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Abstract

Let k be a field of prime characteristic and let r be a positive integer. In this paper, we study the
Schur algebra S (2, r) over k and consider certain natural subalgebras.

1 Introduction

Let k be an infinite field of characteristic p, and let n be a positive integer and » a non-negative integer.
The Schur algebra S (n, r) over k is a finite-dimensional associative algebra whose module category is
equivalent to the category of r-homogeneous polynomial representations of the general linear group
GL, (k). There are several equivalent definitions of the Schur algebra; we shall use the definition in
terms of a basis and a multiplication rule given by Green.

For the essential results concerning the representation theory of the Schur algebra, the reader is urged
to consult the books of Green [2] and Martin [8]; we recall some important points.

For each partition A of r with at most n parts, one defines a module V(Q) for S (n, r), the dual Weyl
module. In the case p = 0, S(n,r) is semi-simple, and the V(A) are precisely the simple modules of
S (n,r). In positive characteristic, V(1) has a simple socle L(1), and the L(1) are precisely the simple
modules of S (n, r). The decomposition matrix of S (n, r) records the composition multiplicities [V(2) :
L(w).

The decomposition numbers for S (n, r) are known to be closely related to those for the symmetric
groups; for the theory of the latter, see the book by James [7]. James determined the decomposition
numbers for the symmetric groups corresponding to partitions with at most two parts ([5, 6]), and fol-
lowing this Carter and Cline [1] explicitly determined the decomposition matrix of S (7, r) in the case
n = 2. Define the function™: {0,...,2(p — 1)} - {0,...,p— 1} by

~ m (m
m=
2p-1)—-m (m

<p-1)
=2p-1)
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now say that a natural number ¢ has an admissible decomposition with respect to s if there exists an

t= Zmipi

i=0

expression

where 0 < m; < 2(p — 1) for each i, and such that

s= > mp.
Z

We then have the following.

Theorem 1.1 (Carter/Cline). [V(r — a,a) : L(r — b,b)] = 1 if there exists an admissible decomposition
of r — 2a with respect to r — 2b. Otherwise [V(r —a,a) : L(r — b,b)] = 0.

Henke [3] observed that in certain cases the decomposition matrix for S (2, d) occurs as a submatrix
in the bottom right-hand corner of the decomposition matrix for S(2, r); she then proved by module-
theoretic means in [4] that there are corresponding algebra embeddings S (2,d) — S(2,r). Her results

are as follows.

Theorem 1.2 (Henke). Let d < r be positive integers of the same parity such that for some s we have
d < p*andd=r (mod p°®). Then for 0 < a,b < d/2,

[V(r—a,a): L(r—b,b)] =[V(d — a,a) : L(d - b, b)].
Furthermore, there exists an idempotent e € S (2, r) such that
eS(2,re=5(2,d)
as k-algebras.

In fact a slightly stronger version of this result is true; we prove this stronger version by elementary
means.

The self-similar nature of the decomposition matrices for S (2, r) also suggests the existence of em-
beddings of Schur algebras S (2, r) which correspond to ‘dilations’ of the decomposition matrices. These

are described in Section 4; an interpretation in terms of modules is reserved for a later paper.

2 The Schur algebra S (2,r)

2.1 Green’s notation

We use the definition of the Schur algebra in terms of a basis given by Green in [2]. Let I(n, r) denote
the set of functions from {1,...,r} to {1,...,n}, which we normally write as multi-indices i ...i,. Let
S, act in the natural way on I(n, r) and on I(n, r) X I(n, r), and use the symbol ~ to indicate S,-conjugacy
in both sets. Take a basis {&; j} indexed by ordered pairs (i, j) with &; ; regarded as the same as & iff
(k) ~ (k, D). Given i, j, k, 1, p,q € I(n,r), define Z(i, j, k, I, p, g) to be the number of s € I(n, r) such that

(is .]) ~ (p’ S)
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and
(s,q) ~ (k, D).

Now define a multiplication rule for basis elements by

&t = ) 20, kL p, @) képg
P.9
where the sum is over a set of representatives (p, g) of S,-orbits on I(n,r) X I(n,r). Taking a k-vector

space with basis {£; ;} and extending this multiplication rule linearly gives the Schur algebra S (n, r).

2.2 New notation

From now on, we restrict to the case n = 2. Let M(r) denote the set of 2 X 2 matrices with non-
negative integer entries summing to r. Given i, j € I(2,r), we define m,, to be the number of x €
{1,...,r} such that i(x) = u, j(x) = v for u,v = 1,2. We then define a function f : I(n,r) — M(r) by
sending (i, j) to the matrix with entries m,,. Now f((i, j)) = f((k, D)) iff (i, j) ~ (k,I), and so we may
index our basis of S(2,7) by M(r). In fact we let M(r) be a basis for S(2,r) by identifying &; ; with
f((, j)). We now hope to write the multiplication rule for S (2, r) in terms of the matrices in M(r); we
shall write this as A o B to avoid any confusion with ordinary matrix multiplication.

