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Abstract

In the representation theory of Iwahori–Hecke algebras of type A (and in particular for repre-
sentations of symmetric groups) the notion of the weight of a block, introduced by James, plays
a central rôle. Richards determined the decomposition numbers for blocks of weight 2, and here
the same task is undertaken for weight two blocks of Iwahori–Hecke algebras of type B, using the
author’s own definition of the weight of a bipartition.

1 Introduction

1.1 Iwahori–Hecke algebras and Ariki–Koike algebras

Let n be a positive integer, let F be a field, suppose q,Q1,Q2 are elements of F. The Iwahori–Hecke
algebraHn of type B is the unital associative F-algebra with generators T0, . . . ,Tn−1 and relations

(Ti + q)(Ti − 1) = 0 (1 6 i 6 n − 1)

(T0 −Q1)(T0 −Q2) = 0

TiT j = T jTi (0 6 i, j 6 n − 1, |i − j| > 1)

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2)

T0T1T0T1 = T1T0T1T0.

The subalgebra Hn generated by T1, . . . ,Tn−1 is the Iwahori–Hecke algebra of type A, and both these
Iwahori–Hecke algebras are special cases of the Ariki–Koike algebra, which corresponds to the complex
reflection group Cr oSn. These Iwahori–Hecke algebras arise in the study of groups with BN-pairs, and
their representation theory bears a close relationship to the representation theory of the corresponding
Coxeter groups. This relationship has been exploited to great effect in type A: a great deal of the
very rich theory of representations of symmetric groups has been generalised to the representation
theory of Hn, and in some instances (such as the author’s proof [10] that the decomposition numbers
for weight 3 blocks of symmetric groups are at most 1) information has passed in the opposite
direction, with the representation theory of (particular instances of) Hn answering questions about
the symmetric groups.
Hn is less well studied than Hn; it was first examined by Dipper, James and Murphy [7, 8],

who defined Specht modules for Hn and classified the simple modules. Since then, much of the
representation theory of Hn has been deduced as a special case of the representation theory of the
Ariki–Koike algebra. This algebra was introduced by Ariki and Koike [3], and independently by
Broué and Malle [6], and various facts are known about it. Ariki gave a necessary and sufficient
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criterion for the Ariki–Koike algebra to be semi-simple, and described the simple modules in this
case. These are indexed by multipartitions of n with r components, and in general the combinatorics
underpinning the representation theory of the Ariki–Koike algebra seem to be analogous to those
of the Iwahori–Hecke algebra Hn, but with partitions replaced by multipartitions; for the Iwahori–
Hecke algebra of Type B, one uses multipartitions with two components, or bipartitions. It has been
shown that the Ariki–Koike algebra is cellular, and this provides a great deal of information about
its representation theory. In particular, we have a classification of the simple modules, in terms of
‘Kleshchev multipartitions’. One of the central problems in the study of algebras such as the Iwahori–
Hecke algebra and the Ariki–Koike algebra is the determination of the decomposition numbers, i.e.
the composition multiplicities of the simple modules in the Specht modules. In this paper, we do this
in a special case.

1.2 Blocks of weight 2

One of the most useful notions in the representation theory of Iwahori–Hecke algebras in type A
is that of the e-weight of a partition, defined by James, where e is the least positive integer such that
1 + q + · · · + qe−1 = 0 in F. To each partition λ of n, one associates a Specht module Sλ for Hn, and if
we define the weight of Sλ to be the weight of λ, then weight is a block invariant, and gives a useful
notion of how ‘complicated’ a block is. Much of the representation theory of the symmetric groups
and Iwahori–Hecke algebras of type A has taken a ‘bottom up’ approach, by studying blocks of a
given small weight. This was done to great effect in weight 2 by Richards [18], who described the
decomposition numbers for these blocks in terms of the combinatorics of weight 2 partitions. His
result may be summarised as follows. Assume e is finite. If λ is an e-restricted partition (that is, if
λi − λi+1 < e for all i), then Sλ has a simple cosocle Dλ. The Dλ give all the irreducible modules for
Hn as λ ranges over the set of e-restricted partitions of n. To each e-restricted partition µ is associated
an e-regular partition µ�, with the property that the decomposition number [Sλ : Dµ] is zero unless
µ� Q λ Q µ, where Q is the usual dominance order on partitions.

Theorem 1.1. [18, Theorem 4.4] Assume that the characteristic of F is not 2, and let B be a block of Hn of
e-weight 2. To each partition λ in B, one may associate a non-negative integer ∂λ, and to each λ for which
∂λ = 0, one may associate a colour (black or white) such that the following hold.

1. The partitions λ in B with a given value of ∂λ are totally ordered by Q.

2. A partition λ in B is e-restricted if and only if there is a partition ν in B such that ν B λ, ∂ν = ∂λ and
(if ∂λ = 0) ν has the same colour as λ. In this case, λ� is the least dominant such ν.

3. If λ and µ are partitions in B with µ e-restricted, then

[Sλ : Dµ] =


1 (µ = λ)
1 (µ = λ�)
1 (µ� Q λ Q µ and |∂λ − ∂µ| = 1)
0 (otherwise).

Richards’s theorem is proved by extensive use of the Jantzen–Schaper formula, a tool for calculat-
ing decomposition numbers of Iwahori–Hecke algebras. Richards classifies all possible ‘cases’ of this
formula in weight 2. Using the same techniques, the present author has extended Richards’s work to
characteristic 2 [9].

The purpose of the present paper is to prove a version of Richards’s theorem for the algebraHn. In
[11], the author introduced a definition of weight for multipartitions, and hence for representations of
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Ariki–Koike algebras, and demonstrated some basic properties of this weight function. In particular,
blocks of weight 0 and 1 were studied, and found to behave in similar ways to blocks of Hn of weight
0 and 1. Here we examine blocks of weight 2, in the type B case. It turns out that (with certain
assumptions on the parameters Q1,Q2, which eliminate ‘trivial’ cases) these occur in two different
types. We are able to prove suitable analogues of Richards’s theorem for these types. Our method
is also to use the Jantzen–Schaper formula, or rather its cyclotomic version, proved by James and
Mathas in [13]. Fortunately, there are considerably fewer cases for us to check than in Richards’s
work. On the other hand, we have some work to do in describing the Kleshchev bipartitions in these
blocks.

Much of the background theory we shall use (for example, the parameterisation of simple modules
by Kleshchev bipartitions and the author’s own definition of the weight of a bipartition) holds in
the more general context of Ariki–Koike algebras, and some of our results will generalise easily to
that context. But we concentrate on the type B case in this paper without paying much attention to
generalisation; this is partly to avoid over-burdening the reader with notation, and partly because
even with generalisations of our results, much more work would be needed to obtain a full picture
for the Ariki–Koike algebras – there are other ‘types’ of weight 2 block in general.

For the rest of this introduction, we summarise the background theory we shall use. In Section 2,
we give a rough characterisation of weight 2 blocks. We find that these fall into two distinct types,
which we call Types I and II. We describe a prototypical example for each type. In Section 3, we
analyse blocks of Type I, which seem to be the most interesting. We develop the combinatorics of
Type I blocks by means of a certain partial order on the set Z/eZ, and we describe the Kleshchev
bipartitions and the dominance order in these blocks. Finally, we find the decomposition numbers
for these blocks, proving an analogue of Richards’s theorem above. In Section 4, we look at blocks of
Type II. Here the combinatorics are rather different, and the blocks are easier to analyse. In particular,
any two blocks of Type II have essentially the same decomposition matrix, and we may study these
blocks in much the same way as we studied weight 1 blocks of Ariki–Koike algebras in [11]. We prove
an analogue of Richards’s theorem for Type II blocks also.

1.3 Background theory and notation

In an attempt to regulate the length of this paper, we assume familiarity with much of the
background material we use, concerning the representation theory of Iwahori–Hecke algebras of
types A and B. The standard reference for Iwahori–Hecke algebras of type A is Mathas’s book [15],
and for the Ariki–Koike algebra the reader should consult Mathas’s survey article [16]; concentrating
on the special case r = 2 will yield the theory of the Iwahori–Hecke algebra of type B. The relevant
background information is also summarised in the author’s paper [11], in which the definition of the
weight of a bipartition (which is vital to this paper) is introduced.

Henceforth, we letHn be the Iwahori–Hecke of type B presented at the start of this introduction,
with q,Q1,Q2 elements of the field F. We assume that q does not equal 0 or 1, and that neither of
the Qi equals 0. We let e denote the multiplicative order of q in F; our assumptions on q mean that
e ∈ {2, 3, . . . ,∞}.

Note that the isomorphism type of Hn is unaffected if we interchange Q1 and Q2. However, the
isomorphism types of some of the modules we use are affected under this transposition, and so it is
important that we regard (Q1,Q2) as an ordered pair.

We assume that the reader is familiar with with following combinatorial concepts: partitions,
bipartitions, Young diagrams, addable, removable, normal and good nodes and their residues, rim
e-hooks and their leg lengths and foot nodes, the (e-)weight of a partition, and (e-)cores. As usual, we
may abuse notation by not distinguishing a partition or a bipartition from its Young diagram. We also
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use the notion of Kleshchev bipartitions (as defined in [5]); although the definition of these depends
on the parameters q,Q1,Q2, we shall simply say ‘Kleshchev’ without fear of confusion. We use the
recursive definition of Kleshchev bipartitions, but we remark that Ariki, Kreiman and Tsuchioka [4]
have recently found a non-recursive characterisation.

Let Sλ denote the Specht module indexed by a bipartition λ = (λ(1), λ(2)), and let Dµ be the simple
module indexed by a Kleshchev bipartition µ. The fact that the modules Dµ are precisely the simple
Hn-modules was proved by Ariki [2, Theorem 4.2].

Our main concern in this paper is the calculation of the decomposition numbers [Sλ : Dµ]. The
following fundamental result follows from the fact thatHn is cellular, with the Specht modules being
a set of cell modules.

Theorem 1.2. Suppose λ and µ are bipartitions of n with µ Kleshchev.

1. If µ = λ, then [Sλ : Dµ] = 1.

2. If [Sλ : Dµ] > 0, then λ Q µ.

We shall also need the following lemma, which will aid us in determining which bipartitions are
Kleshchev.

Proposition 1.3.
1. Suppose λ is a bipartition of n and that x is a good node of λ, and let µ be the bipartition of n − 1 with
µ = λ \ {x}. Then λ is Kleshchev if and only if µ is.

2. Suppose λ is a bipartition with at least k normal nodes of residue f . Let µ be the bipartition obtained by
removing the highest k normal nodes of residue f from λ. Then λ is Kleshchev if and only if µ is.

Proof.
1. This follows from [5, Theorem 2.9 & Corollary 2.11], in which it is shown that the crystal graph

of a certain highest weight module for Uv(ŝle) (or for Uv(sl∞), if e = ∞) has vertices indexed by
Kleshchev bipartitions and edges corresponding to removal of good nodes.

2. This is proved by induction on k, with the case k = 1 being part (1) of the present theorem. If
k > 1, let λ− be the bipartition obtained by removing the good node (that is, the highest normal
node) x of residue f from λ. By (1), λ is Kleshchev if and only if λ− is Kleshchev. The f -signature
of λ− is obtained from the f -signature for λ by replacing the − corresponding to x with a +.
Hence the reduced f -signature of λ− is obtained from the reduced f -signature of λ by replacing
the − corresponding to x with a +. So the normal nodes of λ− of residue f are precisely the
normal nodes of λ of residue f other than x. So µ is obtained from λ− by removing the k − 1
highest normal nodes of λ− of residue f , and so by induction λ− is Kleshchev if and only if µ is.
�

1.3.1 The blocks ofHn and the weight of a bipartition

The block structure of Hn (and for the Ariki–Koike algebras in general) was conjectured, and
proved in one direction, by Graham and Lehrer [12]. The proof has recently been completed by Lyle
and Mathas [14]. Given a bipartition λ and an element f of F, let c f (λ) denote the number of nodes
of λ of residue f .

Theorem 1.4. [12, Proposition 5.9(ii)], [14, Theorem 2.11] Suppose λ and µ are two bipartitions of n. Then
Sλ and Sµ lie in the same block ofHn if and only if c f (λ) = c f (µ) for all f ∈ F.
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If B is a block of Hn, then in view of Theorem 1.4 we may define c f (B) to equal c f (λ) for any
bipartition λ in B. We abuse notation by saying that λ and µ lie in the same block ofHn if and only if
Sλ and Dµ lie in the same block.

Now we define the weight of a bipartition, as introduced by the author in [11]. Retaining the
notation c f (λ) from above, we define the weight of λ to be

w(λ) = cQ1(λ) + cQ2(λ) −
1
2

∑
f∈F

(c f (λ) − cq f (λ))2.

Note that the notion of weight depends not only on q but also on Q1,Q2 (or rather, on the ratio Q1/Q2).
It is immediate from Theorem 1.4 that w is a block invariant, and we define the weight of a block

to be the weight of any bipartition in that block. Below we describe a simpler way to calculate the
weight of a bipartition, but first we need to make certain assumptions on the parameters Q1,Q2.

1.3.2 q-connected cyclotomic parameters

The representation theory of Hn depends crucially on the parameters Q1,Q2. It is clear that the
isomorphism type ofHn is unaffected if these parameters are simultaneously multiplied by a non-zero
scalar. In [7], Dipper and James showed that, as far as representation theory is concerned, we may
assume that the set {Q1,Q2} is q-connected, that is, Q2 = qsQ1 for some integer s. In fact, they showed
that if {Q1,Q2} is not q-connected, then [7, Theorem 4.17]Hn is Morita equivalent to the direct sum

n⊕
i=0

Hi ⊗Hn−i,

where Hi is the Iwahori–Hecke algebra of type A. In this situation, it is easy to analyse blocks ofHn
of weight 2; such a block B is Morita equivalent to the tensor product B1 ⊗ B2, where B1 is a block of
Hi and B2 is a block of Hn−i, and by [11, §3.1] the weights of B1 and B2 sum to 2. Furthermore, under
this Morita equivalence a Specht module S(λ(1),λ(2)) maps to the tensor product Sλ

(1)
⊗ Sλ

(2)
, and so it is

easy to calculate the decomposition numbers for B from the decomposition numbers for B1 and B2,
and prove an analogue of Richards’s theorem.

