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1 Introduction

Let p be a prime, and k an infinite field of characteristic p. In [2], the author and Martin re-proved
a result of Henke [4] in which the Schur algebra S (2, d) over k is shown to embed in the Schur algebra
S (2, r) for certain values of d and r, corresponding to certain self-similarity properties of the decom-
position matrices for S (2, r). We also constructed embeddings of S (2, r) in S (2, rp) for all r, reflecting
further the structure of the decomposition matrices. Here, an embedding is not necessarily an injective
homomorphism of algebras, but simply a linear injection preserving the multiplication rule.

In this paper we continue to study such embeddings, and examine their consequences for decompo-
sition numbers. Essential results concerning Schur algebras can be found in the books of Green [3] and
Martin [6]; further results and notation are taken from [2].

In Section 2 we construct embeddings

S (2, r) ↪→ S (2, rp + q)

for all q between 0 and p−1; this then gives each Schur algebra S (2,R) an embedded algebra isomorphic
to S (2, bR

p c). In Section 3 we examine the consequences of these embeddings for (dual) Weyl modules;
we find explicitly the restrictions of the dual Weyl modules to the embedded subalgebras. In Section 4
we use these results to rediscover the decomposition matrices for S (2, r), first found by Carter and Cline
[1].

1.1 Notation

We use the notation from [2]; in particular, we take as a basis for the Schur algebra S (2, r) the set
M(r) of 2 by 2 matrices with non-negative integer entries summing to r. For A ∈ M(r), we denote by
ci(A), ri(A) the ith row and column sums of A respectively. For A, B ∈ M(r) with ci(A) = ri(B) we define
N(A, B) to be the set of matrices in M(r) with the same row sums as A and the same column sums as B,
and we define R(A, B) to be the set of 2× 2 matrices D with (possibly negative) integer entries, and with
ri(D) = ai1, ci(D) = b1i, for i = 1, 2.

∗The author is financially supported by the EPSRC.
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2 Matthew Fayers

The multiplication ◦ in S (2, r) is then given on basis elements by [2, Proposition 2.1]

A ◦ B =

0 (c1(A) , r1(B))∑
C∈N(A,B)(

∑
D∈R(A,B)

( C

D

)
).1k.C (c1(A) = r1(B)),

where, for 2 by 2 matrices C, D, we define

( C

D

)
=

2∏
i, j=1

( ci j

di j

)
.

2 Schur algebra embeddings

First we recall the embedding of S (2, r) in S (2, rp) [2, Theorem 4.2].

Theorem 2.1. Let p = char(k). There exists an embedding Ψ : S (2, r) −→ S (2, rp) defined on basis
elements by

Ψ :
(
a b
c d

)
7−→


pa pb

pc pd

 (if b or c equals 0)

∑p−1
ε=0

pa + ε pb − ε
pc − ε pd + ε

 (otherwise).

Now we generalise this result and embed S (2, r) in S (2, rp+q) for all 0 6 q 6 p−1. Given A ∈ M(r),
write

Aβ,q =

(
pa11 + q + β pa12 − β

pa21 − β pa22 + β

)
if this has non-negative entries, and Aβ,q = 0 otherwise. We then have the following embedding. Note
that the embedded algebra is neither a subalgebra with 1 of S (2, rp + q) nor a subalgebra of the form
eS (2, rp + q)e for e an idempotent.

Theorem 2.2. Let p = char(k), and let 0 6 q < p. There exists an embedding Ψ : S (2, r) −→ S (2, rp+q)
defined on basis elements by

Ψ : A 7−→
p−1∑
β=0

( β+q
q

)
Aβ,q +

p−1∑
γ=0

(1 −
( p−γ+q

q

)
)A−γ,q.

Ψ is clearly injective (consider the coefficients of matrices A0,q); in order to prove the theorem, we
must show that multiplication of basis elements is preserved. We proceed along the same lines as in [2];
we write down the product Ψ(A) ◦ Ψ(B) for A, B ∈ M(r), and reduce it modulo p using Lemma 2.3 and
splitting into cases. First we recall Lucas’s lemma, and state an additional lemma concerning binomial
coefficients, whose proof is trivial.

Lemma 2.3.
1. Let p be a prime, and let a, b, c, d be integers, with a non-negative and 0 6 c, d < p. Then( pa+c

pb+d

)
≡

( a

b

)( c

d

)
(mod p).
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2. Let a, b, c, d be integers, with a and c non-negative. Then∑
r∈Z

( r

b

)( a
r

)( c

d−r

)
=

( a

b

)( a+c−b

d−b

)
.

(Note that we may safely ignore
( r

b

)
when r < 0, since then

( a
r

)
= 0.)

Put A =

(
a b
c d

)
, B =

(
e f
g h

)
; unless a + c = e + g, we have A ◦ B = 0 and Ψ(A) ◦Ψ(B) = 0, so assume

a+c = e+g, and take C ∈ M(rp+q); the coefficient of C in Ψ(A)◦Ψ(B) is zero unless r1(C) = pr1(A)+q

and c1(C) = pc1(B) + q; so we assume the latter, and we may write C uniquely as
(
pk + q + ε pl − ε

pm − ε po + ε

)
with 0 6 ε 6 p − 1. We then have

R(Aβ,q, Bγ,q) = {

(
v pa + q − v + β

pe + q − v + γ v + pc − pe − q − β − γ

)
| v ∈ Z}

= {

(
pw + α pa + q − pw − α + β

pe + q − pw − α + γ pc − pe − q + pw + α − β − γ

)
| w ∈ Z, 0 6 α 6 p − 1}

(1)

if Aβ,q, Bγ,q , 0. If one of Aβ,q,Bγ,q is zero, then every matrix in the set on the right-hand side of (1) has
a negative entry, and so the product will not be affected if we assume (1) even when Aβ,q or Bγ,q is zero.

