [λ] minus the number of addable i-nodes of [λ]. So

if [λ] has an addable i-node, then it has at least two removable i-nodes. Since λ is a multicore,
no λ(k) can have both addable and removable i-nodes, so we find that either there are distinct
l,m such that [λ(l)] has at least two removable i-nodes and [λ(m)] has at least one addable i-node,
or there are distinct k, l,m such that [λ(k)] and [λ(l)] each have a removable i-node and [λ(m)]
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has an addable i-node. In the first case, we find that γi((λ(l), λ(m))) − γi−1((λ(l), λ(m))) > 3, which
gives w((λ(l), λ(m))) > 2 by Lemma 3.7, and hence w(λ) > 2 by Lemma 3.5; contradiction. In the
second case, we find that γi((λ(k), λ(m)))− γi−1((λ(k), λ(m))) and γi((λ(l), λ(m)))− γi−1((λ(l), λ(m))) are
both at least 2, giving w((λ(k), λ(m))),w((λ(l), λ(m))) > 1 by Lemma 3.7 and Lemma 3.8; again, this
contradicts the assumption w(λ) = 1. So [λ] has no addable i-nodes.

2. If the removable i-nodes of [λ] are n1, . . . , nδi(B) from top to bottom, define λ(0),λ(1), . . . ,λ(δi(B))
recursively by setting λ(0) = λ and obtaining λ(x) from λ(x − 1) by removing nx. Then the
qi-signature of λ(x) consists of x plus signs followed by δi(B) − x minus signs, and so nx+1 is a
good node of λ(x). Hence by Proposition 1.1 λ is Kleshchev if and only if λ(δi(B)) = Φi(λ) is
Kleshchev.

3. The equations concerning induction and restriction of Specht modules follow from Theorem 1.4,
and the statements about induction and restriction of simple modules and about decomposition
numbers may be obtained by mimicking the arguments from [19], using the fact that induction
and restriction are exact functors together with Frobenius reciprocity.

4. We suppose vB = 1 (which implies vC = 1); the case where wB = 1 is similar. Recalling
the function φi from the proof of Lemma 4.7, we find from that proof that XC = φi(XB), and
νφi(x)(C) = Φi(νx)(B) for x ∈ XB. Hence by Lemma 4.8 Φi preserves the dominance order of the
multipartitions in B if and only if φi preserves the order of the integers βB

x , i.e.(
βB(x) 6 βB(y)

)
⇐⇒

(
βC(φi(x)) 6 βC(φi(y))

)
for x ∈ XB. The only way this can fail is if i−1 and i are both elements of XB and βB(i−1) = βB(i)−1.
But this means that ν(kB)

x has exactly one removable i-node. The fact that i − 1 and i are both in
XB means that γi(ν̂i(B)) − γi( ̂νi−1(B)) = 2, which then implies that ν(lB)

x has an addable i-node.
But this contradicts part (1) of the present proposition. �

Now we can prove our main result.

Theorem 4.12. Suppose B is a combinatorial block ofHn of weight 1. Then the multipartitions in B are

λ1 C . . . C λs,

for some s 6 e. λx is Kleshchev if and only if x < s, and the decomposition number [Sλx : Dλy] equals 1 if x = y
or y + 1, and 0 otherwise.

As an immediate consequence, we see that a combinatorial block of weight 1 is a block. A very
similar theorem applies to the cyclotomic q-Schur algebra Sn. In that case, there are simple modules
L(λy) for all y, but the decomposition number result is just the same: the multiplicity of L(λy) as
a composition factor of the Weyl module ∆(λx) is 1 if x = y or y + 1, and 0 otherwise. This may
be proved by a direct application of the cyclotomic Jantzen–Schaper formula, and in fact it yields a
quicker proof of Theorem 4.12 (given the results that Hn is symmetric and Sn is quasi-hereditary).
We do not reproduce this proof here, but we are grateful to the referee for pointing it out.

Proof of Theorem 4.12. We use induction on n. Suppose first that δi(B) > 0 for some i, and let C be
the combinatorial block defined in Proposition 4.6. C has weight 1, and by induction we assume that
the theorem holds for C. By Theorem 4.4, B contains at most e multipartitions, and by Proposition
4.11 and by induction, all but one of these is Kleshchev. Proposition 4.11 also implies that the
multipartitions in B are totally ordered by dominance, say λ1 C . . . C λs, and that λ1, . . . ,λs−1 are
Kleshchev. Furthermore, there is some permutation τ of {1, . . . , s − 1} such that

[Sλx : Dλy] =

1 (x = τ(y) or τ(y) + 1)
0 (otherwise).
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Now Theorem 1.3 implies that τ is the identity permutation, and we are done.
So we suppose that δi(B) 6 0 for all i. But, as in the proof of Theorem 4.4, we find that B must be

one of the combinatorial blocks described by Lemmata 4.9 and 4.10, and so the theorem is proved. �
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