In view of this, we shall assume for the rest of this paper that the set {Q1,Q2} is q-connected. In
fact, given the above remark about simultaneous re-scaling of {Q1,Q2}, we assume henceforth that
each Qi is a power of q. Note that the residue of any node of a Young diagram is then also a power
of q; we shall use the term ‘i-node’ to mean ‘node of residue qi’. We now define integers δi(λ) for
any bipartition λ and for i ∈ Z/eZ: δi(λ) is simply the number of removable i-nodes of λ minus the
number of addable i-nodes. The importance of the δi lies in the following result.

Proposition 1.5. [11, Proposition 3.2] Suppose λ and µ are bipartitions of n. Then λ and µ lie in the same
block ofHn if and only if δi(λ) = δi(µ) for all i ∈ Z/eZ.

Proposition 1.5 allows us to define the integers δi(B) for any block B ofHn: we set δi(B) = δi(λ) for
any bipartition λ in B.

1.3.3 Dual Specht modules and conjugate Kleshchev bipartitions

In this section we summarise some of the results from Mathas’s paper [17] which we shall need.
If λ is a partition, let λ′ denote the conjugate partition. If λ = (λ(1), λ(2)) is a bipartition, the conjugate
bipartition is defined to be

λ′ = (λ(2)′, λ(1)′).
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Using Theorem 1.4, it is easy to see that two bipartitions λ, µ of n lie in the same block of Hn if and
only if λ′ and µ′ lie in the same block; for there is a bijection between the nodes of λ and the nodes of
λ′ given by

(i, j, k) 7−→ ( j, i, 3 − k),

and satisfying
res(( j, i, 3 − k)) = Q1Q2 res((i, j, k))−1.

In view of this, we say that the block of Hn containing λ′ is conjugate to the block of Hn containing
λ, for any bipartition λ.

In [17], Mathas constructs an Hn-module S′(λ) for each bipartition λ of n, which he calls a dual
Specht module. The dual Specht modules perform a similar rôle to the Specht modules: each S′(λ) has
a quotient D′(λ) which is either zero or irreducible, and the non-zero D′(λ) give all the irreducibles
forHn. In fact, we can say more.

Theorem 1.6. The module D′(µ) is non-zero if and only if µ is Kleshchev. Furthermore, for such a µ, we have

• [S′(µ) : D′(µ)] = 1, and

• [S′(λ) : D′(µ)] = 0 if λ S µ.

Proof. This follows from the discussion in [17, §4]. The algebraHn has a second presentation which
shows it to be the Iwahori–Hecke algebra of type B with parameters q−1,Q2,Q1. The dual Specht
module S′(λ) is then simply the Specht module Sλ for this latter algebra, and the quotient D′(λ) is
the quotient Dλ. It is easy to see from the definition of Kleshchev bipartitions that a bipartition is
Kleshchev for the parameters q−1,Q2,Q1 if and only if it is Kleshchev for the parameters q,Q1,Q2,
and the result then follows from the usual Specht module theory. �

The importance for us of dual Specht modules is as follows. There is an anti-automorphism of
Hn defined by Ti 7→ Ti for i = 0, . . . ,n − 1, and this allows us to define, for each Hn-module M, a
contragredient dual module M◦. We then have the following.

Theorem 1.7. [17, Theorem 5.7] For each bipartition λ,

S′(λ) � (Sλ
′

)◦.

As a consequence of Theorem 1.6 and Theorem 1.7, we deduce an important result on decompo-
sition numbers. Say that a bipartition µ is conjugate Kleshchev if µ′ is Kleshchev.

Proposition 1.8. There is a bijection µ 7→ µ� from the set of Kleshchev bipartitions of n to the set of conjugate
Kleshchev bipartitions of n such that

• [Sµ
�

: Dµ] = 1, and

• [Sλ : Dµ] = 0 if λ R µ�.

Proof. Contragredient duality is an exact contravariant functor which induces a permutation of the
irreducible modules, so there is a bijection g from the set of irreducibles to the set of Kleshchev bipar-
titions such that [S′(g(D))◦ : D] = 1 and [S′(λ)◦ : D] = 0 if λ S g(D) (in fact, the simple modules are
contragredient self-dual, so that g(D′(µ)) = µ, but we do not need this). Conjugation of bipartitions
reverses the dominance order, so Theorem 1.7 implies that [Sg(D)′ : D] = 1 and [Sλ : D] = 0 if λ R g(D)′.
Now for each Kleshchev µwe put µ� = g(Dµ)′. �

We shall make frequent use of Proposition 1.8 later in this paper, and we shall use the notation
µ� without further comment. We shall use the following lemma to find the bijection λ 7→ λ�; this is
simply an adaptation of [18, Lemma 2.12], and the proof is the same as for that result.
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Lemma 1.9. Suppose B is a block ofHn, and we have a bijection λ 7→ λ∗ from the set of Kleshchev bipartitions
in B to the set of conjugate Kleshchev bipartitions in B such that [Sλ

∗

: Dλ] > 0 for all Kleshchev λ. Then
λ∗ = λ� for all λ.

1.3.4 Beta-numbers and the abacus

When working with partitions and bipartitions, it is often useful to define beta-numbers. Suppose
λ is a partition, and choose an integer a. For i > 1 define

βi = λi + a − i.

Then the integers β1, β2, . . . are distinct, and the set B(λ) = {β1, β2, . . . } is referred to as the set of
beta-numbers for λ with charge a. An important feature of beta-numbers is that removing a rim r-hook
from λ corresponds to reducing one of the beta-numbers for λ by r. In particular, λ has a rim r-hook
if and only if there exists some m such that m ∈ B(λ) = m − r.

Given a set of beta-numbers for λ, we may construct an abacus display: we take an abacus with e
vertical runners, labelled 0, . . . , e − 1 from left to right (or labelled with . . . ,−1, 0, 1, 2, . . . from left to
right, if e = ∞). On runner i, we mark positions corresponding to the integers congruent to i modulo
e, increasing from top to bottom if e < ∞, and such that position i − 1 is directly to the left of position
i, if i . 0 (mod e); if e = ∞, we mark only one position on each runner, and these positions lie on a
horizontal line. Now given a set B(λ) of beta-numbers for λ, we place a bead at position βi for each i.
This configuration is called the abacus display for λ with charge a.

Now suppose we have a bipartition (λ(1), λ(2)). Since we are assuming that Q1 and Q2 are powers
of q, we may choose integers a1, a2 such that Q j = qa j for j = 1, 2; we refer to such a pair (a1, a2) as a

bicharge. For j = 1, 2, we construct the set B(λ( j)) = {β
( j)
1 , β

( j)
2 , . . . } of beta-numbers for λ with charge

a j. The abacus display for λ with bicharge (a1, a2) is obtained by constructing the abacus displays for λ(1)

and λ(2) with charges a1 and a2 respectively, and placing them side by side.
Again, removing a rim r-hook from λ corresponds to reducing one of the beta-numbers by r.

Given the condition Q j = qa j , we can say more: it is easy to calculate that if we replace β( j)
i with

β
( j)
i − r, then the residue of the foot node of the corresponding rim r-hook is qβ

( j)
i −r+1. In the special

case r = 1, we see that removing a removable i-node from λ corresponds to replacing a beta-number
β

( j)
i congruent to i modulo e with β( j)

i − 1.

1.3.5 Calculating the weight of a bipartition

In [11], a simpler way is found to calculate w(λ) in the case when the cyclotomic parameters are
q-connected; we give a full account of this here, since for this paper (where we use only bipartitions,
rather than multipartitions) we can use slightly simpler notation than is needed for multipartitions
in [11].

We refer to a bipartition (λ(1), λ(2)) in which λ(1) and λ(2) are both cores as a bicore. We may reduce
the calculation of the weight of a bipartition to that of a bicore, by removing rim e-hooks from λ.

Proposition 1.10. [11, Corollary 3.4] Suppose λ = (λ(1), λ(2)) is a bipartition of n, and that λ− is a bipartition
of n − e obtained by removing a rim e-hook from λ(1) or λ(2). Then w(λ) = w(λ−) + 2.

By induction, this lemma enables us to restrict attention to bicores. To calculate the weight of
a bicore λ = (λ(1), λ(2)), we choose a bicharge (a1, a2) and calculate the beta-numbers defined above.
Now for i ∈ Z/eZ define

γi(λ) =
∣∣∣∣(B(λ(1)) \ B(λ(2))

)
∩ { j ∈ Z | q j = qi

}

∣∣∣∣ − ∣∣∣∣(B(λ(2)) \ B(λ(1))
)
∩ { j ∈ Z | q j = qi

}

∣∣∣∣ .
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So γi(λ) is the number of beta-numbers of λ(1) congruent to i modulo e which are not beta-numbers of
λ(2), minus the number of beta-numbers of λ(2) congruent to i modulo e which are not beta-numbers
of λ(1).

We can use the integers γi(λ) to ‘modify’ λ in such a way as to reduce its weight. Suppose we are
given integers i, j which are incongruent modulo e, and if e = ∞ suppose also that

i ∈ B(λ(1)) \ B(λ(2)), j ∈ B(λ(2)) \ B(λ(1)).

Let l1 be the largest element of B(λ(1)) which is congruent to i modulo e, and let l2 be the largest
element of B(λ(2)) which is congruent to j modulo e. Let m1 be the smallest integer not in B(λ(1)) which
is congruent to j modulo e, and let m2 be the smallest integer not in B(λ(2)) which is congruent to i
modulo e (note that the extra assumption on i, j in the case where e = ∞ guarantees that l1, l2,m1,m2
are defined). Now define si j(λ) to be the bipartition obtained from λ by replacing lk with mk in B(λ(k)),
for k = 1, 2.

If e < ∞, then replacing λ with si j(λ) may be visualised as follows: in the abacus for λ(1), we slide
all the beads on runner i up one space and all the beads on runner j down one space; in the abacus for
λ(2), we do exactly the opposite; see the example below. Replacing λ with si j(λ) helps us to calculate
weight recursively, using the following result.

Proposition 1.11. [11, Lemma 3.7(ii–iii)]
1.

γl(si j(λ)) =


γl(λ) − 2 (l = i)
γl(λ) + 2 (l = j)
γl(λ) (otherwise).

2.
w(si j(λ)) = w(λ) − 2(γi(λ) − γ j(λ) − 2).

This proposition is used as follows: if we have γi(λ) − γ j(λ) > 3 for some i, j, then we find that
w(si j(λ)) < w(λ), and so we may replace λwith si j(λ). Continuing in this way, we will certainly reach a
bicore λ for which γi(λ) − γ j(λ) 6 2 for all i, j. (Note that when e = ∞, any bicore (i.e. any bipartition)
will have γi(λ) − γ j(λ) 6 2 for all i, j.) The weight of this bicore is then given by the following result.

Proposition 1.12. [11, Proposition 3.8] Suppose λ is a bicore, and that the integers γi(λ) defined above
satisfy

γi(λ) − γ j(λ) 6 2

for all i, j. Define

I = {i | γi(λ) − γ j(λ) = 2 for some j}, J = { j | γi(λ) − γ j(λ) = 2 for some i}.

Then w(λ) = min{|I|, |J|}.

Armed with Propositions 1.10–1.12, we can easily calculate the weight of a bipartition, or indeed
classify bipartitions of a given weight. We also note the following, which is a consequence of
Proposition 1.11 and [11, Lemma 3.7(i)].

Lemma 1.13. Suppose λ = (λ(1), λ(2)) is a bipartition of n which is a bicore, and that γi(λ) − γ j(λ) = 2 for
some i, j. Then si j(λ) is a bipartition of n, and lies in the same block ofHn as λ.
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Example. Suppose e = 3 and (Q1,Q2) = (q, q2). Let λ be the bipartition ((5), (8, 3, 12)). This has the
following abacus display (with bicharge (1, 2)):

λ(1) λ(2)

0 1 2
...
...
...u u uu u uu

...
...
...

0 1 2
...
...
...u u uu uuuu

...
...
...

.

We begin by removing rim e-hooks, which corresponds to sliding beads up their runners. We get
w(λ) = w(λ−) + 4, where

λ− =

λ(1) λ(2)

0 1 2
...
...
...u u uu u uu

...
...
...

0 1 2
...
...
...u u uu uuuu

...
...
...

= ((2), (5, 3, 12)).

We have γ1(λ−) − γ0(λ−) = 4, and so we have w(λ−) = w(s10(λ−)) + 4, where

s10(λ−) =

λ(1) λ(2)

0 1 2
...
...
...u u uu uu u

...
...
...

0 1 2
...
...
...u u uu u uuu

...
...
...

= ((2, 12), (2)).

We have
γ2(s10(λ−)) − γ0(s10(λ−)) = γ2(s10(λ−)) − γ1(s10(λ−)) = 2,

and so w(s10(λ−)) = 1, and hence w(λ) = 9.

1.3.6 The cyclotomic Jantzen–Schaper formula

The Jantzen–Schaper formula is a very valuable tool for calculating and estimating decomposition
numbers. The version for Ariki–Koike algebras was proved by James and Mathas in [13]. We state a
weak version here which will be adequate for our purposes, specialising to the case r = 2.

Suppose R is a principal ideal domain and q̂, Q̂1, Q̂2 are elements of R, with q̂ invertible. Suppose
also that p is a prime ideal in R such that R/pR � F, and that the images of q̂, Q̂1, Q̂2 under this quotient
map are q,Q1,Q2 respectively. Let K denote the field of fractions of R, and for (i, j, k) ∈ N × N × {1, 2}
define

r̂es((i, j, k)) = q̂ j−iQ̂k ∈ K.
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Now suppose λ and ν are bipartitions of n. If x is a node of λ, let rx denote the corresponding rim
hook in λ, let l(rx) denote the leg length of rx, and let fx be the foot node of rx. Make similar definitions
for a node y of ν, and then define G(λ,ν) to be the set of all pairs (x, y) such that

• x is a node of λ and y a node of ν,

• λ \ rx = ν \ ry, and

• res( fx) = res( fy).

