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Abstract

For any finite group G it is an interesting question to ask which ordinary irreducible repre-
sentations of G remain irreducible in a given characteristic p. We answer this question for p = 2
when G is the proper double cover of the alternating group. As a key ingredient in the proof, we
prove a formula for the decomposition numbers in Rouquier blocks of double covers of symmetric
groups, in terms of Schur P-functions.
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1 Introduction

An important problem in the modular representation theory of finite groups is to determine, for
a given group G and prime p, which ordinary irreducible representations of G remain irreducible in
characteristic p. This problem was solved for the symmetric groups in a series of papers [JM2, JM3,
Ly, Fa1, Fa2]. More recently, the author [Fa3, Fa4] completed the same task for the alternating groups,
and in [Fa5] for the double covers S̃n of the symmetric groups in characteristic 2. The main result
of the present paper (Theorem 4.4) is a solution to the same problem for the double covers of the
alternating groups in characteristic 2. We hope to address the odd-characteristic case in future work.

As a more general problem, one can ask whether a given ordinary irreducible representation
is homogeneous in characteristic p; that is, all the composition factors of its reduction modulo p are
isomorphic. In fact, it is shown in [Fa5] that solving our main problem for the double cover Ãn of
the alternating group is equivalent to determining which irreducible representations of S̃n labelled
by partitions with exactly two non-zero even parts are homogeneous in characteristic 2. So we work
almost entirely with S̃n in this paper, translating our results to Ãn as the final step. The problem of
determining all irreducible representations of S̃n which are homogeneous in characteristic 2 remains
unsolved, and we hope to address this in future work.

In the course of our work, we prove another substantial result on the decomposition numbers
for S̃n. A certain class of blocks of symmetric groups (known as Rouquier blocks or RoCK blocks) are
particularly well understood, and have been an important tool in proving various results relating to
the symmetric groups. In characteristic 2, blocks of Sn naturally correspond to blocks of S̃n, so one
can extend the definition of Rouquier blocks to S̃n. The proof of our main result depends on finding
an explicit formula (Theorem 5.3) for the decomposition numbers of Rouquier blocks of S̃n.

Proving our formula for decomposition numbers in Rouquier blocks requires some work with
symmetric functions – specifically, Schur P-functions, which have long been associated with projec-
tive representations of symmetric groups. We take a detour into the theory of symmetric functions to
prove an auxiliary formula (Theorem 3.9) needed for our main result on Rouquier blocks.

We now summarise the layout of this paper. Section 2 contains a brief review of the combina-
torics of partitions needed for our work on both symmetric functions and representation theory. In
Section 3 we prove the results we need on symmetric functions, briefly introducing background as
needed. In Section 4 we introduce the background we need on representations of Sn, S̃n and Ãn,
and state our main theorem. In Section 5 we introduce Rouquier blocks, state and prove a formula
for their decomposition numbers, and derive the consequences for our main theorem. In Section 6
we complete the proof of our main theorem by induction. We end with an index of notation.

Acknowledgements. The research in this paper would not have been possible without extensive
computations using GAP [GAP]. The author would also like to express his gratitude to an anony-
mous referee for a very thorough reading of the paper and numerous excellent suggestions for im-
provements to the text.



Irreducible projective representations of the alternating group in characteristic 2 3

2 Background on partitions

2.1 Compositions and partitions

A composition is defined to be an infinite sequence λ = (λ1, λ2, . . . ) of non-negative integers with
finite sum. If λ is a composition, its size is the sum |λ| = λ1 + λ2 + . . . , and we say that λ is a
composition of |λ|. The integers λ1, λ2, . . . are referred to as the parts of λ.

A partition is a composition λ such that λ1 ⩾ λ2 ⩾ . . . . We write P for the set of all partitions. If
λ ∈ P , we say that λ is a partition of |λ|. We write P(n) for the set of all partitions of n. We define
l(λ) to be the largest r for which λr > 0, and we say that λ has length l(λ).

When writing partitions, we usually group together equal parts with a superscript and omit the
trailing zeroes, so that (4, 3, 3, 1, 1, 0, 0, 0, . . . ) is written as (4, 32, 12). The partition (0, 0, 0, . . . ) is written
as ∅.