Putting Dw,α =

(
pw + α pa + q − pw − α + β

pe + q − pw − α + γ pc − pe − q + pw + α − β − γ

)
, we write the coefficient of C in

Ψ(A) ◦ Ψ(B) as Σ1 + Σ2 + Σ3 + Σ4, where

Σ1 =

p−1∑
β=0

p−1∑
γ=0

( β+q
q

)( γ+q
q

)∑
w∈Z

p−1∑
α=0

( C

Dw,α

)
,

Σ2 =

p−1∑
β=0

p−1∑
γ=0

( β+q
q

)
(1 −

( p−γ+q
q

)
)
∑
w∈Z

p−1∑
α=0

( C

Dw,α

)
,

Σ3 =

p−1∑
β=0

p−1∑
γ=0

(1 −
( p−β+q

q

)
)
( γ+q

q

)∑
w∈Z

p−1∑
α=0

( C

Dw,α

)
,

Σ4 =

p−1∑
β=0

p−1∑
γ=0

(1 −
( p−β+q

q

)
)(1 −

( p−γ+q
q

)
)
∑
w∈Z

p−1∑
α=0

( C

Dw,α

)
.

Proposition 2.4. With notation as above, we have

Σ1 =
( ε+q

q

)∑
w∈Z


(

k l
m o

)
(

w a − w
e − w c + e − w

)
 + (1 −

( p−ε+q
q

)
)
∑
w∈Z


(

k + 1 l − 1
m − 1 o

)
(

w a − w
e − w c + e − w − 1

)
 ;

Σ2 = Σ3 = −Σ4 = (1 −
( p−ε+q

q

)
)
∑
w∈Z


(

k + 1 l − 1
m − 1 o

)
(

w a − w
e − w c + e − w

)
 .
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(If l or m is zero or k = −1, undefined terms should be treated as zero.)
Proof. In order to reduce all the binomial coefficients modulo p, we need to know the greatest multiple
of p less than each of the entries of the matrices in Σ1, Σ2, Σ3, Σ4. So we must consider separately the
cases ε = 0, 0 < ε < p − q and ε > p − q. First we deal with the case ε = 0. Now

( pn
r

)
≡ 0 (mod p)

unless p divides r, so for a non-zero term in any of Σ1, Σ2, Σ3, Σ4, we must have β = γ = 0 and α = q.
This immediately gives Σ2 = Σ3 = Σ4 = 0, while for Σ1 we use the congruence

( np
rp

)
≡

( n
r

)
(mod p) to

give

Σ1 ≡
∑
w∈Z


(

k l
m o

)
(

w a − w
e − w c − e + w

)


as required.
Next we consider the case ε < p − q, and evaluate Σ1.
We write Bα,β,γ for

( β+q
q

)( γ+q
q

)∑
w∈Z


(
pk + q + ε pl − ε

pm − ε po + ε

)
(

pw + α pa + q − pw − α + β
pe + q − pw − α + γ pc − pe − q + pw + α − β − γ

)
 ;

note that if β > p − q + α, then p 6 β + q < p + q, so
( β+q

q

)
≡ 0; similarly for γ. So we may assume that

pa + q − pw − α + β < p(a − w + 1),

pe + q − pw − α + γ < p(e − w + 1),

and split Σ1 up as
Σ1 = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + S 7 + S 8 + S 9 + S 10,

where

S 1 =
∑

0 6 α, β, γ < p
β + q < α
γ + q < α

β + γ + q 6 α

Bα,β,γ S 6 =
∑

0 6 α, β, γ < p
β + q > α
α 6 γ + q

α > γ + q + β

Bα,β,γ

S 2 =
∑

0 6 α, β, γ < p
β + q < α
γ + q > α

β + γ + q 6 α

Bα,β,γ S 7 =
∑

0 6 α, β, γ < p
β + q > α
α > γ + q

α < γ + q + β

Bα,β,γ

S 3 =
∑

0 6 α, β, γ < p
β + q < α
γ + q < α

β + γ + q > α

Bα,β,γ S 8 =
∑

0 6 α, β, γ < p
β + q > α
α 6 γ + q

α < γ + q + β 6 α + p

Bα,β,γ

S 4 =
∑

0 6 α, β, γ < p
β + q < α
γ + q > α

β + γ + q > α

Bα,β,γ S 9 =
∑

0 6 α, β, γ < p
β + q > α

α + p < γ + q + β 6 α + 2p

Bα,β,γ

S 5 =
∑

0 6 α, β, γ < p
β + q > α
γ + q < α

β + γ + q 6 α

Bα,β,γ S 10 =
∑

0 6 α, β, γ < p
β + q > α

α + 2p < γ + q + β

Bα,β,γ.
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Lemma 2.5.

S 1 ≡
∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w − 1
e − w − 1 c − e + w

)
 , S 2 ≡

( ε+q
q

)∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w − 1
e − w c − e + w

)
 ,

S 5 ≡
( ε+q

q

)∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w
e − w − 1 c − e + w

)
 , S 6 ≡

( ε+q
q

)∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w
e − w c − e + w

)
 ,

S 8 ≡ (1 −
( e+q

q

)
)
∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w
e − w c − e + w − 1

)
 ,

S 3 ≡ S 4 ≡ S 7 ≡ S 9 ≡ S 10 ≡ 0.

Proof. We prove the expression for S 8; the other expressions follow similarly (or much more simply).
By Lemma 2.3 we find

S 8 = T8 ×
∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w
e − w c − e + w − 1

)
 ,

where
T8 =

∑
0 6 α, β, γ < p
β + q > α
α 6 γ + q

α < γ + q + β 6 α + p

( β+q
q

)( γ+q
q

)( ε+q
α

)( p−ε

q−α+β

)( p−ε

q−α+γ

)( ε

p+α−β−γ−q

)
.