Given (x, y) ∈ G(λ,ν), define εxy = (−1)l(rx)−l(ry), and let

gλν =
∏

(x,y)∈G(λ,ν)

(
r̂es( fx) − r̂es( fy)

)εxy
.

Now for any pair of bipartitions (λ,µ) with µ Kleshchev, we define

δλµ =
∑
νCλ

νp(gλν)[Sν : Dµ].

We also need to define the Poincaré polynomial

P(q̂; Q̂1, Q̂2) =

n∏
i=1

(1 + q̂ + · · · + q̂i−1)
∏
−n<d<n

(q̂dQ̂1 − Q̂2) ∈ K.

The Jantzen–Schaper formula in type B may now be stated as follows.

Theorem 1.14. [13, Theorem 4.6] Suppose R, q̂, Q̂1, Q̂2 are such that P(q̂; Q̂1, Q̂2) , 0K. Suppose λ and
µ are bipartitions of n with µ Kleshchev. Then the decomposition number [Sλ : Dµ] is at most δλµ, and is
non-zero if and only if δλµ is non-zero.

Given this theorem, we may refine Theorem 1.2 and Proposition 1.8, by using a coarser order
than the dominance order. Specifically, suppose we have two bipartitions λ and µ with λ Q µ, and
suppose that there is a node x of λ and a node y of µ such that λ\ rx = µ\ ry and res( fx) = res( fy). Then
we write λ→ µ. We extend→ transitively to form a partial order, which we call the Jantzen–Schaper
dominance order; this order depends on the parameters q,Q1,Q2, but these parameters will always be
implicit when we use this dominance order, so there should be no danger of confusion. It is easy to
see that the usual dominance order is a refinement of the Jantzen–Schaper dominance order, and that
conjugation of bipartitions reverses the Jantzen–Schaper dominance order. It is clear from Theorem
1.14 that Theorem 1.2 and Proposition 1.8 remain true when the usual dominance order is replaced
by the Jantzen–Schaper dominance order. Given these facts, we use Jantzen–Schaper dominance
exclusively from now on, and the symbol Q will henceforth denote this order.

Remark. In fact, when we state our decomposition number theorems as analogues of Richards’s
theorem, it will be crucial that Q is understood as the Jantzen–Schaper dominance order. The fact that
Richards does not need (a type A analogue of) this order is simply because for a block of weight 2 of
the Iwahori–Hecke algebra in type A, the Jantzen–Schaper order is essentially identical to the usual
dominance order.

We now derive a corollary of the Jantzen–Schaper formula which we shall use repeatedly later.

Corollary 1.15. Suppose λ = (λ(1), λ(2)), µ = (µ(1), µ(2)) and ν are bipartitions of n, with νKleshchev. Suppose
that one of the following holds:
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1. e is finite, λ(1) and µ(1) are distinct partitions of weight 1 with the same e-core, and λ(2) = µ(2);

2. e is finite, λ(2) and µ(2) are distinct partitions of weight 1 with the same e-core, and λ(1) = µ(1);

3. there is a node x of λ(1) and a node y of µ(2) such that λ \ rx = µ \ ry and res( fx) = res( fy).

Suppose also that [Sµ : Dν] = 1, and that µ is the unique bipartition such that λ→ µ and [Sµ : Dν] > 0.
Then [Sλ : Dν] = 1.

Proof. We define R = F[q̂, q̂−1] with q̂ an indeterminate, and set Q̂1 = Q1, Q̂2 = Q2 + a(q̂− q), p = (q̂− q),
for some non-zero a ∈ F to be chosen later. Then certainly PR(q̂; Q̂1, Q̂2) , 0, and it suffices to show
that in each of cases (1–3) we have νp(gλµ) = ±1; for then the Jantzen–Schaper formula will imply that
νp(gλµ) = 1 and [Sλ : Dν] = 1.

1. We claim that there is a unique way to choose a node x of λ(1) and a node y of µ(1) such that
λ \ rx = µ \ ry and res( fx) = res( fy). Let ξ be the core of λ(1) and µ(1), and construct the sets B(ξ),
B(λ(1)), B(µ(1)) of beta-numbers for ξ, λ(1), µ(1) with charge a1. Then we have

B(λ(1)) = B(ξ) \ {l} ∪ {l + e},

B(µ(1)) = B(ξ) \ {m} ∪ {m + e}

for some l,m ∈ B(ξ). The fact that λ B µmeans that l > m. We need to find all ways of reducing
one of the beta-numbers for λ(1) by r and reducing one of the beta-numbers for µ(1) by r in such
a way that the resulting sets of integers are equal, and the reduced beta-numbers are congruent
modulo e. The only way to do this is to replace l + e with m + e in B(λ(1)), and to replace l with
m in B(µ(1)). So x and y are unique. Moreover, if we have fx = (x1, x2) and fy = (y1, y2), then we
see that x1 − x2 − y1 + y2 = e, so that

gλµ = (Q̂1q̂s
− Q̂1q̂s+e)±1

for some s. We have
νp(gλµ) = ±νp( f (q̂)),

where f (q̂) is the Laurent polynomial Q1q̂s(1 − q̂e). Since f (q) = 0 and

d f
dq̂

(q) = −eQ1qs−1 , 0,

we have νp( f ) = 1, and hence νp(gλµ) = ±1.

2. This is done in a very similar way to (1).

3. Clearly x and y are unique, and so we have

gλµ = (Q̂1q̂s
− Q̂2q̂t)±1

for some s, t; the fact that res( fx) = res( fy) means that Q1qs = Q2qt. We have νp(gλµ) = ±νp( f (q̂)),
where

f (q̂) = Q1q̂s
− (Q2 + a(q̂ − q))q̂t.

We calculate f (q) = 0 and we may choose a so that

d f
dq̂

(q) = (s − 1)Q1qs−1
− aqt , 0,

so that νp( f ) = 1, and νp(gλµ) = ±1. �
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2 Rough classification of weight two blocks ofHn

In this section, we gain an understanding of what blocks of Hn of weight 2 ‘look like’. We find
that there are essentially two different ‘types’, according to the types of bipartition that occur. We
describe a prototypical block of each type. In the remaining sections of the paper, we examine blocks
of the two types in more detail.

2.1 Types of weight 2 bipartition

As mentioned above, we may safely assume that Q1,Q2 are powers of q. Using Propositions 1.10–
1.12 which describe the weight of a bipartition, we can easily characterise and categorise bipartitions
of weight 2.

Proposition 2.1. Suppose λ = (λ(1), λ(2)) is a bipartition. Then λ has weight 2 if and only if one of the following
occurs.

Type Ia e is finite, λ has a rim e-hook, and removing this rim e-hook leaves a bipartition of weight 0.

Type Ib e is finite, λ is a bicore and there exist i and j such that γi(λ) − γ j(λ) = 3 and γ j(λ) < γk(λ) < γi(λ)
for every k < {i, j}.

Type II λ is a bicore and γi(λ) − γ j(λ) 6 2 for all i, j. Furthermore, if

I = {i | γi(λ) − γ j(λ) = 2 for some j}, J = { j | γi(λ) − γ j(λ) = 2 for some i},

then min{|I|, |J|} = 2.

Proof. If λ is not a bicore, then λ has a rim e-hook. Proposition 1.10 then implies that λ is of Type Ia.
So suppose that λ is a bicore. Examining the integers γi(λ) and appealing to Proposition 1.11, we find
that γi(λ) − γ j(λ) 6 3 for all i, j. If there do not exist i, j with γi(λ) − γ j(λ) = 3, then λ is of Type II, by
Proposition 1.12. If there do exist such i, j, then certainly e is finite, and Proposition 1.11 implies that
the conditions of Type Ib are satisfied. �

It is clear that the types mentioned in Proposition 2.1 are mutually exclusive. Given a block ofHn
of weight 2, we say that it is of Type I if it contains bipartitions of Type Ia or Ib, or Type II if it contains
bipartitions of Type II. It is not at all clear yet that a block cannot be of more than one different type,
but this will emerge later.

For the rest of this section, we describe ‘prototype’ blocks of the two types, and then we consider
maps between blocks analogous to the Scopes bijections for blocks of Iwahori–Hecke algebras.

2.2 Some prototypical blocks

2.2.1 Type I

For our first prototypical block, we assume that e is finite. We let BI be the block ofHe with

c f (BI) =

1 ( f ∈ {1, q, . . . , qe−1
})

0 (otherwise).

It is easy to describe the bipartitions in BI.

Proposition 2.2. BI has weight 2, and the bipartitions in BI are precisely the following:
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1. all bipartitions of the form ((w + 1, 1e−w−1),∅) or (∅, (w + 1, 1e−w−1)) for 0 6 w 6 e − 1;

2. all bipartitions of the form ((w + 1, 1x), (y + 1, 1z)), where w, x, y, z are non-negative integers satisfying

w + x + y + z = e − 2

and
Q2 = qw+z+1Q1.

Proof. The fact that BI has weight 2 is immediate from the definition of weight. If λ = (λ(1), λ(2)) lies
in BI, then we must have λ(1)

2 6 1 and λ(2)
2 6 1 (i.e. λ(1) and λ(2) are ‘hook partitions’), since the nodes

of λ have distinct residues. It is easy to see which pairs of hook partitions will give exactly one node
of each residue. �

Note that if Q1 = Q2, then the integers w, x, y, z cannot exist, and so the second type of bipartition
does not occur.

Proposition 2.3. Every bipartition in BI is of Type Ia or Type Ib.

Proof. The bipartitions ((w + 1, 1e−w−1),∅) and (∅, (w + 1, 1e−w−1)) are clearly of Type Ia. For the others,
we choose a bicharge (a1, a2), and calculate the corresponding beta-numbers and the integers γi(λ).
For λ = ((w + 1, 1x), (y + 1, 1z)), we can see that

B(λ(1)) = {m ∈ Z | m 6 a1 − 1} \ {a1 − x − 1} ∪ {a1 + w},

B(λ(2)) = {m ∈ Z | m 6 a2 − 1} \ {a2 − z − 1} ∪ {a2 + y}.

Hence (recalling that a2 ≡ a1 + w + z + 1 ≡ a1 − (x + y − 1) (mod e)) we have

γk(λ) =



1
e (a1 − e − (a2 − w − z − 1)) (k ≡ a1, . . . , a1 + w − 1)
1
e (a1 − e − (a2 − w − z − 1)) + 2 (k ≡ a1 + w)
1
e (a1 − e − (a2 − w − z − 1)) (k ≡ a1 + w + 1, . . . a1 + w + z)
1
e (a1 − e − (a2 − w − z − 1)) + 1 (k ≡ a1 − x − y − 1, . . . , a1 − x − 2)
1
e (a1 − e − (a2 − w − z − 1)) − 1 (k ≡ a1 − x − 1)
1
e (a1 − e − (a2 − w − z − 1)) + 1 (k ≡ a1 − x, . . . , a1 − 1),

where all congruences are modulo e. Thus we find that if we put i ≡ a1 + w and j ≡ a1 − x − 1, then
we have the conditions for Type Ib. �

2.2.2 Type II

For our next prototype, we assume 4 6 e 6 ∞. We also assume that

Q2 = qpQ1

for some 0 6 p 6 e − 4. Then we define BII to be the block ofH2p+4 with

c f (BII) =


2 ( f ∈ {Q1, qQ1, . . . , qpQ1})
1 ( f ∈ {q−1Q1, qp+1Q1})
0 (otherwise).



14 Matthew Fayers

Proposition 2.4. BII has weight 2, and the bipartitions in BII are precisely the bipartitions

λc,d = ((c, d), (2p+2−c, 1c−d))

for 0 6 d 6 c 6 p + 2.

Proof. The weight is immediate from the values of c f (BII). Now assume λ is in B. We have
cq−2Q1

(λ) = cqp+2Q1
(λ) = 0, so the partition λ(1) is contained in (p + 2, p + 2). Similarly, the partition λ(2)

is contained in (2p+2). Now it is easily checked that the only possibilities are those given. �

Proposition 2.5. Every bipartition in BII is of Type II.

Proof. It is clear that λc,d does not have a rim e-hook, so is of Type Ib or Type II; we find which by
examining the integers γi(λc,d), for a given bicharge (a1, a2). For λ(1)

c,d = (c, d) we have

B(λ(1)
c,d) = {m ∈ Z | m 6 a1 − 3} ∪ {a1 + d − 2, a1 + c − 1},

while for λ(2)
c,d = (2p+2−c, 1c−d) we get

B(λ(2)
c,d) = {m ∈ Z | m 6 a2 + 1} \ {a2 − p + d − 2, a2 − p + c − 1}.

Now (recalling that a2 ≡ a1 + p (mod e)) we find that if e < ∞ then

γi(λc,d) =



1
e (a2 − a1 − p) − 1 (i ≡ a1 − 2, . . . , a1 + d − 3)
1
e (a2 − a1 − p) + 1 (i ≡ a1 + d − 2)
1
e (a2 − a1 − p) − 1 (i ≡ a1 + d − 1, . . . , a1 + c − 2)
1
e (a2 − a1 − p) + 1 (i ≡ a1 + c − 1)
1
e (a2 − a1 − p) − 1 (i ≡ a1 + c, . . . , a1 + p + 1)
1
e (a2 − a1 − p) (i ≡ a1 + p + 2, . . . , a1 + e − 3)

with congruences modulo e; a corresponding statement holds for the case e = ∞. So we have
γi(λc,d) − γ j(λc,d) 6 2 for all i, j. So λc,d must be of Type II. �

If Q1 = qpQ2 for some 0 6 p 6 e − 4, then we introduce another prototype B∗II, with

c f (B∗II) =


2 ( f ∈ {Q1, qQ1, . . . , qpQ1})
1 ( f ∈ {q−1Q1, qp+1Q1})
0 (otherwise).