We will often consider partitions in which a subsequence of the parts is an arithmetic progres-
sion with common difference 4. So given integers a ⩾ b with a ≡ b (mod 4), we write a 4. . . b for
the arithmetic progression a, a − 4, a − 8, . . . , b. For example, (17, 15 4. . . 3, 2) means the partition
(17, 15, 11, 7, 3, 2).

The Young diagram of a partition λ is the set

[λ] =
{
(r, c) ∈ N2 ∣∣ c ⩽ λr

}
whose elements are called the nodes of λ. We say that a node of λ is removable if it can be removed
from [λ] to leave the Young diagram of a partition; on the other hand, a node not in [λ] is an addable
node of λ if it can be added to λ to give the Young diagram of a partition.

We depict Young diagrams as arrays of boxes using the English convention, in which r increases
down the page and c increases from left to right. We often blur the distinction between a partition
and its Young diagram; for example, we may write λ ⊆ µ to mean that [λ] ⊆ [µ].

If λ is a partition, the conjugate partition λ′ is given by

λ′
r = |{ c ∈ N | λc ⩾ r}|.

In other words, λ′ is the partition whose Young diagram is obtained by reflecting [λ] on the main
diagonal. For example, we write (4, 3, 12)′ = (4, 22, 1).

A partition λ is 2-regular (or strict) if its positive parts are all different, and 2-singular otherwise.
We write D for the set of 2-regular partitions, and D(n) for the set of 2-regular partitions of n.

Now we recall some additional notation from [Fa5], which is very natural but not quite standard.
Suppose we have partitions λ and µ and a natural number m. Then we write:

⋄ mλ for the partition (mλ1, mλ2, . . . );

⋄ λ+ µ for the partition (λ1 + µ1, λ2 + µ2, . . . );

⋄ λ ⊔ µ for the partition obtained by combining all the parts of λ and µ and arranging them in
decreasing order.

We may combine these operations, and they take precedence in the order they appear above, so
that λ⊔mµ+ ν means λ⊔ ((mµ) + ν).

We will need the following simple lemma.

Lemma 2.1. Suppose λ, µ, ν ∈ P . Then λ⊔ µ ⊆ λ⊔ ν if and only if µ ⊆ ν.
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Proof. This is easy to see using conjugate partitions: observe that

(λ⊔ µ)′ = λ′ + µ′, (λ⊔ ν)′ = λ′ + ν′.

So

λ⊔ µ ⊆ λ⊔ ν ⇐⇒ (λ⊔ µ)′ ⊆ (λ⊔ ν)′

⇐⇒ λ′
r + µ′

r ⩽ λ′
r + ν′r for all r

⇐⇒ µ′
r ⩽ ν′r for all r

⇐⇒ µ′ ⊆ ν′

⇐⇒ µ ⊆ ν.

The dominance order is a partial order defined as follows: given compositions λ, µ, we say that λ
dominates µ (and write λ Q µ) if |λ| = |µ| and

λ1 + · · ·+ λr ⩾ µ1 + · · ·+ µr

for all r.
We shall be mainly interested in the restriction of Q to P . The following easy lemma is well

known.

Lemma 2.2. Suppose λ, µ ∈ P . Then λ covers µ in the dominance order on P if and only if µ is
obtained from λ by moving one node either to the row immediately below, or to the column imme-
diately to the left.

We also need a lemma relating the dominance order and the operator ⊔; the proof is almost
identical to the proof of Lemma 2.1, but using the fact that µ Q ν if and only if ν′ Q µ′.

Lemma 2.3. Suppose λ, µ, ν ∈ P . Then λ⊔ µ Q λ⊔ ν if and only if µ Q ν.

We shall also occasionally need to consider skew partitions. A skew partition is a pair of partitions
λ, µ such that λ ⊇ µ. We write this pair as λ \ µ. The Young diagram of λ \ µ is then [λ] \ [µ]. We
identify skew partitions which have the same Young diagram; so for example (4, 22) \ (3, 2, 1) =
(4, 3, 2, 1) \ (33, 12). Furthermore, we regard any partition λ as a skew partition by identifying it with
λ \∅.