We would like to replace the range of summation for γ in T8 with
∑
γ∈Z, so we examine which values of

γ outside the given range give non-zero values of Bα,β,γ. If γ < α − q − β + 1 or γ < α − q or γ < 0 or
γ > p − q + α − β, then one of the binomial coefficients is congruent to zero, so we need only consider
p − 1 < γ 6 p − q + α − β. This can only happen if α − q > β; but

( p−ε

q−α+β

)
is zero unless β 6 α − q. So

the only value of γ outside the given range which can give a non-zero Bα,β,γ is γ = p when β = α − q;
this gives

p−1∑
α=0

Bα,α−q,p ≡

p−1∑
α=0

( α
q

)( ε+q
α

)( p−ε

p+q−α

)
≡

( ε+q
q

)
.

Now we sum over γ; terms involving γ give∑
γ∈Z

( γ+q
q

)( p−ε

q−α+γ

)( ε

p+α−β−γ−q

)
≡

∑
γ∈Z

∑
ζ∈Z

( α
ζ

)( γ+q−α

q−ζ

)( p−ε

q+γ−α

)( ε

p+α−β−γ−q

)
≡

∑
ζ∈Z

( α
ζ

)( p−ε

q−ζ

)( p−q+ζ

p−β−q+ζ

)
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by Lemma 2.3. Hence we have

T8 ≡

p−1∑
α=0

p−1∑
β=max(0,α−q)

( β+q
q

)( ε+q
α

)( p−ε

q−α+β

)∑
γ∈Z

( α
ζ

)( p−ε

q−ζ

)( p−q+ζ

p−β−q+ζ

)
−

( ε+q
q

)
.

Next we would like to replace the range of summation for β with
∑
β∈Z, so we check which values of

β outside the given range contribute non-trivially. If β < 0 or β < α − q then one of the binomial
coefficients is congruent to zero, so we need only consider p − 1 < β. Now for

( p−q+ζ

p−β−q+ζ

)( p−ε

q−ζ

)
to be

non-zero, we must have β 6 p − q + ζ and q > ζ. So we need only consider the case β = p, q = ζ. This
gives a term

( ε+q
q

)
exactly as before; summing over β, we get∑

β∈Z

( β+q
q

)( p−q+ζ

β

)( p−ε

p−ε−q+α−β

)
≡

∑
β∈Z

∑
η∈Z

( β

q−η

)( q
η

)( p−q+ζ

β

)( p−ε

p−ε−q+α−β

)
≡

∑
η∈Z

( q
η

)( p−q+ζ

q−η

)( 2p−2q−ε+ζ+η

p−α+ζ

)
by Lemma 2.3. Hence

T8 ≡

p−1∑
α=0

∑
ζ∈Z

∑
η∈Z

( ε+q
α

)( α
ζ

)( p−ε

q−ζ

)( q
η

)( p−q+ζ

q−η

)( 2p−2q−ε+ζ+η

p−α+ζ

)
− 2

( ε+q
q

)
.

Now we sum over α; we may change the range of summation to
∑
α∈Z without compunction, since

ε + q < p; Lemma 2.3 gives

T8 ≡
∑
η,ζ∈Z

( ε+q

ζ

)( 2p−q+η

p

)( p−q+ζ

q−η

)( q
η

)( p−ε

q−ζ

)
− 2

( ε+q
q

)
.

Now if η > q then
( q
η

)
= 0, so we may restrict attention to the range η 6 q. If η = q, we have∑

ζ∈Z

( ε+q

ζ

)
.2.

( p−ε

q−ζ

)
≡ 2.

( p+q
q

)
≡ 2,

while if η < q, the summand is ∑
ζ∈Z

( ε+q

ζ

)( p−q+ζ

q−η

)( q
η

)( p−ε

q−ζ

)
.

Putting these together, we get

T8 ≡
∑
ζ,η∈Z

( ε+q

ζ

)( p−q+ζ

q−η

)( q
η

)( p−ε

q−ζ

)
+ 1 − 2

( ε+q
q

)
≡

∑
ζ∈Z

( p+ζ

q

)( ε+q

ζ

)( p−ε

q−ζ

)
+ 1 − 2

( ε+q
q

)
;

if ζ , q the summand is congruent to zero, so we take ζ = q to get

T8 ≡
( ε+q

q

)
+ 1 − 2

( ε+q
q

)
.
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Hence

S 8 ≡ (1 −
( e+q

q

)
)
∑
w∈Z


(

k l − 1
m − 1 o

)
(

w a − w
e − w c − e + w − 1

)
 . �

Thus we obtain the expression for Σ1 in the case ε < p − q; the expressions for Σ2, Σ3 and Σ4 follow
similarly, as does the case ε > p − q. This completes the proof of Proposition 2.4. �

Proof of Theorem 2.2. Adding together the expressions for Σ1, Σ2, Σ3, Σ4 in Proposition 2.4, we find

that the coefficient of
(
pk + q + ε pl − ε

pm − ε po + ε

)
in Ψ(A) ◦ Ψ(B) is

( ε+q
q

)∑
w∈Z


(

k l
m o

)
(

w a − w
e − w c − e + w

)
 + (1 −

( ε+q
q

)
)
∑
w∈Z


(

k + 1 l − 1
m − 1 o + 1

)
(

w a − w
e − w c − e + w

)
 .

But this is simply
( ε+q

q

)
times the coefficient of

(
k l
m o

)
in A ◦ B plus (1 −

( ε+q
q

)
) times the coefficient of(

k + 1 l − 1
m − 1 o + 1

)
in A ◦ B, which is what we require. �

Remark. Note that in the case q = p − 1, Ψ takes the form

Ψ : A 7−→
p−1∑
β=0

A−β,q;

this is reminiscent of the case q = 0, and the simpler forms of Ψ in these cases afford much simpler
proofs. The author has been unable to generalise these proofs for all q.