All the results we shall need concerning the block B∗II are analogous to corresponding results for BII,
and are proved in exactly the same way. For example, the bipartitions in B∗II are the bipartitions

λc,d = ((2p+2−c, 1c−d), (c, d))

for 0 6 d 6 c 6 p + 2, and these bipartitions are all of Type II.
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2.3 Scopes-type bijections

In order to prove some of our results concerning weight 2 blocks, we take an inductive approach,
beginning with the prototype blocks defined above. In order to do this, we need to introduce maps
between blocks of type B Iwahori–Hecke algebras analogous to the ‘Scopes isometries’ in type A [19].

For i ∈ Z/eZ, define the function φi : Z→ Z by

φi( j) =


j − 1 ( j ≡ i (mod e))
j + 1 ( j ≡ i − 1 (mod e))
j (otherwise).

It is clear that φi reduces to a function φi : Z/eZ→ Z/eZ.
Now, given a bipartition λ and given i ∈ Z/eZ, we calculate the beta-numbers of λ, and then

we define the bipartition Φi(λ) by replacing each beta-number β( j)
k with φi(β

( j)
k ). Informally, Φi(λ) is

obtained from λ by simultaneously removing all removable i-nodes and adding all addable i-nodes,
or by swapping the (i − 1)th and ith runners of each abacus in the abacus display for λ.

Proposition 2.6.
1. If λ is a bipartition of n, then Φi(λ) is a bipartition of n − δi(λ).

2. w(Φi(λ)) = w(λ).

3. If λ and µ are bipartitions of n, then λ and µ lie in the same block ofHn if and only if δi(λ) = δi(µ) and
Φi(λ) and Φi(µ) lie in the same block ofHn−δi(λ).

4. If λ has weight 2, then Φi(λ) is of the same type (as defined in Proposition 2.1) as λ.

Proof. (1–3) were proved in [11, Proposition 4.6]. For (4), suppose first that λ is of Type Ia, and write
Φi(λ) as (µ(1), µ(2)). Then λ has a rim e-hook, so there exist j, k such that j ∈ B(λ(k)) but j − e < B(λ(k)).
Hence we have φi( j) ∈ B(µ(k)) but φi( j) − e = φi( j − e) < B(µ(k)), and so Φi(λ) has a rim e-hook. Next,
suppose λ is a bicore. For each j, k, l, it is clear that we have γ j(Φi(λ)) = γφi( j)(λ), and so the type of λ
is preserved. �

Suppose B is a block ofHn, containing a bipartition λ, and that C is the block ofHn−δi(λ) containing
Φi(λ). In view of Proposition 2.6(3), we may write Φi(B) = C unambiguously, so that Φi is also defined
on blocks. Proposition 2.6 has the following corollary.

Corollary 2.7. Suppose B is a block ofHn of weight 2. Then B is of Type I or Type II if and only if Φi(B) is of
Type I or Type II, respectively.

3 Blocks of Type I

3.1 Type I blocks and bipartitions of weight 0

We now examine blocks of Type I in detail. For each of these blocks, we find a convenient
description of all the bipartitions in the block, and we find which of these are Kleshchev and which
are conjugate Kleshchev. We also describe the dominance order on the bipartitions, and then finally
we apply the cyclotomic Jantzen–Schaper formula to find the decomposition numbers, and hence
prove an analogue of Richards’s theorem.
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For many of these results, we use an inductive approach, starting with the prototype block BI. So
we begin by showing that given an arbitrary Type I block, we can apply the functions Φi repeatedly to
reach BI. We begin by examining bipartitions of weight 0; we shall see that we can naturally associate
a bipartition of weight 0 to each Type I block, in much the same way as we associate an e-core to a
block in type A.

Lemma 3.1. Suppose λ is a bipartition with both an addable i-node and a removable i-node. Then w(λ) > 0.

Proof. Write λ = (λ(1), λ(2)). If some λ(k) has both addable and removable i-nodes, then by [11, Lemma
2.2] λ(k) is not an e-core, and so λ certainly has positive weight. On the other hand, if λ(k) has a
removable i-node and λ(3−k) has an addable i-node for k = 1 or 2, then (assuming λ is a bicore) we
have |γi(λ) − γi−1(λ)| > 2, and so λ has positive weight by Proposition 1.12. �

Corollary 3.2. Suppose λ is a bipartition of weight 0, and that δi(λ) 6 0 for all i. Then λ = ∅.

Proof. If λ , ∅, then λ has a removable i-node for some i. Now δi(λ) equals the number of removable
i-nodes of λ minus the number of addable i-nodes of λ, so λ has at least one addable i-node as well.
But then w(λ) > 0 by Lemma 3.1. �

Now if e < ∞ and λ is a bipartition of Type Ia or Ib, we define a bipartition λ as follows:

• if λ is of Type Ia, define λ by removing the rim e-hook from λ;

• if λ is of Type Ib, with γi(λ) − γ j(λ) = 3, define λ to be si j(λ).

Lemma 3.3. λ is a bipartition of weight 0. If λ lies in the block B ofHn, then λ lies in the block B ofHn−e with

c f (B) = c f (B) − 1

for f ∈ {1, q, . . . , qe−1
}. If λ and µ are bipartitions of Type Ia or Type Ib lying in the same block of Hn, then

λ = µ.

Proof. The fact that w(λ) = 0 follows from Proposition 1.10 (for Type Ia) or from Proposition 1.11(2)
(for Type Ib). It is clear that δi(λ) = δi(λ) for each i, and as noted in the proof of [11, Proposition 3.2]
this implies that cq j(λ) = cq j(λ) − C, for some constant C; by [11, Lemma 3.3] we have |λ| = |λ| − e, and
so C = 1.

The final statement now follows, since the block containing λ depends only on the block contain-
ing λ, and a block of weight 0 contains only one bipartition [11, Theorem 4.1]. �

So weight 2 blocks ofHn of Type I are in bijection with blocks ofHn−e of weight 0. Now we can
show that from any Type I block we can reach the prototype block BI by applying the functions Φi
repeatedly.

Proposition 3.4. Suppose that e < ∞ and B is a weight 2 block ofHn containing a bipartition λ of Type Ia or
Type Ib. Then there is a sequence n = n0 > · · · > nm = e of positive integers, a sequence B = B0, . . . ,Bm, where
B j is a block ofHn j for each j, and a sequence i1, . . . , im of elements of Z/eZ, such that

B j = Φi j(B j−1)

for j = 1, . . . ,m, and Bm is the block BI from §2.2.1.
Hence B contains only bipartitions of Types Ia and Ib.
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Proof. We proceed by induction on n; if we can find some i such that δi(B) > 0, then by Corollary 2.7
we can replace B with Φi(B), and appeal to the inductive hypothesis. So all we need to prove is that
if δi(B) 6 0 for all i, then B is the block BI. But if δi(B) 6 0 for all i, then we also have δi(λ) 6 0 for all i.
Hence λ = ∅, by Corollary 3.2, i.e. c f (λ) = 0 for all f ∈ F. But then c f (B) = 1 for f ∈ {1, q, . . . , qe−1

} by
Lemma 3.3, so B = BI.

The last statement now follows from Propositions 2.3 and 2.6(4). �

Now we are able to examine Type I blocks in much greater detail. We have seen that to each Type
I block B we can associate a bipartition of weight 0, namely λ for any λ in B. We call this bipartition
the root of B.

3.2 The bipartitions in a Type I block

Our next task is to find all the bipartitions in a Type I block. Suppose B is a Type I block with root
ν, and construct an abacus display for ν. The fact that ν has weight 0 means that γi(ν) − γk(ν) 6 1 for
all i, k, by Proposition 1.12. We partition Z/eZ into two sets I,K such that γi(ν) − γk(ν) = 1 whenever
i ∈ I, k ∈ K. This defines I,K uniquely except in the case where γi(ν) = γk(ν) for all i, k, in which case
we choose either

I = Z/eZ, K = ∅
or

I = ∅, K = Z/eZ
as we wish. Now we impose a partial order on Z/eZ. For each i ∈ Z/eZ and for a = 1, 2, we define b(a)

i
to be the largest beta-number of ν(a) congruent to i modulo e, and then for i, k ∈ Z/eZ, we define i < k
if both b(1)

i > b(1)
k and b(2)

i > b(2)
k . Then < is a partial order, which restricts to a total order on each of

I and K. When there are several Type I blocks under consideration and we wish to emphasise B, we
may write IB,KB,<B. We use the symbol ≺�� to indicate incomparability under the partial order <.

Now we can describe all the bipartitions in B. Given h ∈ Z/eZ and a = 1 or 2, define [h]a to be
the bipartition obtained from ν by moving the lowest bead on runner h of abacus a down one space.
Given i ∈ I and k ∈ K, define [ik] to be the bipartition sik(ν). Again, if we wish to emphasise B, we may
write [h]a

B or [ik]B.

Lemma 3.5. The bipartitions [h]a for h ∈ Z/eZ and [ik] for i ∈ I, k ∈ K are all the bipartitions in B.

Proof. It is easy to verify that [h]a is a weight 2 bipartition of Type Ia with root ν, while [ik] is a Type
Ib bipartition with root ν and with γk(λ)− γi(λ) = 3. On the other hand, it is easy to check that a Type
I weight 2 bipartition λwith λ = νmust be of one of these forms. For example, if λ is of Type Ib with
γk(λ) − γi(λ) = 3, then λ = ski(λ), and Proposition 1.11 implies that γi(λ) − γk(λ) = 1, so that i ∈ I and
k ∈ K, and λ = [ik]. �

Examples.
1. Suppose e = 4, Q1 = q2 and Q2 = q, and take ν = (∅, (1)). Then ν has an abacus display

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

,
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and we find
I = {0}, K = {1, 2, 3},

and that the partial order < is given by the following Hasse diagram:

2

3

1

0

.

The bipartitions in B are as follows:

[0]1 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uuu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

= ((3, 1), (1)), [0]2 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

= (∅, (15)),

[1]1 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

= ((4), (1)), [1]2 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

= (∅, (5)),

[2]1 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u uu u u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

= ((14), (1)), [2]2 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

= (∅, (22, 1)),

[3]1 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u uu u u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

= ((2, 12), (1)), [3]2 =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

= (∅, (3, 2)),

[01] =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uuu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu

...
...
...
...

= ((4, 1), (∅)), [02] =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

= ((12), (13)),
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[03] =

λ(1) λ(2)

0 1 2 3
...
...
...
...u u u uu u u uu u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

= ((2, 1), (12)).

2. Let B be the prototype block BI, and suppose without loss of generality that Q1 = qa,Q2 = 1.
Then we have I = {0, . . . , a − 1}, K = {a, . . . , e − 1} and the order < is given by

0 ≺ · · · ≺ a − 1, a ≺ · · · ≺ e − 1

and i ≺�� k for i ∈ I, k ∈ K. Furthermore, we have

[i]1 = ((e − a + 1 + i, 1a−1−i),∅) (0 6 i < a),

[k]1 = ((k − a + 1, 1e+a−1−k),∅) (a 6 k < e),

[h]2 = (∅, (h + 1, 1e−1−h)) (0 6 h < e),

[ik] = ((k − a + 1, 1a−1−i), (i + 1, 1e−1−k)) (0 6 i < a 6 k < e).

3.3 The dominance order in a Type I block

Armed with our description of the bipartitions in a Type I block, we now describe the dominance
order, which will be very useful later for calculating decomposition numbers. Recall that by the
‘dominance order’, we mean the Jantzen–Schaper dominance order described in §1.3.6. Recall also
the relation→ from that section.

Proposition 3.6. Suppose B is a Type I block, and use the notation described above for bipartitions in B. Then
the relation→ on bipartitions in B is given as follows:

[i]a
→ [ j]a (a ∈ {1, 2}, i, j ∈ I, i < j), [i]1

→ [k]1 (i ∈ I, k ∈ K, i $ k),

[i]1
→ [i]2 (i ∈ I), [i]1

→ [ik] (i ∈ I, k ∈ K, i $ k),

[k]1
→ [i]1 (i ∈ I, k ∈ K, k < i), [k]a

→ [l]a (a ∈ {1, 2}, k, l ∈ K, k < l),

[k]1
→ [k]2 (k ∈ K), [k]1

→ [ik] (i ∈ I, k ∈ K, i $ k),

[i]2
→ [k]2 (i ∈ I, k ∈ K, i < k), [i]2

→ [ik] (i ∈ I, k ∈ K, i < k),

[k]2
→ [i]2 (i ∈ I, k ∈ K, k $ i), [k]2

→ [ik] (i ∈ I, k ∈ K, k 4 i),

[ik]→ [i]1 (i ∈ I, k ∈ K, i 4 k), [ik]→ [k]1 (i ∈ I, k ∈ K, i 4 k),

[ik]→ [i]2 (i ∈ I, k ∈ K, i % k), [ik]→ [k]2 (i ∈ I, k ∈ K, i % k),
[ik]→ [ jk] (i, j ∈ I, k ∈ K, i 4 j), [ik]→ [il] (i ∈ I, k, l ∈ K, k < l).