2.2 2-cores, residues and 2-quotients

Here we recall some of the combinatorics associated with the 2-modular representation theory of
the symmetric group. A rim e-hook (also called an e-ribbon) is a set of e nodes {(r1, c1), . . . , (re, ce)} in
N2 such that (ri+1, ci+1) equals either (ri, ci + 1) or (ri − 1, ci), for each i. In particular, a rim 2-hook is
just a pair of horizontally or vertically adjacent nodes.

A rim 2-hook of a partition λ is a rim 2-hook contained in λ which can be removed to leave the
Young diagram of a smaller partition. A 2-core is a partition with no rim 2-hooks, i.e. a partition of
the form (c, c − 1, . . . , 1) for some c ⩾ 0. If λ is any partition, the 2-core of λ is the partition obtained
by repeatedly removing rim 2-hooks until none remain.

2-cores are closely related to residues. The residue of a node (r, c) is the residue of the integer
c − r modulo 2. We call a node of residue i an i-node. We define the content of a partition λ to be the
multiset of the residues of the nodes of λ. We write the content of a partition in the form {0a, 1b}; for
example, the partition (5, 2, 1) has content {05, 13}. The following lemma was proved by Littlewood
[Li].
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Lemma 2.4. Suppose λ and µ are partitions of the same size. Then λ and µ have the same 2-core if
and only if they have the same content.

We also want to assign a sign to every partition with empty 2-core. If the 2-core of λ is ∅, then we
define ϵ∗(λ) = (−1)h, where h is the number of horizontal rim 2-hooks removed in reducing λ to its
2-core. (In fact h is not well-defined, but its parity is, which is all we need.) Observe that ϵ∗(λ) is just
the 2-sign (as defined in [J4, p.229]) of λ′. However, in contrast to [J4], we set ϵ∗(λ) = 0 if the 2-core
of λ is not ∅.

We will also need the 2-quotient of a partition, and for this it is convenient to use the abacus,
introduced by James [JK]. Take an abacus with two vertical runners labelled 0 and 1, and mark
positions labelled with the integers on these runners, so that all even integers appear on runner 0
and all the odd integers appear on runner 1, increasing from top to bottom. The abacus display for a
partition λ is obtained by placing a bead on the abacus at position λr − r for each r. Now for a ∈ {0, 1},
let λ

(a)
r be the number of empty positions above the rth lowest bead on runner a, for each r. Then

λ(a) = (λ
(a)
1 , λ

(a)
2 , . . . ) is a partition, and the pair (λ(0), λ(1)) is the 2-quotient of λ. An abacus display

for the 2-core of λ can be obtained by sliding all beads up until every bead has a bead immediately
above it.

For example, the partition (5, 3, 13) has 2-core (1) and 2-quotient ((2, 1), (2)), as we see from its
abacus display.

We will later need the following two lemmas. These are probably not new, but the author has not
been able to find them in the literature.

Lemma 2.5. Suppose α is a partition and c ⩾ 1 with α′
c > α′

c+1. Let β = α⊔ α and let γ be the partition
obtained from β by moving a node from column c to column c+ 1. Then α = β(0)+ β(1) = γ(0)+γ(1),
and ϵ∗(γ) = −1.

Proof. First we show that β(0) + β(1) = α. Since β2r−1 = β2r for each r, the (2r − 1)th and 2rth lowest
beads in the abacus display for β occur in consecutive positions, namely positions αr − 2r, αr − 2r+ 1.
So these two beads are (in some order) the rth lowest bead on runner 0 and the rth lowest bead on
runner 1. So (by the definition of 2-quotient) β

(0)
r + β

(1)
r equals the total number of empty positions

before position αr − 2r, which is αr. So β(0) + β(1) = α, as claimed.
Now consider the abacus display for γ. This is obtained from the abacus display for β by moving

two beads: writing s = α′
c+1 and t = α′

c, the abacus display for β includes beads at positions

β2s+1 = c− 2s− 1, β2s+2 = c− 2s− 2, . . . , β2t−1 = c− 2t+ 1, β2t = c− 2t

and to construct γ these are replaced by beads at positions

γ2s+1 = c− 2s, γ2s+2 = c− 2s− 2, . . . , γ2t−1 = c− 2t+ 1, γ2t = c− 2t− 1.
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Looking at the positions of each parity in turn, this yields

γ
(i)
r =


β
(i)
r + 1 (r ∈ {s+ 1, . . . , t}, c ≡ i (mod 2))

β
(i)
r − 1 (r ∈ {s+ 1, . . . , t}, c ̸≡ i (mod 2))

β
(i)
r (otherwise).