3 Dual Weyl modules

3.1 Bideterminants

We use the definition of ∇(λ) given in [6] (where it is called M(λ)) and [3] (where it is called Dλ).
We revert temporarily to the notation {ξi, j | i, j ∈ I(n, r)} for the standard basis of S (n, r). Here I(n, r)
is the set of functions from {1, . . . , r} to {1, . . . , n}, usually written as multi-indices i1 . . . ir. We use ∼ to
indicate conjugacy under the natural actions of Sr on both I(n, r) and I(n, r) × I(n, r), and we identify
ξi, j and ξk,l if (k, l) ∼ (i, j).

Let A(n, r) be the dual vector space to S (n, r), with basis element ci, j dual to ξi, j. This has a natural
S (n, r)-module structure via

ξ ◦ ci, j =
∑

s∈I(n,r)

cs, j(ξ).ci,s.

(Note that historically S (n, r) has been constructed as the dual of A(n, r), and so many authors write
ξ(cs, j) where we write cs, j(ξ). We use ◦ to denote the module action of S (n, r) on A(n, r) as opposed
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to the dual vector space action. No confusion with the multiplication ◦ in S (n, r) need arise.) We shall
construct ∇(λ) as a submodule of A(n, r).

Given a partition λ of r, we construct the corresponding Young diagram, and then define a basic λ-
tableau T λ to be a bijection from the set of nodes of the Young diagram to the set {1, . . . , r}; we usually
write T λ by drawing the diagram of λ with each node replaced by its image under T λ. For i ∈ I(n, r)
we write T λ

i for the composite iT λ, and similarly indicate T λ
i by means of a diagram. We then define

C(T λ) 6 Sr to be the subgroup of Sr which fixes the set of values corresponding to each column of the
Young diagram. Given i, j ∈ I(n, r) we can then define the bideterminant

T λ(i : j) =
∑

π∈C(Tλ)

(−1)πci,π( j).

Let l = l(λ) ∈ I(n, r) be such that if T λ maps a node in the xth row of the Young diagram to y, then
ly = x. Then we define the dual Weyl module ∇(λ) to be the k-span of all the bideterminants T λ(l : i).
The isomorphism type of this module does not depend on our choice of T λ.

Given T λ, we say that i ∈ I(n, r) is standard if the entries in T λ
i are increasing along rows and strictly

increasing down columns. A basis for ∇(λ) is then given by

{T λ(l : i) | i is standard}.

In [6], it is noted that T λ(i : π j) = (−1)πT λ(i : j) for π ∈ C(T λ), and an explicit formula for the action of
S (n, r) on bideterminants is given:

ξ ◦ T λ(i : j) =
∑

u∈I(n,r)

cu, j(ξ)T λ(i : u). (2)

When we specialise to the case n = 2, the dual Weyl module takes a particularly simple form. We
take λ = (a, b) with a + b = r, and choose

T λ =
1 . . . . . . a

a + 1 . . . r
;

i ∈ I(2, r) is then standard precisely if
i = 1s2r−s

for some b 6 s 6 a; write xs for the corresponding bideterminant T λ(l : i). We seek a description of the
module action.

Let i = 1s2r−s be standard. From (2) we see that ξu,v ◦ T λ(l : i) is zero unless v ∼ i. So assume this,
and write (without loss)

(u, v) = (1e2g1 f 2h, 1s2r−s)

with e + g = s. We then have
ξu,v ◦ T λ(l : i) =

∑
w

T λ(l : w),

the sum being over all w ∈ I(n, r) with exactly e 1s among w1, . . . ,ws and exactly f 1s among ws+1, . . . ,wr.
Take such a w, and consider the first b columns of T λ

w; for T λ(l : w) to be non-zero, each of these must be
of the form 1

2 or 2
1, and if this is the case, then T λ(l : w) = (−1)κxe+ f , where κ is the number of columns

of T λ
w of the form 2

1.
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In order to find the number of such w corresponding to each value of κ, we must choose which of
the first b columns of T λ

w will equal 2
1, and then choose how to arrange the remaining a − b entries in the

first row. This gives exactly ( b
κ

)( e+g−b

g−κ

)( f +h−b

f−κ

)
such w. Hence, reverting to the notation using M(r) for the standard basis of S (2, r), we have the
following.

Proposition 3.1. Let λ = (a, b) be a partition of r. Then ∇(λ) has a basis {xs | a > s > b}, and the action
of S (2, r) on ∇(λ) is given by

(
e f
g h

)
◦ xs =


(∑

κ∈Z(−1)κ
( b
κ

)( e+g−b

g−κ

)( f +h−b

f−κ

))
xe+ f (e + g = s)

0 (e + g , s).

Remark. To aid notation, we write

C(a,b)(
(
e f
g h

)
) =

∑
κ∈Z

(−1)κ
( b
κ

)( e+g−b

g−κ

)( f +h−b

f−κ

)
and extend C(a,b) linearly over S (2, r).

Note that e+g might lie between a and b, while e+ f does not. No ambiguity need arise in Proposition

3.1, since in this case it is easily seen that C(a,b)(
(
e f
g h

)
) = 0.

3.2 Restriction of dual Weyl modules

Given an algebra A with an idempotent e, there is a natural functor between the module categories
of A and eAe, given by sending an A-module M to eM. Now recall the embedding of S (2, d) in S (2, r)
from [2, Theorem 3.2].