Proof. This is easily checked, by considering all possible ways of removing a rim hook from a bipar-
tition and then adding a rim hook of the same length with foot node of the same residue. Recall that
removing a rim l-hook corresponds to reducing a beta-number by l, and that the residue of the foot
node of this rim hook is qa+1, where a is the reduced beta-number. �
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Corollary 3.7. The Jantzen–Schaper dominance order in a Type I block is given as follows:

[i]1 Q [ j]1 (i, j ∈ I, i < j), [i]1 Q [k]1 (i ∈ I, k ∈ K, i $ k),

[i]1 Q [ j]2 (i, j ∈ I, i < j or i $ k $ j, some k ∈ K), [i]1 Q [k]2 (i ∈ I, k ∈ K, i $ k),

[i]1 Q [ jk] (i, j ∈ I, k ∈ K, i $ k % j),

[k]1 Q [i]1 (i ∈ I, k ∈ K, k < i), [k]1 Q [l]1 (k, l ∈ K, k < l),

[k]1 Q [i]2 (i ∈ I, k ∈ K, k $ i), [k]1 Q [l]2 (k, l ∈ K, k < l),

[k]1 Q [il] (i ∈ I, k, l ∈ K, k < l % i),

[i]2 Q [ j]2 (i, j ∈ I, i < j), [i]2 Q [k]2 (i ∈ I, k ∈ K, i < k),

[i]2 Q [ jk] (i, j ∈ I, k ∈ K, i < k 4 j),

[k]2 Q [i]2 (i ∈ I, k ∈ K, k $ i), [k]2 Q [l]2 (k, l ∈ K, k < l),

[k]2 Q [il] (i ∈ I, k, l ∈ K, k < l 4 i),

[ik] Q [ j]1 (i, j ∈ I, k ∈ K, i 4 k < j), [ik] Q [l]1 (i ∈ I, k, l ∈ K, i 4 k < l),

[ik] Q [ j]2 (i, j ∈ I, k ∈ K, i % k $ j), [ik] Q [l]2 (i ∈ I, k, l ∈ K, i % k < l),
[ik] Q [ jl] (i, j ∈ I, k, l ∈ K, (i 4 j, k < l) or (i 4 k < l % j) or (i % k < l 4 j)).

Proof. This is simply a matter of extending → transitively. It can be checked that for any λ,µ for
which we claim λ Q µ, there are ν and ξ such that λ → ν → ξ → µ. On the other hand, it can be
checked that if λ Q µ appears in our list and µ→ ν, then λ Q ν appears in our list. �

Example. For the Type I block considered in the last example, the Hasse diagram of the Jantzen–
Schaper dominance order is

[2]1

[02]

[0]1

[3]1

[03]

[01]

[1]1

[1]2

[3]2

[2]2

[0]2
.
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3.4 Kleshchev bipartitions in Type I blocks

Next, we want to determine which of the bipartitions in a Type I block are Kleshchev. First we
examine how the partial order< changes when we apply the function Φh for some h ∈ Z/eZ. Recall the
function φh : Z/eZ→ Z/eZ defined above. The following result is easy to check from the definitions.

Proposition 3.8. Suppose B is a Type I block of weight 2, and that δh(B) > 0 for some h ∈ Z/eZ. Let C denote
the block Φh(B). Then we have

• IC = φh(IB), KC = φh(KB),

• Φh([g]a
B) = [φh(g)]a

C for all g ∈ Z/eZ and a ∈ {1, 2},

• Φh([ik]B) = [φh(i)φh(k)]C for all i ∈ IB, k ∈ KB, and

• for all j, l ∈ Z/eZwe have j <B l if and only ifφh( j) <C φh(l), except when δh(B) = 1 and { j, l} = {h−1, h},
in which case we have

h − 1 4B h, h − 1 ≺�� Ch.

Now we examine normal nodes. If B and C are as above and λ is a bipartition in B, then λ has at
least δh(B) normal h-nodes. We write Ψh(λ) for the bipartition in C obtained by removing the δh(B)
highest normal h-nodes from λ. It is easy to see that Ψh is a bijection between the set of bipartitions
in B and the set of bipartitions in C. Moreover, by Proposition 1.3(2) Ψh maps the set of Kleshchev
bipartitions in B to the set of Kleshchev bipartitions in C. We need to describe the action of Ψh.

Proposition 3.9. Suppose B and C are as in Proposition 3.8, and λ is a bipartition in B. If δh(B) > 2, then we
have Ψh(λ) = Φh(λ) for all bipartitions λ in B. If δh(B) = 1, then exactly one of h − 1 and h lies in IB, and the
action of Ψh is as follows.

• If h ∈ IB, then Ψh(λ) = Φh(λ) for all bipartitions λ in B other than the ‘exceptional’ bipartitions
[h − 1]2

B, [h]2
B, [h(h − 1)]B, for which we have

Ψh([h − 1]2
B) = [(h − 1)h]C,

Ψh([h]2
B) = [h]2

C,

Ψh([h(h − 1)]B) = [h − 1]2
C.

• If h − 1 ∈ IB, then Ψh(λ) = Φh(λ) for all bipartitions λ in B other than the ‘exceptional’ bipartitions
[h − 1]1

B, [h]1
B, [(h − 1)h]B, for which we have

Ψh([h − 1]1
B) = [h(h − 1)]C,

Ψh([h]1
B) = [h]1

C,

Ψh([(h − 1)h]B) = [h − 1]1
C.

Proof. Suppose first that either δh(B) > 2 or λ is not an exceptional bipartition. By examining
the runners labelled h − 1 and h in the abacus displays for the bipartitions in B, we find that every
bipartition λ has exactly δh(B) removable h-nodes and no addable h-nodes, so Ψh(λ) is obtained simply
by removing the removable h-nodes. If δh(B) = 1 and λ is an exceptional bipartition, we may calculate
Ψh(λ) using the abacus display for λ. As above, let ν be the root of B and let b(a)

i be the largest beta-
number of ν(a) congruent to i modulo e; then there are integers t(1), t(2) such that b(a)

h = b(a)
h−1 + 1 + et(a).

We have
|t(1)
− t(2)

| 6 1
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(since ν has weight 0), and we also have

t(1) + t(2) = δh(B) = 1.

Hence either t(1) = 1 and t(2) = 0 (in which case h ∈ IB and h − 1 ∈ KB), or t(1) = 0 and t(2) = 1 (in
which case h ∈ KB and h − 1 ∈ IB). We now illustrate the abacus displays for each of the exceptional
partitions in these two cases; in each case the good h-node corresponds to the white bead.

[h ∈ IB]
λ = [h − 1]2

B λ = [h]2
B λ = [h(h − 1)]

λ(1) λ(2)

h−1 h
...
...u uu uu

...
...

h−1 h
...
...u ueu

...
...

λ(1) λ(2)

h−1 h
...
...u uu ue

...
...

h−1 h
...
...u uu u

...
...

λ(1) λ(2)

h−1 h
...
...u uu uu

...
...

h−1 h
...
...u uue

...
...

[h − 1 ∈ IB]
λ = [h − 1]1

B λ = [h]1
B λ = [(h − 1)h]

λ(1) λ(2)

h−1 h
...
...u ueu

...
...

h−1 h
...
...u uu uu

...
...

λ(1) λ(2)

h−1 h
...
...u uu u

...
...

h−1 h
...
...u uu ue

...
...

λ(1) λ(2)

h−1 h
...
...u uue

...
...

h−1 h
...
...u uu uu

...
...

�

We are almost ready to state which bipartitions in a Type I block are Kleshchev. First, we do this
for the prototype block BI.

Proposition 3.10. The Kleshchev bipartitions in BI are

• the bipartitions ((w + 1, 1x), (y + 1, 1z)) (where w + x + y + z = e − 2 and Q2 = qw+z+1Q1) and

• the bipartitions (∅, (w + 1, 1e−w−1)) with 1 6 w + 1 6 e − 1.

Proof. We begin by showing that the bipartitions listed are Kleshchev. For the bipartitions λ =

((w + 1, 1x), (y + 1, 1z)), we may get from λ to ∅ by repeatedly removing the lowest removable node:

((w + 1, 1x), (y + 1, 1z))→ ((w + 1, 1x), (y + 1, 1z−1))→ · · · → ((w + 1, 1x), (y + 1))

→ ((w + 1, 1x), (y)) → · · · → ((w + 1, 1x),∅)

→ ((w + 1, 1x−1),∅) → · · · → ((w + 1),∅)

→ ((w),∅) → · · · → (∅,∅).

It is easily checked that the removed node at each stage is normal, and hence (since there is at most
one node of any residue) good.
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Now we consider the bipartitions of the form λ = (∅, (w + 1, 1e−w−1)), with w + 1 6 e − 1. Again,
we repeatedly remove the lowest removable node:

(∅, (w + 1, 1e−w−1)→ (∅, (w + 1, 1e−w−2)→ · · · → (∅, (w + 1))

→ (∅, (w)) → · · · → (∅,∅).

The removed node at each stage is normal (the condition w+1 < e guarantees this for the first removed
node) and hence good.

Now we show that the remaining bipartitions are not Kleshchev. The bipartition (∅, (e)), is easy
to deal with, since it has no normal nodes. For a partition of the form ((w + 1, 1e−w−1),∅), suppose we
can remove good nodes one by one to reach the empty bipartition. At some point, we must remove
the node of residue Q2; but the Q2-signature at this stage must be −+, and so the node of residue Q2
is not normal; contradiction. �

Now we can state which Type I bipartitions are Kleshchev.

Proposition 3.11. Suppose B is a Type I block, with the sets I,K as above.

• For i ∈ I, the bipartition [i]1 is Kleshchev if and only if there is some k ∈ K with i 4 k.

• For i ∈ I, the bipartition [i]2 is Kleshchev if and only if there is some m ∈ Z/eZ with i % m.

• For k ∈ K, the bipartition [k]1 is Kleshchev if and only if there are some i ∈ I, l ∈ K with l � k < i.

• For k ∈ K, the bipartition [k]2 is Kleshchev if and only if there is some m ∈ Z/eZ with k ≺ m.

• For i ∈ I and k ∈ K, the bipartition [ik] is Kleshchev if and only if either k % i or there exist j ∈ I, l ∈ K
with i � j and k ≺ l.

Proof. We use induction on n, with the initial case being the prototype block BI. The proposition
holds here by Proposition 3.10 – using that result and recalling the notation from Example 2 in §3.2,
we see that the Kleshchev bipartitions in BI are the bipartitions [h]2 for 0 6 h 6 e − 2, together with
all the bipartitions [ik].

Now suppose B is some Type I block other than BI. Then we have δh(B) > 0 for some h ∈ Z/eZ, and
we let C = Φh(B) and assume that the proposition holds for C. LetLB denote the set of bipartitions in
B which the proposition claims to be Kleshchev. We must show that for λ a bipartition in B, Ψh(λ) is
Kleshchev if and only if λ ∈ LB.

If δh(B) > 2, the proposition holds by Proposition 3.9: the set LB depends only on the sets IB and
KB and the order <B, and these are obtained from those for C by applying the function φh. On the
other hand, the correspondence λ↔ Ψh(λ) is also obtained by applying φh.

So suppose δh(B) = 1, and that λ is a bipartition in B. If λ is not one of the three exceptional
bipartitions, then we may apply essentially the same argument as in the case where δh(B) > 2; it is
easily checked that if λ is non-exceptional, then the conditions for λ to lie in LB do not depend upon
whether h < h − 1, and this is (up to relabelling using φh) the only place where <B and <C differ.

Finally we check the three exceptional partitions. We begin by noting the following.

Claim. If m ∈ Z/eZ, then m ≺B h if and only if m �B h − 1.

Proof. This is a matter of considering the possible abacus configurations; if m were a counterex-
ample to the claim, then m would have to lie strictly between h − 1 and h, which is absurd.

Now there are two cases, according to which of h − 1 and h lies in IB.
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[h ∈ IB, h − 1 ∈ KB]

• [h − 1]2
B lies in LB because h − 1 ≺B h. On the other hand, [(h − 1)h]C is Kleshchev because

h %C h − 1.

• [h]2
B lies inLB if and only if there is some m ∈ Z/eZwith m $B h. On the other hand, [h]2

C is
Kleshchev if and only there is some m ∈ Z/eZwith m �C h. Given any m, we have

m $B h⇔ m ⊀B h, m , h
⇔ m �B h − 1, m , h
⇔ m �C h,

and so [h]2
B ∈ LB if and only if [h]2

C is Kleshchev.

• [h(h − 1)]B lies in LB because h − 1 %B h. On the other hand, [h − 1]2
C is Kleshchev because

h − 1 %C h.

[h − 1 ∈ IB, h ∈ KB]

• [h − 1]1
B lies in LB since h <B h − 1. On the other hand, [h(h − 1)]C is Kleshchev because

h − 1 %C h.

• Since h <B h − 1, we find that [h]1
B lies in LB if and only if there is some l ∈ KB with l �B h.

On the other hand, [h]1
C is Kleshchev if and only if there is some l ∈ KC such that l <C h.

For l ∈ Z/eZ, we have

l ∈ KB, l �B h⇔ l ∈ KB, l ⊀B h, l , h
⇔ l ∈ KB, l �B h − 1, l , h
⇔ l ∈ KC, l �C h,

and so [h]1
B ∈ LB if and only if [h]2

C is Kleshchev.

• [(h − 1)h]B lies in LB if and only if there exist j ∈ IB, l ∈ KB with j ≺B h − 1, l �B h. On the
other hand, [h − 1]1

C is Kleshchev if and only if there are j ∈ IC, l ∈ KC with l �C h − 1 �C j.
Given any j, we have

j ∈ IB, j ≺B h − 1⇔ j ∈ IB, j �B h − 1, j , h − 1

⇔ j ∈ IB, j ≺B h, j , h − 1

⇔ j ∈ IC, j ≺C h − 1,

while for any l we have
l ∈ KB, l �B h⇔ l ∈ KC, l �C h − 1,

and so the two conditions are equivalent. �

We wish to describe the set of conjugate Kleshchev bipartitions also. To do this, we describe the
conjugation action on bipartitions in Type I blocks. If B is a Type I block of Hn with root ν, let B′ be
the Type I block ofHn with root ν′. Then a bipartition λ lies in B if and only if λ′ lies in B′, so B′ is the
block conjugate to B. The relationship between B and B′ in terms of our notation for Type I blocks is
as follows.
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Lemma 3.12. Define the bijectionˇ : Z/eZ→ Z/eZ by ȟ = a1 + a2 − 1 − h. Then we have

IB′ = {ı̌ | i ∈ IB},

KB′ = {ǩ | k ∈ KB},

(g <B′ h)⇔ (ǧ 4B ȟ),

([h]a
B)′ = [ȟ]3−a

B′ ,

([ik]B)′ = [ı̌ǩ]B′ .