For A € M(r), denote by r1(A), r2(A) the first and second row sums of A, and by c(A), c2(A) the first
and second column sums of A. Now for A, B € M(r), define N(A, B) to be the set of matrices C € M(r)
with r1(C) = r1(A) and ¢1(C) = ¢1(B). In addition, if c{(A) = r;(B), define R(A, B) to be the set of 2 x 2
matrices D with (possibly negative) integer entries such that r,(D) = a1, ¢,(D) = by, for u,v = 1,2.

For any 2 x 2 matrices C, D with integer coefficients (non-negative in C), we now define
C Cuy
()= 11 ()
u,v=1,2

Proposition 2.1. The multiplication rule for the Schur algebra S(2,r) is given in terms of the basis
elements A € M(r) by

0 (c1(A) # r1(B))
AoB= c
2.CeNA,B) (X DeR(A,B) (D))-lk-C (c1(A) = ri(B)).

Proof. Suppose that A = (a Z), B = [e Z] . Since Z(i, j, k, I, p,q) = O unless j ~ k, we have Ao B=0
c g

unless a + ¢ = e + f (and hence b + d = g + h). So suppose this holds, and consider the coefficient c¢

of C = [W x) in Ao B. Now Z(i, j,k,I,p,q) = Ounless i ~ p and [ ~ g, so if cc # 0 we must have
y z
a+b=w+xande+g=w+y, ie. C € N(A, B). If all these equalities hold, then we write (without

loss)

A= glalbzvzd’]azblzrzd,

B = &errason 1e2r 19205
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C = &iwirpoz 1war oz
Hence c¢ is the number (modulo char k) of s € I(n, r) such that
1. (194122924, 19201924 ~ (1V1%272%, ), and
2. (1°1/2820 1271820 ~ (s, 1W2¥1727).

Condition (1) holds iff there are exactly a 1s among sy, ..., sy, and exactly ¢ 1s among Sy4y+1, -- -,
sy. Condition (2) holds iff there are exactly e 1s among sy, ..., Sy, Swsxt1, ---» Swrxsy and exactly f 1s
among Sy+1 - - - » Sywtxs Swixty+1s - - -» Sp. 1f there are exactly i 1s among sy, ..., sy, then there are exactly

a—ilsamong $,41, ..., Syix, €xactly e —i 1s among y1 41, - - ., Sw+x+y and exactly i + ¢ — e 1s among

(D)) = (5)

i a—1i

Sw+x+ys - --» Sp. Hence there are

possibilities for s, where D; = ( ) € R(A, B). It is easily seen that the set of D € R(A, B)

e—i i+c—e
with non-negative entries is precisely the set of such D;, and so summing over i we obtain

“ Z(;) ) DERZ(A,B)(Z)’

since those matrices in R(A, B) with some entries negative do not affect the above sum. The result fol-

lows. O

Example. Suppose r = 5, and take A = (i 1], B = (1 T] Then we have

0 0
1 2)(0 3
_ 1+ 1-p
R(A’B)_{(O—ﬂ 2+BI,BEZ},
and
(1 2] 1 2) (0 3 [0 3)
02:2’02:0,11=0’11=3
11 0 2 11 0 2
(0 2] 1 1) (0 2 [1 1)
Hence
(2 10(1 3]:2(1 2+3(0 3]'
2 0/ |0 1 0 2 11

We now make an observation to be used later on. Given A € M(r), let A° be a with its columns
interchanged, and let A” be A with its rows interchanged. If we extend the functions ¢ and " linearly, we

have the following.

Lemma 2.2.
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1. Ao B° = (Ao B);

2. AAoB=(AoB);

3. AcB"=AoB.
Proof. We have N(A, B°) = {C°| C € N(A, B)}, and R(A, B°) = {D| D € R(A, B)}; since (LC)Z) = (g), (1)
follows. (2) is similar.

For (3) we note first that N(A¢, B") = N(A, B); given C € N(A, B), recall that we have r;(C) = r;(A)
and c;(C) = ci(B), and so defining

d,‘j — Cij — dl‘j

gives a map R(A, B) — R(A¢, B"), which is bijective. Since ( “ ) = (Cij ), we find that the coeflicient

) ] ] cij=dij dij
of C in A€ o B" is the same as in A o B. O

3 Subalgebra embeddings

We begin with a lemma concerning binomial coefficients.
Lemma 3.1. Let X, Y, s, m be integers with X, s,m > 0, and let p be a prime.