Theorem 3.2. Let p = char(k), and let s be any non-negative integer. If d < r, d < 2.ps and d ≡ r
(mod ps), put m = r − d. Then we may embed S (2, d) in S (2, r) via

Φ :
(
i j
k l

)
7−→



i + m j
k l

 (if i + j > k + l and i + k > j + l) i f + m
k l

 (if i + j > k + l and i + k < j + l) i f
k + m l

 (if i + j < k + l and i + k > j + l) i j
k l + m

 (if i + j < k + l and i + k < j + l).

Moreover, if we put

e =

d∑
ε=0

Φ(
(
ε 0
0 d − ε

)
),

then e is an idempotent in S (2, r) and Φ(S (2, d)) = eS (2, r)e.
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Given d,r as in Theorem 3.2, let

Gd,r : mod(S (2, r)) −→ mod(S (2, d))

be the functor sending a module M to eM. We then have the following result.

Theorem 3.3. Let d, r be as above, and let (a, b) be a partition of r. Then

Gd,r(∇(a, b)) �

∇(a − m, b) (if a − b > m)

0 (otherwise).

Proof. Since
(
i 0
0 l

)
◦ xs equals xs if i = s and zero otherwise, we have

e ◦ ∇(a, b) = 〈xs | a > s > b; s >
r + m

2
or s <

r − m
2
〉.

In particular, if a − b < m, we have e ◦ ∇(a, b) = 0. If a − b > m, we define

α(s) =

s − m (s > r+m
2 )

s (s < r−m
2 ),

and then define a linear isomorphism

f : e ◦ ∇(a, b) −→ ∇(a − m, b)

via
xs 7−→ xα(s);

we need to show that this is an isomorphism of modules. For A ∈ M(d), we have

c1(Φ(A)) = s⇔ c1(A) = α(s)

and
r1(Φ(A)) = s⇔ r1(A) = α(s)

so we need only check that
C(a,b)(Φ(A)) ≡ C(a−m,b)(A).

Put A =

(
i j
k l

)
; C(a,b)(A) is unchanged if we swap the columns and/or the rows of A, so we may assume

that i + j > k + l and i + k > j + l, so that Φ(A) =

(
i + m j

k l

)
. Then the left-hand side equals

∑
κ

(−1)κ
( b
κ

)( i+m+k−b

k−κ

)( j+l−b

j−κ

)
;

for the summand to be non-zero we must have κ > 0, whence

k − κ 6 k 6
d
2
< ps;

then, by [2, Lemma 3.1], ( i+m+k−b

k−κ

)
≡

( i+k−b

k−κ

)
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and so

C(a,b)(
(
i + m j

k l

)
) ≡

∑
κ

(−1)κ
( b
κ

)( i+k−b

k−κ

)( j+l−b

j−κ

)
= C(a−m,b)(

(
i j
k l

)
). �

For the embedding Ψ : S (2, r) ↪→ S (2, rp + q) of Theorem 2.2, we cannot use exactly the same kind
of functor, since the embedded algebra is not of the form eS (2, rp + q)e. But we may use a composition
of such a functor with restriction: let S be the image of Ψ, and let e = Ψ(1S (2,r)) be the identity element
of S . Put S = eS (2, rp + q)e. Then there is a natural functor

mod(S ) −→ mod(S )

given by restriction: S is a subalgebra (with 1) of S , and so we simply regard an S -module as an
S -module. Now define

Fr,q : mod(S (2, rp + q)) −→ mod(S (2, r))

to be the composite of this functor with the functor

mod(S (2, rp + q)) −→ mod(S )

given by sending a module M to eM. We wish to identify Fr,q(∇(λ)).

Theorem 3.4. Let λ = (a, b) be a partition of pr + q, and put a = pc + d with 0 6 d < p. Then

Fr,q(∇(λ)) �

∇(c, r − c) (if d > q and c > r
2 )

0 (otherwise).

To prove this, we begin by examining the coefficients C(a,b)(Ψ(A)).

Lemma 3.5. Take A =

(
i j
k l

)
∈ M(r). Then, provided a > p(i + k) + q > b,

C(a,b)(Ψ(A)) =

0 (d < q)

C(c,r−c)(A) (d > q).

Proof. We have

C(a,b)(Ψ(A)) =

p−1∑
β=0

( β+q
q

)
C(a,b)(Aβ,q) +

p−1∑
γ=0

(1 −
( p−γ+q

q

)
)C(a,b)(A−γ,q);

If γ = 0 or γ = p, then 1 −
( p−γ+q

q

)
≡ 0, so we may replace γ with p − β in the second sum and still sum

over 0 6 β 6 p − 1. Rearranging, we get

C(a,b)(Ψ(A)) ≡ Σ5 + Σ6,
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where

Σ5 =

p−1∑
β=0

( β+q
q

)
(C(a,b)(Aβ,q) −C(a,b)(Aβ−p,q))

=

p−1∑
β=0

∑
κ∈Z

( β+q
q

)
(−1)κ

( pr+q−a
κ

)( a−p j−pl

pk−β−κ

)( a−pi−pk−q

p j−β−κ

)
−

p−1∑
β=0

∑
κ∈Z

( β+q
q

)
(−1)κ

( pr+q−a
κ

)( a−p j−pl

pk+p−β−κ

)( a−pi−pk−q

p j+p−β−κ

)
and

Σ6 =

p−1∑
β=0

C(a,b)(Aβ−p,q)

=

p−1∑
β=0

∑
κ∈Z

(−1)κ
( pr+q−a

κ

)( a−p j−pl

pk+p−β−κ

)( a−pi−pk−q

p j+p−β−κ

)
.

We deal with Σ5 first. Replacing κ with p + κ in the second half of the sum and noting that( pr+q−a
κ

)
+

( pr+q−a

p+κ

)
≡

( pr+p+q−a

p+κ

)
,

we have

Σ5 ≡

p−1∑
β=0

∑
κ∈Z

( β+q
q

)
(−1)κ

( pr+p+q−a

p+κ

)( a−p j−pl

pk−β−κ

)( a−pi−pk−q

p j−β−κ

)
.