Proof. It is easily checked that if ν is a partition and B(ν) is the set of beta-numbers for ν with charge
a, then Z\ {b−β | β ∈ B(ν)} is the set of beta-numbers for ν′ with charge b + 1− a. Hence if ν = (ν(1), ν(2))
and we calculate B(ν(1)) and B(ν(2)) using the bicharge (a1, a2), then

Z \ {β̌ | β ∈ B(ν(2))}

and

Z \ {β̌ | β ∈ B(ν(1))}

give the beta-numbers for ν = (ν(2)′, ν(1)′) with bicharge (a1, a2). From this we can calculate the integers
γi(ν′) in terms of the integers γi(ν), and hence calculate IB′ , KB′ and <B′ . The conjugates of the various
bipartitions are calculated in the same way. �

We can immediately read off the set of conjugate Kleshchev bipartitions.

Corollary 3.13. Suppose B is a Type I block, with bipartitions [h]a and [ik] as defined above.

• For i ∈ I, the bipartition [i]1 is conjugate Kleshchev if and only if there is some m ∈ Z/eZ with i $ m.

• For i ∈ I, the bipartition [i]2 is conjugate Kleshchev if and only if there is some k ∈ K with i < k.

• For k ∈ K, the bipartition [k]1 is conjugate Kleshchev if and only if there is some m ∈ Z/eZ with k � m.

• For k ∈ K, the bipartition [k]2 is conjugate Kleshchev if and only if there are some i ∈ I, l ∈ K with
i < k � l.

• For i ∈ I and k ∈ K, the bipartition [ik] is conjugate Kleshchev if and only if either k $ i or there exist
j ∈ I, l ∈ K with i ≺ j and k � l.

3.5 Decomposition numbers for Type I blocks

In this section, we calculate the decomposition numbers for a Type I block. This is done in the same
way as the corresponding calculation by Richards for weight 2 blocks of Iwahori–Hecke algebras,
using the Jantzen–Schaper formula and analysing several cases. Fortunately, we do not have quite as
many cases to contend with.

Of course, the decomposition numbers [Sλ : Dµ] are easier to calculate if we know what the
bipartition µ� is. But this will emerge from our calculations, using Lemma 1.9. The logic of our
argument is as follows: our main theorem will be a statement of the decomposition numbers for
Type I bipartitions. This will be split into several cases, and will inherently specify a map µ 7→ µ∗,
which will be a bijection from the set of Kleshchev bipartitions in B to the set of conjugate Kleshchev
bipartitions in B. For each case, we attempt to calculate the decomposition numbers [Sλ : Dµ] for
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those λwith µ P λ P µ∗. We are able to find these exactly except for [Sµ
∗

: Dµ], where we find simply
that [Sµ

∗

: Dµ] > 0 in each case. By Lemma 1.9 we shall have µ∗ = µ� for all µ, and we shall know all
the decomposition numbers by Proposition 1.8.

We introduce further notation: given h in IB (or in KB, respectively), we let h+ be the least element
(with respect to the order <) of IB (respectively KB) such that h+

� h, if there is any such element. And
we define h− to be the greatest element of IB (or KB, respectively) such that h− ≺ h, if there is such an
element.

Table 1 is split into thirteen cases, according to the possible pairs µ,µ∗. Each case is then split into
sub-cases, according to the possible λ such that [Sλ : Dµ] = 1.

Theorem 3.14. Suppose r = 2, e < ∞ and B is a Type I weight 2 block of Hn. Let I,K,< be as defined above
for B. If λ and µ are bipartitions in B with µ Kleshchev, then the decomposition number [Sλ : Dµ] is either 0
or 1. For each µ, the bipartitions λ with [Sλ : Dµ] = 1 are listed in Table 1. In each case, conditions involving
i+, i−, k+, k− should be ignored if these elements do not exist.

Before examining each case of Theorem 3.14 separately, we prove a useful lemma which uses the
Jantzen–Schaper formula to calculate decomposition numbers for Type I blocks. Recall the relation
λ→ µ and the function ελµ from Section 1.3.6.

Lemma 3.15. Suppose B is a Type I weight 2 block ofHn, and that µ,ν, ξ are bipartitions in B such that:

• µ is Kleshchev;

• [Sν : Dµ] = 1;

• ξ→ µ and ξ→ ν, and εξµ , εξν;

• µ and ν are the only bipartitions π in B for which ξ→ π and [Sπ : Dµ] > 0;

• (µ,ν, ξ) takes one of the following forms:

1. ([hk], [ik], [ jk]) (h, i, j ∈ I, k ∈ K);

2. ([hk], [ik], [k]a) (h, i ∈ I, k ∈ K, a ∈ {1, 2});

3. ([k]2, [ik], [ jk]) (i, j ∈ I, k ∈ K);

4. ([k]2, [ik], [k]1) (i ∈ I, k ∈ K);

5. ([ f ]a, [g]a, [h]a) ( f , g, h ∈ Z/eZ, a ∈ {1, 2}).

Then [Sξ : Dµ] = 0.

Proof. For cases (1–4), we show that gξµgξν = 1 for any appropriate R, q̂, Q̂1, Q̂2; then the Jantzen–
Schaper formula gives the result. In each of these cases we find, by checking the abacus displays,
that:

• µ is obtained from ξ by adding a rim hook h1 to the first component, and removing a rim hook
h2 from the second component;

• ν is obtained from ξ by adding a rim hook l1 to the first component, and removing a rim hook
l2 from the second component;

• hi and li have the same foot node, for i = 1, 2.
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Case µ conditions µ∗ additional conditions
λ for which µ C λ C µ∗

and [Sλ : Dµ] = 1

A [i]1 i ∈ I
(∃ k ∈ K)(k < i $ k−)

[ik]
(∃ i+, k < i+) [i+k], [i+]1

(k % i+) [k]1

A′ [ik] k 4 i % k+ [i]2 (∃ i−, k 4 i−) [i−]2, [i−k]
(k $ i−) [k]2

B [i]2 i ∈ I,∃ i+

(∀ k ∈ K)(k < i+ or i < k)
[i+]1 — [i]1, [i+]2

C [i]2 i ∈ I
(∃ k ∈ K)(i+ $ k < i < k−)

[k]1 (∃ i+, k $ i+) [i]1, [i+k], [i+]2

(k 4 i+) [i]1, [k]2

C′ [k]2 k ∈ K
(∃ i ∈ I)(k+ < i < k $ i−)

[i]1 (∃ i−, k % i−) [i]2, [i−k], [i−]1

(k < i−) [i]2, [k]1

D [i]2 i ∈ I
(∃ k ∈ K)(k ≺�� i < k−)

[ik]
(∃ i+, k $ i+) [i+k], [i+]2

(k 4 i+) [k]2

D′ [ik] k+ < i ≺�� k [i]1 (∃ i−, k % i−) [i−]1, [i−k]
(k < i−) [k]1

E [k]1 k ∈ K,∃ k+

(∃ i ∈ I)(i+ $ k < i) [ik+]
(∃ i+, k+ < i+) [ik], [i+k+], [i+]1

(k+ % i+) [ik], [k+]1

E′ [ik]
∃ k+

i < k+ $ i− [k+]2 (∃ i−, k 4 i−) [ik+], [i−]2, [i−k]
(k $ i−) [ik+], [k]2

F [k]2
k ∈ K,∃ k+

(∀ i ∈ I)(k+ % i < k
or k+ < i % k)

[k+]1

(∃ j ∈ I)( j ≺�� k 4 j+)
(∃ i ∈ I)(i ≺�� k+ < i−)

[ik+], [i]2, [ j]1, [ jk]

(@ j ∈ I)( j ≺�� k)
(∃ i ∈ I)(i ≺�� k+ < i−)

[ik+], [i]2, [k]1

(∃ j ∈ I)( j ≺�� k 4 j+)
(@ i ∈ I)(i ≺�� k+)

[k+]2, [ j]1, [ jk]

(@ j ∈ I)( j ≺�� k)
(@ i ∈ I)(i ≺�� k+)

[k+]2, [k]1

G [k]2 k ∈ K,∃ k+

(∃ i ∈ I)(i+ < k ≺�� i ≺�� k+)
[ik+]

(∃ i+, k+ $ i+) [ik], [i+k+], [i+]2

(k+ 4 i+) [ik], [k+]2

G′ [ik]
∃ k+

k ≺�� i ≺�� k+ < i−
[k+]1 (∃ i−, k % i−) [ik+], [i−]1, [i−k]

(k < i−) [ik+], [k]1

H [ik]
∃ i−, k+

(k < i or i− < k+

or (k ≺�� i, i− ≺�� k+)
[i−k+] — [ik+], [i−k]

Table 1
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Now the condition εξµ = −εξν implies that gξµgξν = 1.

A similar argument deals with case 5. �

Now we prove Theorem 3.14. In each case, we find all the bipartitions λ such that µ P λ P µ∗,
using Corollary 3.7. We then find the restriction of the relation → to this set of bipartitions, using
Proposition 3.6. We indicate this relation in a diagram; our convention in the diagrams below is that
whenever there are parallel arrows ν → ξ and ξ → π, there is an implicit arrow ν → π parallel to
these. Now we can find the decomposition numbers [Sλ : Dµ] for µ P λ C µ∗: for each λ, we either
apply Corollary 1.15 to get [Sλ : Dµ] = 1 or Lemma 3.15 to get [Sλ : Dµ] = 0. By ad hoc use of the
Jantzen–Schaper formula, we can easily find [Sµ

∗

: Dµ] > 0 in each case also.

We indicate the diagrams for cases A–H; the diagrams for cases A′, C′, D′, E′ and G′ may be found
by inverting the diagrams for cases A, C, D, E, G and conjugating all the bipartitions. Theorem 3.14
may now be verified, case by case.

Case A
@R

@R

@R

@R

�	

�	

�	

�	

[ik]

[i+k]

[ jk]

[k]1

[ j]1

[i+]1

[i]1

. . .

. .
.

. . .

( j = max{ j ∈ I | j 4 k})

Case B

@R �	

�	 @R

[i+]1

[i]1 [i+]2

[i]2
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Case C
@R

@R

@R

@R

�	

�	

�	

�	C
C
C
C
C
C
C
CCW

�
�
�
�
�
�
�
���

[k]1

[i+k]

[ jk]

[k]2

[ j]2

[i+]2

[i]2

[i]1

. . .

. .
.

. . .

( j = max{ j ∈ I | j % k})

Case D
@R

@R

@R

@R

�	

�	

�	

�	

[ik]

[i+k]

[ jk]

[k]2

[ j]2

[i+]2

[i]2

. . .

. .
.

. . .

( j = max{ j ∈ I | j % k})

Case E
@R

@R

@R

@R

�	

�	

�	

�	C
C
C
C
C
C
C
CCW

�
�
�
�
�
�
�
�
��

[ik+]

[i+k+]

[ jk+]

[k+]1

[ j]1

[i+]1

[k]1

[ik]

. . .

. .
.

. . .

( j = max{ j ∈ I | j 4 k+
})
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Case F
@R

@R

@R

@R

�	

�	

�	

�	

�	

�	

�	

�	

@R

@R

@R

@R

?

? ?

?

[k+]1

[ı̌k+][ ̂]1

[ı̂k+][ ̌]1

[k+]2[k]1

[ı̂]2[ ̌k]

[ı̌]2[ ̂k]

[k]2

. . .

. .
.

. . .

...

..
.

. . .


ı̌ = min{i ∈ I | i ≺�� k+

}

ı̂ = max{i ∈ I | i ≺�� k+
}

̌ = min{ j ∈ I | j ≺�� k}
̂ = max{ j ∈ I | j ≺�� k}


Case G

@R

@R

@R

@R

�	

�	

�	

�	C
C
C
C
C
C
C
CCW

�
�
�
�
�
�
�
���

[ik+]

[i+k+]

[ jk+]

[k+]2

[ j]2

[i+]2

[k]2

[ik]

. . .

. .
.

. . .

( j = max{ j ∈ I | j % k+
})

Case H

@R �	

�	 @R

[ik]

[i−k] [ik+]

[i−k+]

3.6 A Richards-type theorem for Type I blocks

We now give a simpler description of the decomposition numbers for a Type I block, analogous
to Richards’s description for weight two blocks of Iwahori–Hecke algebras.

Suppose λ is a bipartition of Type I, with root ν. Then λ and ν are related in one of three ways:

• λ is obtained from ν by adding a rim e-hook to one component (if λ is a bipartition of the form
[h]a);
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• λ is obtained from ν by adding a rim d-hook to the first component and a rim (e− d)-hook to the
second component (if λ is of the form [ik] with i ≺�� k);

• λ is obtained from ν by adding a rim (d + e)-hook to one component and removing a rim d-hook
from the other (if λ is of the form [ik] with i < k or k < i).

We define an integer ∂λ as follows.

• If λ is obtained by adding a rim e-hook to the first component of ν, we define ∂λ to be the leg
length of this hook plus 1.

• If λ is obtained by adding a rim e-hook to the second component of ν, we define ∂λ to be the leg
length of this hook.

• If λ is obtained by adding a rim d-hook to one component of ν and a rim (e − d)-hook to the
other component, we define ∂λ to be the sum of the leg lengths of the two hooks plus 1.

• If λ is obtained by adding a rim (d + e)-hook to the first component of ν and removing a rim
d-hook from the second, we define ∂λ to be the leg length of the added hook minus the leg
length of the removed hook plus 1.

• If λ is obtained by adding a rim (d + e)-hook to the second component of ν and removing a rim
d-hook from the first, we define ∂λ to be the leg length of the added hook minus the leg length
of the removed hook minus 1.

We re-interpret this definition in terms of IB,KB,<B.