Hence γ(0) + γ(1) = β(0) + β(1).
We show that ϵ∗(γ) = −1 by showing that γ can be reduced to the empty partition by removing

rim 2-hooks, with exactly one of the removed rim 2-hooks being horizontal. The construction of
γ means that γ′

c − γ′
c+1 = 2(t − s − 1). So we begin by removing t − s − 1 vertical rim 2-hooks from

column c. We can then remove a horizontal rim 2-hook {(2s+1, c), (2s+1, c+1)}, to leave a partition
in which all the columns have even length. Such a partition can clearly be reduced to ∅ by repeatedly
removing vertical rim 2-hooks.

Lemma 2.6. Suppose γ is a partition with 2-core ∅. Then γQ (γ(0)+γ(1))⊔ (γ(0)+γ(1)), with equality
if and only if all the columns of γ have even length.

Proof. In the abacus display for γ, let bi
r be the position of the rth lowest bead on runner i. If |b0

r −
b1

r | = 1 for all r, then γ2r−1 = γ2r for all r, so that all the columns of γ have even length. This means
that we can write γ in the form α⊔ α, and Lemma 2.5 (with γ in place of β) shows that α = γ(0)+γ(1),
as claimed.

Now suppose the columns of γ do not all have even length. Then there is some r for which
|b0

r − b1
r | > 1; let k be the maximum value of |b0

r − b1
r |, and take s minimal such that |b0

s − b1
s | = k. We

assume for simplicity that b0
s − b1

s = k; the other case is identical, but with 0 and 1 interchanged.
The choice of s means that position b1

s + 2 in the abacus is empty. Now let d ⩾ 0 be maximal
such that positions b0

s − 2, . . . , b0
s − 2d are all occupied. The maximality of k then means that positions

b1
s −2, . . . , b1

s −2d are also all occupied. We construct a new partition η by moving the bead at position
b0

s to position b0
s −2d−2, and moving the bead at position b1

s −2d to position b1
s +2. This corresponds

to removing a rim (2d+2)-hook from γ, and then adding a rim (2d+2)-hook in a lower position (see
[JK, §2.7] for details of rim hooks and the abacus), so that η ◁ γ. We also have η(0)+ η(1) = γ(0)+γ(1);
this is very similar to the calculation of γ(0) + γ(1) in the proof of Lemma 2.5. By induction on the
dominance order η Q (η(0) + η(1))⊔ (η(0) + η(1)), and so γ ▷ (γ(0) + γ(1))⊔ (γ(0) + γ(1)).

2.3 Regularisation, doubling and 4-bar-cores

Here we introduce two operations on partitions which have significance for decomposition num-
bers of symmetric groups in characteristic 2.

For l ⩾ 0, we define the lth ladder in N2 to be the set of nodes (r, c) for which r+ c = l + 2. Given a
partition λ, its regularisation λreg is the 2-regular partition obtained by moving the nodes of λ as high
as they will go within each ladder. For example, the regularisation of (32, 13) is (5, 3, 1), as we see
from the following diagrams, in which we label each node with the number of the ladder in which it
lies.

0 1 2
1 2 3
2
3
4

0 1 2 3 4
1 2 3
2
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If λ is a 2-regular partition, we define its double λdbl to be the partition

(⌊λ1/2⌋, ⌈λ1/2⌉, ⌊λ2/2⌋, ⌈λ2/2⌉, . . . ).

Regularisation was introduced by James [J1], and doubling by Bessenrodt and Olsson [BO]. We
will see the representation-theoretic significance of these operations in Section 4.3. For a 2-regular
partition λ we write λdblreg for (λdbl)reg.