Put κ + β = pµ − ν with 0 6 ν 6 p − 1 and put a = pc + d as above to get

Σ5 ≡

p−1∑
β=0

∑
µ∈Z

p−1∑
ν=0

( β+q
q

)
(−1)µ+ν+β

( pr+p+q−pc−d

pµ+p−ν−β

)( pc−p j−pl+d

pk−pµ+ν

)( pc−pi−pk+d−q

p j−pµ+ν

)
;

we consider separately the cases d = q, d > q, d < q.

• d = q

The second binomial coefficient is congruent to zero unless ν + β ≡ 0, and the last binomial
coefficient is zero unless ν = 0. Thus in this case we have

Σ5 ≡
∑
µ∈Z

(−1)µ
( pr+p−pc

p+pµ

)( pc−p j−pl+d

pk−pµ

)( pc−pi−pk

p j−pµ

)
≡

∑
µ∈Z

(−1)µ
( r+1−c

1+µ

)( c− j−l

k−µ

)( c−i−k
j−µ

)
.

• d > q

The term with β = ν = 0 gives

(−1)µ
( r−c

µ+1

)( c− j−l

k−µ

)( c−i−k
j−µ

)
= X,
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say. If β + ν > p then the reduction modulo p of the summand in Σ5 has a factor
( p+q−d

2p−β−ν

)( d−q
ν

)
,

which equals zero. So the sum of those terms with β + ν > 0 is

p−1∑
β=0

∑
µ∈Z

min(p−β,p−1)∑
ν=max(1−β,0)

( β+q
q

)
(−1)µ+ν+β

( r−c
µ

)( p+q−d

p−β−ν

)( c− j−l

k−µ

)( d
ν

)( c−i−k
j−µ

)( d−q
ν

)
;

we may replace the range of summation for ν with
∑
ν∈Z, since

( p+q−d

p−β−ν

)( d
ν

)
= 0 if β = ν = 0 or

β + ν > p or ν < 0 or ν > p. If we replace (−1)β with
( p−1

β

)
, we may also replace the range of

summation for β with Z. Terms involving β then give∑
β∈Z

( β
ζ

)( q

q−ζ

)( p−1

β

)( p+q−d

p−β−ν

)
≡
( p−1

ζ

)( q

ζ

)( 2p−1+q−d−ζ

p−ν−ζ

)
by Lemma 2.3, whence

Σ5 ≡ X +
∑

µ,ν,ζ∈Z

(−1)µ+ν
( r−c
µ

)( c− j−l

k−µ

)( d
ν

)( c−i−k
j−µ

)( d−q
ν

)( p−1

ζ

)( q

ζ

)( 2p−1+q−d−ζ

p−ν−ζ

)
.

Consider the possible values of ζ: if ζ < 0 then
( q

ζ

)
= 0; if ζ > p + q − d − 1, then ζ > q, so( q

ζ

)
= 0. If 0 6 ζ 6 p + q − d − 1 and ν + ζ > 0, then the reduction modulo p of

( 2p−1+q−d−ζ

p−ν−ζ

)
has

a factor
( p−1+q−d−ζ

p−ν−ζ

)
, but

( p−1+q−d−ζ

p−ν−ζ

)( d−q
ν

)
= 0. So the only non-zero contribution comes from

ζ = ν = 0, which gives

Σ5 ≡ X +
∑
µ∈Z

(−1)µ
( r−c
µ

)( c− j−l

k−µ

)( c−i−k
j−µ

)
.

• d < q

Here the term with µ = β = 0 gives∑
µ∈Z

( r+1−c

µ+1

)( c− j−l

k−µ

)( c−i−k
j−µ

)
= Y,

say. If ν + β > p, then again the summand in Σ5 is zero. If 0 < ν + β 6 p, then the reduction of
modulo p of the summand in Σ5 has factors

( β+q
q

)( q−d

p−β−ν

)( d
ν

)
. If this is non-zero, then we must

have

β + q < p,

p − β − ν 6 q − d,

ν 6 d,

which gives a contradiction. Hence Σ5 ≡ Y .



14 Matthew Fayers

Now we evaluate Σ6; again we put κ + β = pµ − ν, and replace
(∑p−1

β=0(−1)β . . .
)

with
(∑

β∈Z

( p−1

β

)
. . .

)
.

We have

Σ6 ≡
∑
β∈Z

∑
µ∈Z

p−1∑
ν=0

(−1)µ(−1)ν
( p−1

β

)( pr+q−a

pµ−ν−β

)( a−p j−pl

pk+p−pµ+ν

)( a−pi−pk−q

p j+p−pµ+ν

)
=

∑
µ∈Z

p−1∑
ν=0

(−1)µ(−1)ν
( pr+p+q−a−1

pµ−ν

)( a−p j−pl

pk+p−pµ+ν

)( a−pi−pk−q

p j+p−pµ+ν

)
;

for the summand to be non-zero modulo p, the mod p residue of q − a − 1 must be at least that of −ν,
and the mod p residue of a − q must be at least that of ν. This is only possible if ν = 0, so we get

Σ6 ≡
∑
µ∈Z

( pr+p+q−a−1
pµ

)( a−p j−pl

pk+p−pµ

)( a−pi−pk−q

p j+p−pµ

)
.

Replacing a with pc + d and µ with µ + 1 then gives

Σ6 ≡

−X (d > q)

−Y (d < q),

where X and Y are as above. Adding Σ5 to Σ6 gives

C(a,b)(Ψ(A)) ≡

0 (d < q)∑
µ∈Z(−1)µ

( r−c
µ

)( c− j−l

k−µ

)( c−i−k
j−µ

)
(d > q)

as required. �

Proof of Theorem 3.4. Take A ∈ M(r) as above. Each of the matrices in Ψ(A) has first column sum
equal to p(i + k) + q and first row sum equal to p(i + j) + q, and so we have

Ψ(A) ◦ xs =

0 (s , p(i + k) + q)

C(a,b)(Ψ(A)).xp(i+ j)+q (s = p(i + k) + q).