Proposition 3.16. Suppose B is a Type I block. If i ∈ IB and k ∈ KB then

∂[i]1 = |{h ∈ Z/eZ | h < i}|,

∂[k]1 = |{h ∈ Z/eZ | h ⊀ k}|,

∂[i]2 = |{h ∈ Z/eZ | h $ i}|,

∂[k]2 = |{h ∈ Z/eZ | h � k}|,

∂[ik] =


|{ j ∈ IB | j � i}| + |{l ∈ KB | l � k}| (i < k)
|{ j ∈ IB | j � i}| + |{l ∈ KB | l � k}| + 1 (i ≺�� k)
|{ j ∈ IB | j � i}| + |{l ∈ KB | l � k}| + 2 (i 4 k).

Proof. Recall that adding a rim hook to a partition corresponds to increasing one of the beta-numbers
for that partition. If this beta-number is increased from b to c, then the leg length of the rim hook equals
the number of beta-numbers lying in {b+1, . . . , c−1}. Given this, it is easy to check the various cases. �

Lemma 3.17. Suppose B is a Type I block, and d ∈ Z. Then the bipartitions λ in B with ∂λ = d are totally
ordered by Q.

Proof. Suppose λ and µ are bipartitions in B with λ S µ S λ. Using Corollary 3.7, we can find the
various possibilities for λ and µ, and show that ∂λ , ∂µ in each case. For example, if λ = [k]1 and
µ = [i]2 with i ∈ IB, k ∈ KB, then the condition λ S µ implies that i < k. We have

∂λ = |{h ∈ Z/eZ | h ⊀ k}|, ∂µ = |{h ∈ Z/eZ | h $ i}|;
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the condition i < k implies that

{h ∈ Z/eZ | h ⊀ k} ⊇ {h ∈ Z/eZ | h $ i},

and this inclusion is strict, since the first set contains i and k while the second does not. So we have
∂λ > ∂µ. The other possibilities may be checked just as easily. �

Now we can state our Richards-type theorem.

Theorem 3.18. Suppose B is a Type I block, and µ is a bipartition in B. Then µ is Kleshchev if and only if there
is some ν in B with ν B µ and ∂ν = ∂µ. In this case, µ� is the least dominant such ν, and for any bipartition
λ in B we have

[Sλ : Dν] =

1 (µ P λ P µ�, |∂λ − ∂µ| 6 1)
0 (otherwise).

Proof. For each of cases A–H above, we calculate ∂λ−∂µ for eachλwithµ P λ P µ�, using Proposition
3.16. The diagrams of these cases are arranged so that two bipartitions in the same column have the
same ∂-value, and these values decrease from left to right. We find that in each case:

• ∂µ� = ∂µ;

• there is no µ C λ C µ� with ∂λ = ∂µ;

• the bipartitions λwith [Sλ : Dµ] = 1 are precisely those with |∂λ − ∂µ| 6 1.

For example, suppose we are in Case C with i+ % k. We calculate the ∂-value of each bipartition
in the diagram, from left to right:

∂[i]1 = |{h | h < i}| = |{i, i+, i++, . . . } ∪ {k, k+, k++, . . . }|;

∂[k]1 = |{h | h ⊀ k}| = |{i+, i++, . . . } ∪ {k, k+, k++, . . . }|;

∂[i]2 = |{h | h $ i}| = |{i+, i++, . . . } ∪ {k, k+, k++, . . . }|;

∂[i+k] = |{h ∈ I | h � i+}| + |{h ∈ K | h � k}| + 1 = |{i++, i+++, . . . } ∪ {k, k+, k++, . . . }|;

∂[i+]2 = |{h | h $ i+}| = |{i++, i+++, . . . } ∪ {k, k+, k++, . . . }|;
...

∂[ jk] = |{h ∈ I | h � j}| + |{h ∈ K | h � k}| + 1 = |{ j+, j++, . . . } ∪ {k, k+, k++, . . . }|;

∂[ j]2 = |{h | h $ j}| = |{ j+, j++, . . . } ∪ {k, k+, k++, . . . }|;

∂[k]2 = {h | h � k} = |{ j+, j++, . . . } ∪ {k+, k++, . . . }|.

The bipartitions λwith [Sλ : D[i]2
] = 1 are precisely those in the first three columns of the diagram.

The result follows for cases A–H. Cases A′, C′, D′, E′, G′ follow from these and the easily-verified
formula

∂λ′ = e − ∂λ. �
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4 Blocks of Type II

We now turn to blocks of Type II. We undertake the same tasks as for Type I blocks: describing
the bipartitions and the Kleshchev bipartitions in a Type II block, finding the dominance order for
these bipartitions, and calculating the decomposition numbers.

Blocks of Type II behave differently from blocks of Type I. They do not have a naturally associated
bipartition of weight 0, which makes the partitions in them slightly awkward to describe. On the
other hand, we shall see that if B is any block of Type II, then B and Φi(B) have the same decomposition
matrix. This makes it easy to prove a Richards-type theorem for these blocks inductively.

As with Type I blocks, we begin by showing that we may get from a Type II block to one of the
prototype blocks BII or B∗II by a sequence of the maps Φi; this will facilitate an inductive approach to
many of our results.

Proposition 4.1. Suppose B is a weight 2 block ofHn containing a bipartition λ = (λ(1), λ(2)) of Type II. Then
there is a sequence n = n0 > · · · > nm of positive integers, a sequence B = B0, . . . ,Bm, where B j is a block of
Hn j for each j, and a sequence i1, . . . , im of elements of Z/eZ, such that

B j = Φi j(B j−1)

for j = 1, . . . ,m, and Bm is either the block BII or the block B∗II from §2.2.1.
In particular, B contains only bipartitions of Type II.

Proof. We proceed by induction on n. As in the proof of Proposition 3.4, it suffices to prove that if
δi(B) 6 0 for all i, then B is either the block BII or the block B∗II.

Suppose that δi(B) 6 0 for all i. Suppose λ(1) , ∅, so that λ(1) has a removable i-node for some i.
Either λ(1) or λ(2) must have an addable i-node, but λ(1) can’t by Lemma 3.1, since λ(1) is a core. So λ(2)

has at least one addable i-node. Now if λ(1) has x removable i-nodes and λ(2) has y addable i-nodes,
then

γi(λ) − γi−1(λ) = x + y,

so the condition for λ to be Type II means that x = y = 1. If we define µ = (µ(1), µ(2)) by removing the
removable i-node from λ(1) and adding the addable i-node of λ(2), then µ = si(i−1)(λ) lies in B, and we
have |µ(1)

| = |λ(1)
| − 1.

So by induction on |λ(1)
| we may assume that λ(1) = ∅. Certainly λ(2) , ∅, since otherwise we

should have w(λ) = 0. So λ(2) has a removable i-node, for some i. By a similar argument to that
used above, we find that λ(2) has exactly one removable i-node, and λ(1) has exactly one addable
i-node. Hence qi = Q1, and so λ(2) has only one removable node. So λ(2) is a rectangular partition,
say λ(2) = (cd). We have c + d 6 e since λ(2) is a core, and so by examining the residues of the nodes
we find that

cQ2(λ) = cQ1(λ) = min{c, d},

and that (c f (λ) − cq f (λ))2 equals 1 for exactly 2 min{c, d} values of f , and 0 for all other values. Hence

2 = w(λ) = min{c, d}.

If c = 2 6 d, we get Q2 = qd−2Q1, and we find that λ lies in the block BII. If c > 2 = d, then Q1 = qc−2Q2,
and so λ lies in the block B∗II. �
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4.1 The dominance order, Kleshchev bipartitions and decomposition numbers in BII and
B∗II

In order to work out the decomposition numbers for Type II blocks, we begin by looking at the
prototype blocks BII and B∗II. First we must describe the Jantzen–Schaper dominance order and find
the Kleshchev bipartitions in these blocks. For the dominance order, recall the relation → which
generates Q.

To begin with, we look at the block BII. We shall state corresponding results for B∗II, which are
proved in exactly the same way, at the end of this section.

Proposition 4.2. Suppose B is the weight 2 block BII, with the integer p and the bipartitions λc,d as defined in
§2.2.2. Then we have λc,d → λa,b if and only if

• c = a and d > b, or

• c > a and d = b, or

• d = a + 1.

Hence we have λc,d Q λa,b if and only if c > a and d > b.

Proof. This is easy to check. �

Now we find which bipartitions in BII are Kleshchev.

Proposition 4.3. Suppose B is the weight 2 block BII. Then the bipartition λc,d in B is Kleshchev if and only if
c < p + 2 and d < p + 1.

Proof. Suppose first that c < p+2 and d < p+1. Then we may remove nodes from λc,d in the following
order to get to the empty bipartition; it is easy to check that at each stage the removed node is good:

λc,d = ((c, d), (2p+2−c, 1c−d))

→ ((c, d), (2p+1−c, 1c−d+1))→· · · → ((c, d), (1p+2−d))

→ ((c − 1, d), (1p+2−d)) →· · · → ((d, d), (1p+2−d))

→ ((d, d), (1p+1−d)) →· · · → ((d, d),∅)

→ ((d, d − 1),∅) →· · · → ((d),∅)

→ ((d − 1),∅) →· · · → (∅,∅).

Now we look at the other bipartitions. λp+2,p+2 has no normal nodes, so cannot be Kleshchev. From
the bipartition λp+2,d with d < p + 2, we remove good nodes as follows:

λp+2,d = ((p + 2, d), (1p+2−d))

→ ((p + 2, d), (1p+1−d))→· · · → ((p + 2, d),∅)

→ ((p + 2, d − 1),∅) →· · · → ((p + 2),∅)

→ ((p + 1),∅).

This last bipartition has no normal nodes, so is not Kleshchev, and so by Proposition 1.3 λp+2,d is not
Kleshchev.
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Finally, consider λp+1,p+1. We remove good nodes as follows:

λp+1,p+1 = ((p + 1, p + 1), (2))

→ ((p + 1, p + 1), (1))→ ((p + 1, p + 1),∅)→ ((p + 1, p),∅)

→ ((p + 1, p − 1),∅) → · · · → ((p + 1),∅).

So λp+1,p+1 is not Kleshchev either. �

Corollary 4.4. Suppose B is the block BII. Then λc,d is conjugate Kleshchev if and only if c > 1 and d > 0.

Proof. By examining residues, we find that BII is self-conjugate. The conjugation map is given by

λc,d 7−→ λp+2−d,p+2−c,

and the result follows. �

Now we can describe the decomposition numbers for BII.

Theorem 4.5. Suppose B is the block BII. If λ,µ are bipartitions in B with µ Kleshchev, then the decomposition
number [Sλ : Dµ] equals 0 or 1. For each µ, the bipartitions λ with [Sλ : Dµ] = 1 are described in Table 2.

Case µ conditions µ∗
λ for which µ C λ C µ∗

and [Sλ : Dµ] = 1
A λc,d 0 6 d < c 6 p + 1 λc+1,d+1 λc+1,d,λc,d+1
B λd,d 0 6 d 6 p λd+2,d+2 λd+1,d,λd+2,d+1

Table 2

Our approach to proving Theorem 4.5 is much the same as our approach to Theorem 3.14, although
the details are much simpler. As for Theorem 3.14, we draw diagrams of the relation → on the set
of bipartitions λ with µ P λ P µ∗. It then remains to use the Jantzen–Schaper formula; since this is
rather easier than for Type I, we omit the details.
Case A

Q
QQs

�
��+

�
��+

Q
QQs

λc+1,d+1

λc+1,d λc,d+1

λc,d

Case B
Q
QQs

Q
QQs

�
��+

�
��+

?

?

�
��+

Q
QQs

A
A
A
A
A
A
A
AU

�
�
�
�
�
�
���

λd+2,d+2

λd+2,d+1

λd+1,d+1 λd+2,d

λd+1,d

λd,d

Now we give the corresponding results for the block B∗II.
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Theorem 4.6. Suppose B is the weight 2 block B∗II, with the integer p and the bipartitions λc,d defined as above.

1. We have λc,d Q λa,b if and only if c 6 a and d 6 b.

2. λc,d is Kleshchev if and only if c > 1 and d > 0, and is conjugate Kleshchev if and only if c < p + 2 and
d < p + 1.

3. Given λ,µ in B with µ Kleshchev, the decomposition number [Sλ : Dµ] equals 0 or 1. For each µ, the
bipartitions λ for which [Sλ : Dµ] = 1 are listed in Table 3.

Case µ conditions µ∗
λ for which µ C λ C µ∗

and [Sλ : Dµ] = 1
A λc,d 1 6 d < c 6 p + 2 λc−1,d−1 λc−1,d,λc,d−1
B λd,d 2 6 d 6 p + 2 λd−2,d−2 λd−1,d,λd−2,d−1

Table 3

4.2 A Richards-type theorem for BII

We may re-state Theorem 4.5 to describe the decomposition numbers for BII in a way analogous
to Richards’s description of decomposition numbers for weight 2 blocks in type A.

Let B be the block BII or B∗II. We define a function ∂ on the set of bipartitions in B by ∂λc,d = c − d.
Furthermore, we say that λd,d is black if d is even, and white otherwise. Then we may re-state Theorem
4.5 and Theorem 4.6(3) as follows.

Theorem 4.7. Let B be the block BII or B∗II.

1. The bipartitions λ in B with a given value of ∂λ are totally ordered by (Jantzen–Schaper) dominance.

2. A bipartition µ in B is Kleshchev if and only if there is a bipartition ν in B such that ν B µ, ∂ν = ∂µ,
and (if ∂µ = 0) µ and ν have the same colour. In this case, µ� is the least dominant such ν.

3. The decomposition numbers for B are given by

[Sλ : Dµ] =

1 (λ = µ,λ = µ� or (µ P λ P µ� and |∂µ − ∂λ| = 1))
0 (otherwise).

4.3 The bipartitions in a Type II block

Now we consider Type II blocks in general. First, we need to describe the bipartitions in a Type
II block; we use similar arguments to those used in the discussion of weight 1 blocks in [11].