A 4-bar-core is a partition of the form (4l − 1 4. . . 3) or (4l − 3 4. . . 1) for some l ⩾ 0. Observe that a
partition is a 4-bar-core precisely if its double is a 2-core (or equivalently, if its conjugate is the double
of a 2-core). Given a 2-regular partition λ, we define the 4-bar-core of λ to be the 4-bar-core obtained
by repeatedly applying the following operations:

⋄ removing even parts from λ;

⋄ removing any two parts whose sum is a multiple of 4;

⋄ replacing any odd part λi ⩾ 5 with λi − 4, if λi − 4 is not already a part of λ.

Now we have the following.

Lemma 2.7. Suppose λ and µ are 2-regular partitions and τ is the 4-bar-core of λ. Then the 2-core of
λdblreg is τdbl. Hence λ and µ have the same 4-bar-core if and only if λdblreg and µdblreg have the same
2-core.

Proof. By [BO, Lemma 3.6] the 2-core of λdbl is τdbl. But λdbl and λdblreg have the same content,
because all the nodes in a given ladder have the same residue. Hence by Lemma 2.4 λdbl and λdblreg

have the same 2-core, which gives the first statement. The second statement then follows from the
statement that the function τ 7→ τdbl yields a bijection from the set of 4-bar-cores to the set of 2-cores:
this bijection is easily seen just by writing it down directly:

∅ 7−→ ∅ (1) 7−→ (1)

(3) 7−→ (2, 1) (5, 1) 7−→ (3, 2, 1)

(7, 3) 7−→ (4, 3, 2, 1) (9, 5, 1) 7−→ (5, 4, 3, 2, 1)
...

...

2.4 Semistandard tableaux

Here we give some basic background on tableaux. These are treated at length elsewhere, so we
give the minimum amount of detail required for this paper. The book by Fulton [Fu] is an excellent
reference.

Suppose λ is a skew partition and Ω is a set. A λ-tableau with entries in Ω is a function T : [λ]→ Ω.
We think of a tableau T as a way of filling the boxes of [λ] with elements of Ω, and we say that T has
shape λ.

Now suppose Ω is equipped with a total order ⩽. We say that a λ-tableau T is semistandard if the
entries in each row are weakly increasing (with respect to ⩽) from left to right and the entries in each
column are strictly increasing from top to bottom.

If the totally ordered set Ω is not specified, it should be taken to be N with the usual ordering.
In this case, given a tableau T, we define a composition µ by letting µr equal the number of entries
equal to r in T for each r; then we say that T has type µ. In the case where λ is a partition, we write
Kλµ for the number of semistandard λ-tableaux of type µ. Then Kλµ is called a Kostka number. It is
easy to see that Kλλ = 1, while Kλµ = 0 unless λ Q µ.
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2.5 Littlewood–Richardson coefficients

Here we define Littlewood–Richardson coefficients. Suppose λ is a skew partition and T is a λ-
tableau (with entries in N). The reading word of T is the word obtained by reading the entries from right
to left along successive rows of the tableau from top to bottom. We say that T is Littlewood–Richardson
if it is semistandard and its reading word w is a lattice word, meaning that every initial segment of w
contains at least as many rs as (r + 1)s, for every r.

For example, with λ = (4, 3, 2) \ (2), the following are all semistandard tableaux of type (3, 22),
but only the first is Littlewood–Richardson. We give the reading word in each case.

1 1
1 2 2
3 3

1 1
1 2 3
2 3

1 2
1 1 2
3 3

1122133 1132132 2121133

Now suppose α, β, γ are partitions. The Littlewood–Richardson coefficient aγ
αβ is defined to be the

number of Littlewood–Richardson tableaux of shape γ \ α and type β if α ⊆ γ, and 0 otherwise.
Obviously aγ

αβ = 0 unless |γ| = |α|+ |β|.
Two special cases of the Littlewood–Richardson coefficients arise where the partition β has only

one row or one column. Say that a skew partition γ \ α is a horizontal a-strip if [γ] is obtained from
[α] by adding a nodes in distinct columns, or a vertical a-strip if [γ] is obtained from [α] by adding a
nodes in distinct rows. Then

aγ
α(a) =

{
1 if γ \ α is a horizontal a-strip
0 otherwise,

aγ
α(1a)

=

{
1 if γ \ α is a vertical a-strip
0 otherwise.