If d < q, then from Lemma 3.5 we have Ψ(A) ◦ xs = 0 for all A and s, so Fr,q(∇(a, b)) = 0 as required.
Now suppose d > q. From above we have

Fr,q(∇(a, b)) ⊂ 〈xs | s ≡ q (mod p)〉;

in fact equality holds: the identity element of S (2, r) is
∑
ε

(
ε 0
0 r − ε

)
; by Lemma 3.5, if c > ε > r − c,

we have C(a,b)(Ψ(
(
ε 0
0 r − ε

)
)) ≡ C(c,r−c)(

(
ε 0
0 r − ε

)
) ≡ 1, and so e ◦ xs = xs if s ≡ q (mod p).

If c < r
2 , then there is no xs with s ≡ q (mod p), and so Fr, j(∇(a, b)) = 0, as required. Otherwise,

we define a bijection α from {s | a > s > b, s ≡ q (mod p)} to {r − c, r − c + 1, . . . , c} by sending s to
s−q

p , and then a linear isomorphism

f : Fr,q(∇(a, b)) −→ ∇(c, r − c)
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by
xs 7−→ xα(s).

We need to show that this is a module isomorphism. But each matrix B involved in Ψ(A) has c1(B) = s
if and only if c1(A) = α(s), and r1(B) = s if and only if r1(A) = α(s), so by Lemma 3.5 we have
A ◦ ( f (xs)) = Ψ(A) ◦ xs and the theorem is proved. �

4 Decomposition numbers for S (2, r)

In this section we show that we can use the results of the previous sections to recover the decompo-
sition numbers [∇(λ) : L(µ)] for the Schur algebras S (2, r). These were first found by Carter and Cline
[1] in the context of the special linear group SLn(k). First we need to identify the images of the simple
modules L(λ) under the functors Gd,r and Fr,q. Then we can use the fact that both of these functors are
exact to find the decomposition matrices of S (2, r) by induction, given only a few of the decomposition
numbers.

Lemma 4.1. The image of a simple module under Gd,r or Fr,q is either simple or zero.

Proof. We use contravariant duality. Given a module M for S (2, r), define the contravariant dual M◦ of
M to be the dual vector space M∗ with transpose action

(A ◦ φ)(m) = φ(AT ◦ m)

for A ∈ M(r),m ∈ M, φ ∈ M∗. The embedding Φ : S (2, d) ↪→ S (2, r) commutes with transposition of
matrices, i.e.

Φ(AT) = (Φ(A))T

for A ∈ M(d), where transposition T is extended linearly. Hence Gd,r respects contravariant duality, i.e.

Gd,r(M◦) � Gd,r(M)◦

for M ∈ mod(S (n, r)).
It is known ([6], Theorem 3.4.9) that L(λ) is isomorphic to its contravariant dual; hence Gd,r(L(a, b))

is a contravariant self-dual submodule of Gd,r(∇(a, b)). If a− b < m this gives Gd,r(L(a, b)) = 0, while if
a−b > m, then Gd,r(L(a, b)) is a contravariant self-dual submodule of ∇(a−m, b). The latter has a unique
simple submodule L(a − m, b), which must constitute the socle of Gd,r(L(a, b)) if this is non-zero. But
L(a−m, b) is contravariant self-dual, and so the cosocle of Gd,r(L(a, b)) is also isomorphic to L(a−m, b).
L(a − m, b) occurs only once as a composition factor of ∇(a − m, b), so if Gd,r(L(a, b)) , 0, then

soc(Gd,r(L(a, b))) = cosoc(Gd,r(L(a, b))) = Gd,r(L(a, b)) � L(a − m, b).

Similarly, for (a, b) a partition of pr + q with a = pc + d, we have

Fr,q(L(a, b)) � L(c, r − c) or 0. �
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Remark. In fact, for an algebra A with idempotent e, the functor M 7→ eM always sends simple modules
to simple modules or to zero; moreover {eL | L a simple A-module} is a complete set of irreducibles for
eAe ([6], Proposition 4.1.3). So we know that Gd,r(L(a, b)) � L(a −m, b) if a − b > m. The situation for
Fr,q is more complicated.

Since we now know Gd,r(L) for simple modules L, we have an immediate consequence for decom-
position numbers.

Proposition 4.2. Let d, r, m be as in Theorem 3.2, and let (a, b),( f , g) be partitions of r with a − b >
m, f − g > m. Then

[∇(a, b) : L( f , g)] = [∇(a − m, b) : L( f − m, g)].

We now recall the principle of column removal from [5].

Theorem 4.3 (James). If λ, µ are partitions of r both with exactly n non-zero parts, then define the
n-part partitions λ̌, µ̌ by λ̌i = λi − 1, µ̌i = µi − 1. Then

[∇(λ) : L(µ)] = [∇(λ̌) : L(µ̌)].

In the case n = 2, suppose (a, b) and ( f , g) are partitions of r, and put α = a − b, β = f − g. The
principle of column removal says that the number

dα,β = [∇(a, b) : L( f , g)]

is independent of r. So finding the decomposition numbers for all Schur algebras S (2, r) is equivalent
to finding all the numbers dα,β for all pairs (α, β) of non-negative integers of the same parity. Since
[∇(λ) : L(µ)] = 0 unless λ dominates µ, we have dα,β = 0 for α < β. We re-state Proposition 4.2 as
follows.

Proposition 4.4. Suppose α > β are non-negative integers of the same parity with α − β < 2ps and
β > m ≡ 0 (mod ps). Then

dα,β = dα−m,β−m.