1. IfY < p?, then

(X+:lp3)z();) (mod p).
2. IfY > X — p®, then s
(o) = () (mod ).

Proof. We have (X+:1p x) = };0 ( Yi.)( mlp ' ) (mip S) is divisible by p except when i = 0, and this gives

(1). (2) follows immediately. |

We now use our new basis of the Schur algebra S (2, r) to re-prove Henke’s result and embed S (2, d)
in S (2, r) for certain d < r. Strictly speaking we do not embed S (2, d) as a subalgebra, since S (2, r) and
S(2,d) c S(2,r) will not have the same identity element; in fact we embed it as a subset of the form
eS (2, r)e for e an idempotent.

Suppose d < r with r —d = m. Define ¢ : M(d) — M(r) by mapping

e+m f .
(ife+ fz2g+hande+g>f+h)
g h
e f+m .
(ife+fz2g+hande+g< f+h)
A ES
hl—)
8
© | Gfe+f<gthande+gs f+h)
g+m h
e f .
(ife+ f<g+hande+g < f+h).
g h+m
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(¢ could be described informally as ‘adding m to the heaviest corner of each matrix’.) By linear extension
of ¢, we obtain a map © : S(2,d) — S(2,r). We claim that under certain circumstances this is an

embedding.

Theorem 3.2. Let p = char k, and let s be any non-negative integer. If d < r,d < 2.p*andd = r
(mod p?®), then the map © defined above is an embedding of S (2,d) in S (2, r).

Proof. We need to show that for A, B € M(d), ®(A) o ®(B) = ®(A o B). Suppose that

==l )

If e + g # i + j the result is obvious, so assume e + g = i + j. By interchanging rows and columns and
using Lemma 2.2, we may assume wlog thate + f > g+ h,e + g > f+ h(and hence i + j > k + [) and
i+k>j+1 sothat

_|e+m f _|itm
et fo-( )

where m = r — d is a multiple of p°. Let ¢ : M(d) — M(r) be the function which adds m to the top left
entry of each matrix.

Next we explicitly calculate N(A, B), N(®(A), ®(B)), R(A, B) and R(D(A), D(B)). Since e + f >
r/2 > j+ [ we have

et+f—-j-l+a j+l-a

N(A,B):{[
g+h—«a a

)|0<a/<min(j+l,g+h)}

and

m+e+f—-—j-Il+a j+l-a

N(D(A), D(B)) = {[ ]I O<a<min(j+lg+h)}

g+h—-«a o'
we also have
+B8 j-B

RA.B) ={¢/
(A, B) {( e B 5

)I BeZ}
and

-B B

So we have N(®(A), D(B)) = {¢(C)| C € N(A, B)} and R(®(A), ®(B)) = {y(D)| D € R(A, B)}. Since
®O(C) = Y(C) for C € N(A, B), it remains to show that for C € N(A, B), D € R(A, B) we have

(i) = (5) (mod

R(®(A), B(B)) = {[’” *; ALE _ﬁ]lﬁ e 7).

Let C € N(A, B) and D € R(A, B) be defined in terms of «, 8 as above. There are two cases to consider.

I Ifa>p+1, then(c)z(ﬁg

e
) = 0, since they both have a factor (J+ ‘ )
D B
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2. If @ < B + 1, then we consider the upper left entries
X=e+f—-j-Il+a,Y=e—-j+p

of C, D respectively. We must show that

()= () aoa py

by Lemma 3.1, this follows provided X — Y < p°. But

X-Y=f-l+a-p
<f
<p’
since d < 2p°.

The result follows. O

Remark. It is easily seen that if we put

K (io
e‘;q)(o a_if

then e is an idempotent in S (2, r) and O(S (2, d)) = eS (2, r)e. Hence the map @ is as promised.

4 More subalgebra embeddings

We now construct embeddings of Schur algebras S (2, r) which reflect more of the self-similarity of

the decomposition matrices. We need another lemma concerning binomial coefficients.
Lemma 4.1. Let p be a prime, and let i, j, k, [, w, x,, z, € be non-negative integers with € < p. Then
pi+e pj—¢€ i j
“ k l+€ ko1
— €
Z w+pa px—a+/&’ =l(w «x (mod p).
(I,ﬁ’y:() p p ) ( ]
py—a+y pira-B-vy y z

Proof. We use Lucas’s Lemma that

for b,d < p. This has corollaries

and
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for e not divisible by p. This enables us to dismiss immediately the case € = 0, so we assume that € > 0.