Suppose λ is a Type II bipartition. There are well-defined sets Vλ,Wλ ⊂ Z/eZ such that

γi(λ) − γ j(λ)

= 2 (i ∈ Vλ, j ∈Wλ)
6 1 (otherwise),

and we have either |Vλ| = 2 6 |Wλ| or |Vλ| > 2 = |Wλ|.
For v ∈ Vλ,w ∈ Wλ, we define λvw to be the bipartition svw(λ) as defined in Section 1.3.5. For

u, v ∈ Vλ and w, x ∈ Wλ with u , v,w , x, we define λ(uv)(wx) to be the bipartition suw(svx(λ)). Note
that we have

λ(uv)(wx) = λ(uv)(xw) = λ(vu)(wx).

λvw and λ(uv)(wx) lie in the same block as λ, by Lemma 1.13.
Now we can describe the bipartitions in a Type II block.
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Proposition 4.8. Suppose λ is a Type II bipartition lying in a block B ofHn, and define λvw for v ∈ Vλ,w ∈Wλ
as above. Then the set of bipartitions in B is precisely

{λ} ∪ {λvw | v ∈ Vλ,w ∈Wλ} ∪ {λ(uv)(vw) | u , v ∈ Vλ,w , x ∈Wλ}.

We shall prove Proposition 4.8 by reducing to the case where B = BII or B∗II.

Lemma 4.9. Suppose λ is a Type II bipartition and i ∈ Z/eZ. Then Proposition 4.8 holds for λ if and only if it
holds for Φi(λ).

Proof. Recall the bijections φi : Z → Z and φi : Z/eZ → Z/eZ. We know from Proposition 2.6(4)
that Φi(λ) is of Type II, and we examine the sets VΦi(λ),WΦi(λ). Since the beta-numbers for Φi(λ) are
obtained from those for λ by applying the function φi, we obtain

VΦi(λ) = φi(Vλ), WΦi(λ) = φi(Wλ).

We also get
Φi(λvw) = (Φi(λ))φi(v)φi(w)

and
Φi(λ(uv)(wx)) = (Φi(λ))(φi(u)φi(v))(φi(w)φi(x))

for u , v ∈ Vλ,w , x ∈Wλ, and so Φi gives a bijection between

{λ} ∪ {λvw | v ∈ Vλ,w ∈Wλ} ∪ {λ(uv)(vw) | u , v ∈ Vλ,w , x ∈Wλ}

and

{Φi(λ)} ∪ {(Φi(λ))vw | v ∈ VΦi(λ),w ∈WΦi(λ)} ∪ {λ(uv)(vw) | u , v ∈ VΦi(λ),w , x ∈WΦi(λ)}. �

Proof of Proposition 4.8. By Proposition 4.1 and Lemma 4.9, we may assume that B is the block BII
or B∗II. In fact, we assume that B is BII; the other case is similar.

We show also that we may also reduce to the case where λ(1) = ∅: if λ(1) has a removable i-node
for some i, then, since δi(λ) 6 0, λ(2) has an addable i-node. So we have γi(λ)− γi−1(λ) > 2, so there is
exactly one removable i-node and exactly one addable i-node. Applying the function Φi is equivalent
to removing all removable i-nodes and adding all addable i-nodes, and so we replace λ with Φi(λ),
and appeal to Lemma 4.9. We repeat this until we have removed all nodes from λ(1).

So we have λ = (∅, (2p+2)), and we wish to calculate Vλ and Wλ. We choose an integer a such that
Q1 = qa, Q2 = qa+p, and as in the proof of Proposition 2.5, we find that

B(λ(1)) = {m ∈ Z | m 6 a − 1},

while

B(λ(2)) = {m ∈ Z | m 6 a + p + 1} \ {a − 2, a − 1}.

Hence, writing m for the residue of an integer m modulo e, we have

Vλ = {a − 2, a − 1}, Wλ = {a, a + 1, . . . , a + p + 1}.
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We find

λ(a−2)w = ((w − a + 1, 1), (2p+1+a−w, 1w−a)) (a 6 w 6 a + p + 1),

λ(a−1)w = ((w − a + 1), (2p+1+a−w, 1w−a+1)) (a 6 w 6 a + p + 1),

λ((a−2)(a−1))(wx) = ((x − a + 1,w − a + 2), (2p+1+a−x, 1x−w−1)) (a 6 w < x 6 a + p + 1),

and so by Proposition 2.4 the result follows. �

Now, as we did for weight 1 blocks of Ariki–Koike algebras in [11], we wish to give a description
of the set of bipartitions in a Type II block which is independent of the choice of λ. Suppose λ is of
Type II and lies in a block B, and let Vλ,Wλ be as above. Using Proposition 4.8, we may easily find
that |Vλ|, |Wλ| and Vλ ∪Wλ are independent of the choice of λ in B, and so we write these as vB, wB,
XB respectively. Our description of the bipartitions in B will depend upon which of vB and wB equals
2; if both equal 2, then both descriptions apply.

• If vB = 2, then we write Vλ = {u, v}, and for distinct y, z ∈ XB we define

νy,z =



λ ({y, z} = {u, v})
λvz (y = u, z ∈Wλ)
λuz (y = v, z ∈Wλ)
λvy (z = u, y ∈Wλ)
λuy (z = v, y ∈Wλ)
λ(uv)(yz) (y, z ∈Wλ).

Then νy,z = νz,y is independent of the choice of λ, and by Proposition 4.8 the bipartitions νy,z are
precisely the bipartitions in B. We shall write νy,z as νy,z(B) when there is a danger of ambiguity.

• If wB = 2, then we write Wλ = {w, x}, and for distinct y, z ∈ XB we define

ξy,z =



λ ({y, z} = {w, x})
λzx (y = w, z ∈ Vλ)
λzw (y = x, z ∈ Vλ)
λyx (z = w, y ∈ Vλ)
λyw (z = x, y ∈ Vλ)
λ(yz)(wx) (y, z ∈ Vλ).

Again, ξy,z = ξz,y is independent of the choice of λ; we may write ξy,z as ξy,z(B).

If vB = wB = 2, with XB = {a, b, c, d}, say, then we have νa,b = ξc,d, νa,c = ξb,d et cetera.

Example.
1. Suppose e = 6, Q1 = q5, Q2 = 1, and λ = ((5, 23, 1), (6, 1)). This has an abacus display

λ(1) λ(2)

0 1 2 3 4 5
...
...
...
...
...
...u u u u u uu u u u u uu u u uu

...
...
...
...
...
...

0 1 2 3 4 5
...
...
...
...
...
...u u u u u uu u u u uu

...
...
...
...
...
...

,
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and we find Vλ = {3, 4}, Wλ = {0, 2, 5}. The bipartitions in the same block include ν3,4 = λ, and

ν0,3 = ((5, 2, 1), (6, 15)) =

λ(1) λ(2)

0 1 2 3 4 5
...
...
...
...
...
...u u u u u uu u u u u uu u u uu

...
...
...
...
...
...

0 1 2 3 4 5
...
...
...
...
...
...u u u u u uu u u u uu

...
...
...
...
...
...

,

ν2,5 = ((7, 2, 13), (4, 13)) =

λ(1) λ(2)

0 1 2 3 4 5
...
...
...
...
...
...u u u u u uu u u u u uu u u uu

...
...
...
...
...
...

0 1 2 3 4 5
...
...
...
...
...
...u u u u u uu u u u uu

...
...
...
...
...
...

.

2. Suppose e = ∞ and B is the block B∗II. Suppose Q1 = qp and Q2 = 1. B contains the bipartition
λ = (∅, (p + 2, p + 2)), which has an abacus display

λ(1) λ(2)

... p−3 p−2 p−1 p p+1 p+2 ...

···
u u u

···

... −4 −3 −2 −1 ... p−1 p p+1 p+2 ...

···
u u

···
u u

···

.

We have Vλ = {−2,−1, . . . , p − 1} and Wλ = {p, p + 1}. For −2 6 y < z 6 p + 1, we have

ξy,z = ((2p+1−z, 1z−y−1), (z + 1, y + 2)).

4.4 The dominance order in a Type II block

Next we work out the dominance order for the bipartitions in a Type II block.
If B is a Type II block, let vB,wB,XB be as above. We define a total order on XB.

• If vB = 2, then for x ∈ XB define µ = (µ(1), µ(2)) to be the bipartition νx,y, for any y ∈ XB distinct
from x, and let βB(x) be the largest beta-number of µ(1) congruent to x modulo e; it is easy to see
that βB(x) does not depend on the choice of y. The integers βB(x) for x ∈ XB are distinct, and we
totally order XB according to the usual order of these integers: x < y if and only if βB(x) > βB(y).

• If wB = 2, then for x ∈ XB define µ = (µ(1), µ(2)) to be the bipartition νy,z for any y, z ∈ XB distinct
from x, and let βB(x) be the largest beta-number of µ(1) congruent to x modulo e. βB(x) does not
depend on the choice of y, z, and we totally order XB according to the order of the integers βB(x).

Now we can describe the dominance order in a Type II block.

Proposition 4.10. Suppose B is a Type II block of Hn, with vB,wB,XB,< and the bipartitions νy,z or ξy,z as
defined above.

• If vB = 2, then we have νy,z → νy′,z′ if and only if one of
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· y = y′ and z < z′

· y = z′ and z < y′
· z = y′ and y < z′

· z = z′ and y < y′

occurs. Hence we have νy,z Q νy′,z′ if and only if one of

· y < y′ and z < z′ · y < z′ and z < y′

occurs.

• If wB = 2, then we have ξy,z → ξy′,z′ if and only if one of

· y = y′ and z 4 z′

· y = z′ and z 4 y′
· z = y′ and y 4 z′

· z = z′ and y 4 y′

occurs. Hence we have νy,z Q νy′,z′ if and only if one of

· y 4 y′ and z 4 z′ · y 4 z′ and z 4 y′

occurs.

4.5 Kleshchev bipartitions and decomposition numbers for Type II blocks

The decomposition numbers for Type II blocks are easy to calculate, given our work on BII.
Again, we mimic the argument for weight 1 blocks of Ariki–Koike algebras in [11], and show that the
decomposition numbers are preserved under the Scopes bijections Φi. In the following proposition,
we use the notation M ∼ dN to mean that the module M has the same composition factors as the
module N⊕d.

Proposition 4.11. Suppose B is a Type II block, and i ∈ Z/eZ is such that δi(B) > 0; let C = Φi(B).

1. If λ is a bipartition in B, then λ has exactly δi(B) removable nodes and no addable nodes.

2. Φi(λ) is obtained by removing all the removable i-nodes from λ, and is Kleshchev if and only if λ is.

3. There is a bijection σ between the set of Kleshchev bipartitions in B and the set of Kleshchev bipartitions
in C, such that

Sλ↓B
C ∼ δi(B)!SΦi(λ), SΦi(λ)

↑
B
C ∼ δi(B)!Sλ,

Dµ↓B
C ∼ δi(B)!Dσ(µ), Dσ(µ)

↑
B
C ∼ δi(B)!Dµ

and
[Sλ : Dµ] = [SΦi(λ) : Dσ(µ)]

for any bipartition λ and any Kleshchev bipartition µ in B.

4. Φi preserves the dominance order of bipartitions in B.

Proof. This is proved using the branching rule for Specht modules [1, Lemma 2.1] in exactly the same
way as [11, Proposition 4.11], but citing Proposition 4.10 of the present paper rather than Lemma 4.8
of [11]. �

In fact, we know what the bijection in (3) is.
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Lemma 4.12. The bijection described in Proposition 4.11(3) is the restriction of Φi to the set of Kleshchev
bipartitions.

Proof. Suppose µ is a Kleshchev bipartition in B, and that σ(π) = Φi(π) for all Kleshchev bipartitions
π in B for which σ(π) B σ(µ). We have

1 = [Sµ : Dµ] = [SΦi(µ) : Dσ(µ)],

so that Φi(µ) Q σ(µ) by Theorem 1.2. If Φi(µ) B σ(µ), then (since Φi and σ are bijections on the set of
Kleshchev bipartitions) we have Φi(µ) = σ(π) for some Kleshchev bipartition π, and (by assumption)
σ(π) = Φi(π). But then we get π = µ, so σ(µ) = Φi(µ). �

Now we can state our Richards-type theorem.

Theorem 4.13. Suppose B is a Type II block ofHn. Then there is a function ∂ from the set of bipartitions in B
to the non-negative integers, and a function from the set {λ in B | ∂λ = 0} to the set {black,white} such that the
following hold.

1. The bipartitions in B with a given value of ∂ are totally ordered by dominance;

2. Given a bipartition µ in B, µ is Kleshchev if there is a bipartition ν in B such that ν B µ, ∂ν = ∂µ, and
µ and ν have the same colour if ∂µ = 0. In this case, µ� is the least dominant such ν.

3. The decomposition numbers for B are given by

[Sλ : Dµ] =

1 (λ = µ,λ = µ� or (µ P λ P µ� and |∂µ − ∂λ| = 1))
0 (otherwise).

Proof. We prove this by induction on n, with the initial cases B = BII and B∗II already proved. If B is
not BII or B∗II, then we have δi(B) > 0 for some i ∈ Z/eZ, and we may assume that the result holds for
C = Φi(B).

We define ∂ and the colour function on B simply by taking those for C and composing with Φi.
Proposition 4.11 implies the result. �

Remark. It is easy to get an explicit expression for ∂ and the colour function: we find that if y ≺ z ∈ XB,
then

∂νy,z = |{x ∈ XB | y ≺ x ≺ z}|

if vB = 2, while
∂ξy,z = |{x ∈ XB | y ≺ x ≺ z}|

if wB = 2. If vB = 2 and ∂νy,z = 0, then νy,z is black if |{x ∈ XB | x � z}| is even, and white otherwise. If
wB = 2 and ∂ξy,z = 0, then ξy,z is black if |{x ∈ XB | x ≺ y}| is even, and white otherwise.
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[6] M. Broué & G. Malle, ‘Zyklotomische Heckealgebren’, Astérisque 212 (1993), 119–189.
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