Now we show that we can find all the decomposition numbers for S (2, r) provided we have the
decomposition numbers for S (2, r) with r < 2p. First we need to find the images of the simple modules
under the functor Fr,q.

Proposition 4.5. Given the decomposition numbers dα,β for α, β < 2p, we can find Fr,q(L(a, b)) for every
partition (a, b) of pr + q.

Proof. By Proposition 4.4 we can find all the decomposition numbers dα,β with α − β < 2p, that is,
we can find the last p entries of each row of the decomposition matrix for S (2, pr + q). We now find
Fr,q(L(a, b)) by induction on a. For the smallest value of a, that is a = d

pr+q
2 e, we have L(a, b) = ∇(a, b),

and we know Fr,q(∇(a, b)). Now suppose we know Fr,q(L(a′, b′)) for a′ < a. If Fr,q(∇(a, b)) = 0, then
Fr,q(L(a, b)) = 0. Otherwise Fr,q(∇(a, b)) = ∇(c, r − c), so some composition factor of ∇(a, b) maps to
L(c, r − c) under Fr,q. But all composition factors of ∇(a, b) other than L(a, b) have the form L(a′, b′)
for a′ < a; we know the images under Fr,q of these factors; in particular, we know (from the proof of
Lemma 4.1) that Fr,q(L(a′, b′)) � L(c, r − c) only if a − a′ < p. And so Fr,q(L(a, b)) � L(c, r − c) if and
only if for every a′ with Fr,q(L(a′, b′)) � L(c, r − c) we have [∇(a, b) : L(a′, b′)] = 0. �

From the above proof, we immediately see the following.
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Corollary 4.6. If a is minimal such that Fr,q(∇(a, b)) � ∇(c, r−c), i.e. if a ≡ q (mod p), then Fr,q(L(a, b)) �
L(c, r − c).

Proposition 4.7. Given the decomposition numbers dα,β for α, β < 2p, we can find all the decomposition
numbers dα,β.

Proof. We proceed by induction on α − β, with the decomposition numbers for α − β < p following
from Proposition 4.4. Given α, β of the same parity with α − β = k, take R of the same parity as α and β
with R ≡ β (mod p) and sufficiently large that there exist partitions (a, b) and ( f , g) of R with a− b = α,
f − g = β. Putting R = rp + q with 0 6 q < p, we have f =

R+β
2 ≡ q (mod p), so by Corollary 4.6

we have Fr,q(L( f , g)) � L(c, r − c) (where now c = b
f
pc). Any other simple modules L( f ′, g′) of S (2,R)

with Fr,q(L( f ′, g′)) � L(c, r − c) satisfy f ′ > f , so by induction we know the composition multiplicities
of these simples in ∇(a, b). Since Fr,q is exact, we have

[Fr,q(∇(a, b)) : L(c, r − c)] =
∑

f ′
[∇(a, b) : L( f ′, g′)],

the sum being over all f ′ (including f ) with Fr,q(L( f ′, g′)) � L(c, r − c). Hence we can find the decom-
position number

[∇(a, b) : L( f , g)] = dα,β. �

Example. Let k be a field of characteristic 2; we show that the above results give a very simple recursive
formula for the decomposition numbers dα,β, given only the information

d2,0 = 1.

By Proposition 4.4, we have d2α,2α−2 = 1 for all α. Now consider the embedding S (2, r) ↪→ S (2, 2r).
We have

Fr,0(∇(2a, 2b)) � ∇(a, b),

Fr,0(∇(2a + 1, 2b − 1)) � ∇(a, b);

since d2α,2α−2 = 1, we deduce

Fr,0(L(2a, 2b)) � L(a, b),

Fr,0(L(2a + 1, 2b − 1)) = 0.

Thus

[∇(2a, 2b) : L(2c, 2d)] = [∇(a, b) : L(c, d)] (3)

[∇(2a + 1, 2b − 1) : L(2c, 2d)] = [∇(a, b) : L(c, d)]. (4)

Next we consider the embedding S (2, r) ↪→ S (2, 2r + 1). This gives

Fr,1(∇(2a + 1, 2b)) � ∇(a, b),

Fr,1(∇(2a, 2b + 1)) = 0;
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correspondingly

Fr,1(L(2a + 1, 2b)) � L(a, b),

Fr,1(L(2a, 2b + 1)) = 0.

Hence

[∇(2a + 1, 2b) : L(2c + 1, 2d)] = [∇(a, b) : L(c, d)], (5)

[∇(2a, 2b + 1) : L(2c + 1, 2d)] = 0. (6)

Applying (3–6) for all r, we find the recursive formula

dα,β =



d α
2 ,

β
2

(if α and β are even and congruent mod 4)

d α−2
2 ,

β
2

(if α and β are even but not congruent mod 4)

d α−1
2 ,

β−1
2

(if α and β are odd and congruent mod 4)

0 (if α and β are odd but not congruent mod 4).

5 Generalisations

Of course, we hope to be able to extend these methods to find Schur algebra embeddings for the
Schur algebras S (n, r) with n greater than two. S (n, r) has a basis indexed by the set of n × n matrices
with non-negative integer entries summing to r, and there is a multiplication rule which generalises that
for S (2, r). We have a conjectured embedding of S (n, r) in S (n, rp) for all n and r, and hope that this
together with other results could elucidate the symmetries of the decomposition matrices for these Schur
algebras.

The results ought also to extend to the quantum Schur algebra S q(n, r). In the case n = 2, the
decomposition matrices are known to have the same structure as for the classical case, but depending on
e = min{r | p|(1 + . . .+ qr−1)} rather than on p. But we cannot find the subalgebra embeddings suggested
by the decomposition matrices; S q(n, r) does not have the same natural basis as in the classical case.
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