In order to use Lucas’s Lemma we need to know the greatest multiple of p less than each of the entries
+ -—a+
of pw+a px—a+p

py—a+y prta-fB-vy
v > a, so we must have p — € > 8 —« and p — € > y — « to get a non-zero residue. We must also have

], and so we split into cases. Note first that if 5+ y —a > p, then 8 > @ and

€ > aand € > 2p + a — 8 — 7, and these inequalities taken together give a contradiction. So we may

assume that the lower right entry pz + @ — 5 — 7y is always at least p(z — 1), and we split into cases; put

pi+€ pj—¢€
pk—€ pl+e

Bopy = ( W+ a px—a+p ]
py—a+y prta-p-y
and then write the sum as
p-1
Z Bopy=S1+S2+S3+8S4+Ss5+S6+S57+S3
a,B8,y=0

with the sums S'; as follows.

p—1 a—1 min(e—1,0-p)

$1=2, Bags
a=0 =0 v=0
p—la-la=-p

S2=2,0, 2, Bags
a=0 =0 y=a
p-la-1 a-1

S3= Bapy
a=0 =0 y=a—L+1
p-1a-1 p-1

S4= Bopy
a=0 =0 y=max(a,a—+1)
p—1 p—1 min(e—1,a-B)

S5 = Ba,ﬁ,y
a=0 =« y=0
p—1 p—1 a-B

S 6 = Ba’ﬁ y
a=0 B=a y=«a
p-1p-1  a-1

$1= 0, Bags
a=0 f=a y=a—f+1
p=1p-1 p-l

Ssg Bogy-

=0 f=a y=max(a,a—F+1)

I~

Now

Se6 = Boo,o
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We can write S| as

-1 a—1 min(e—1,0-0)
S =

"’3
Q

i j-1
[k—l [ ]
w x—1
[y—l 2 ]

p—€
p-aty

Il
[«

<
Il

03 y=0

](Z)(,f’a;)( e Mgy )
note thatif y <Qory>a —-Bory > athen( )( )( _;_y) = 0, so we have

min(a—1,a—0)

@) 2 Gl o) = () 2 Gl o)

v=0 YvEZL

=(2)(,5)

1 1[ i j—1)
p—1 a-
k-1 l
1= w x—1
y—1 Z

now if 8 < 0 or 8 > « then (p:;)(pl_)ﬁ) = 0, so we have

and so

](Z)( o) s )

thus

Similarly we show that
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and

<

ss=3 [kil ];]c)(”:f)

w p-a

5
1l
(=]

y—-1

X
Z
i J—l
_ l
Z

By further similar arguments, we can show that S35 =S4 =57 = Sg =0 (mod p).

Thus we have

5 = (NS0
(0
(DENO)
SN
= (DO

4.1 The embedding

We embed S (2,r) in S (2, rp) where p is the characteristic of k. Sadly we cannot express S (2, r)
as an algebra of the form eS (2, rp)e for an idempotent e; in fact it is a subalgebra (with 1) of such an

algebra.

Theorem 4.2. Let p = char k. There exists an embedding of S (2,r) in S (2, rp) defined on basis elements

by
pa pb .
(if b or c equals 0)
[a b] pc pd
4 —> )
C _ + —
f _(} paze poe (otherwise).
“\pc—€ pd+e

Proof. We need to check that the multiplication rule is preserved, i.e. that the coefficient of [p bop ] in

pk pl
pzi(paﬁ pb - {] . p_l(pem pf—n)
mo\pe—¢ pd+{ pg—1n ph+n

=0
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is the same as that of (; 5] in (a Z) o [e £ ), and that if j and k are positive then the coefficient of
c g

pi+€ pj—¢€
pk—€ pl+e
remains valid even if one of b, c, f, g is zero, for we may extend our definition of the product o to matrices

in the above product is the same as well, for € < p. Note that using the above product

with negative entries, and it will always give zero.

SetA=(a b],Bz(e f],A(:(paJr{ pb_’(],Bn:[peJrn pf—n].Thisgives
c d g h) ° \pc—¢ pd+¢ pg—n ph+ny

R(A; B)) = {[ pwra  pr-atd )| (W ’“] €RA,B),0<a<p-1}
py—a+n pzta={-n)\y z
The result now follows by taking Lemma 4.1 and summing over (W x] € R(A, B). O
y z
Remark. By putting

Zr: (pi 0 )

e = R

Py 0 pr-1i

we obtain an idempotent in S (2, rp) and hence an algebra eS (2, rp)e; S (2, r) is a subalgebra of this, with
identity e.
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