These formulæ are called the Pieri rule and the dual Pieri rule. Later we shall use the following nota-
tion: given partitions α, γ, we write aγ

α(1•) for ∑a⩾0 aγ
α(1a)

. In other words, aγ
α(1•) = 1 if γ ⊇ α and γ \ α

is a vertical strip of any size, and otherwise aγ
α(1•) = 0.

We will need the following basic results concerning Littlewood–Richardson coefficients.

Lemma 2.8 [J4, (2.3)]. Suppose α, β, γ ∈ P . Then

aα+β
αβ = aα⊔β

αβ = 1

while aγ
αβ = 0 unless α+ β Q γ Q α⊔ β.

Lemma 2.9. Suppose λ, β, ζ ∈ P and r ⩾ 1 such that λr > λr+1, and ζ is obtained from β by moving a
node from row r to row r + 1. Then aλ+ζ

λβ > 0.

Proof. For this, we need to construct a Littlewood–Richardson tableau of shape (λ+ ζ) \ λ and con-
tent β. Let T be the unique Littlewood–Richardson tableau T of shape (λ + ζ) \ λ and content ζ; this
has all entries in row s equal to s, for each s. Now let U be the tableau obtained by replacing the first
entry in row r+1 with r. Then U has content β, and is semistandard because λr > λr+1. Furthermore,
it is easy to check that U is a Littlewood–Richardson tableau, so aλ+ζ

λβ > 0.
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3 Symmetric functions

In this section we introduce the background we need on symmetric functions, and prove an aux-
iliary result that we shall need for the proof of our theorem on decomposition numbers for Rouquier
blocks. The standard reference for symmetric functions is Macdonald’s book [Mac]; we recall here
the basics needed for this paper.

3.1 The algebra of symmetric functions

We let X be a countably infinite set of commuting algebraically independent indeterminates, and
we define Λ to be the Q-algebra of symmetric functions in X; that is, power series of bounded degree
which are invariant under all permutations of X. For any countably infinite set Y of indeterminates
and any f ∈ Λ, we can define f (Y) by replacing the elements of X with the elements of Y.

Λ is equipped with a coproduct ∆ : Λ → Λ ⊗ Λ, defined as follows. We partition X into two
infinite sets X = Y⊔Z. Then f ∈ Λ is a symmetric function of the elements of Y and also a symmetric
function of the elements of Z. So we can write f as a finite sum f = ∑i fi(Y)gi(Z) where fi, gi ∈ Λ for
all i. We now define ∆( f ) = ∑i fi ⊗ gi.

Monomial functions and Schur functions

Λ is equipped with several important bases, and we recall some of the details here. We begin
with the monomial symmetric functions. Given a partition λ of length l, define mλ to be the sum of all
distinct monomials of the form xλ1

1 . . . xλl
l , where x1, . . . , xl are distinct elements of X. Clearly mλ is a

symmetric function which is homogeneous of degree |λ|, and the set {mλ | λ ∈ P} is a basis for Λ.
We also recall the definition of the Schur functions. Suppose λ ∈ P , and choose a total order ⩽ on

X. We write SstdX(λ) for the set of all semistandard λ-tableaux with entries in X. If T ∈ SstdX(λ),
we define the monomial xT to be the product of the entries in T. The Schur function sλ is defined to
be

sλ = ∑
T∈SstdX(λ)

xT.

Then sλ is a symmetric function which is homogeneous of degree |λ| and independent of the choice
of total order on X.

The Schur functions comprise a basis of Λ. So we can define an inner product ⟨ , ⟩ on Λ by
specifying that the Schur functions are orthonormal. There is also a unique linear map ω : Λ → Λ
satisfying ω(sλ) = sλ′ for all λ. In fact, ω is an algebra automorphism [Mac, I.2].

The transition between Schur and monomial symmetric functions is well understood: we have
sλ = ∑µ∈P Kλµmµ, where Kλµ is the Kostka number introduced in Section 2.4.

By [Mac, I.9.2], the structure constants for the basis of Schur functions are the Littlewood–Richardson
coefficients; that is,

sαsβ = ∑
γ∈P

aγ
αβ sγ

for all α, β ∈ P . As a consequence, we have aγ
αβ = aγ

βα for all α, β, γ. The fact that ω is an automorphism

also gives aγ
αβ = aγ′

α′β′ .
Given this interpretation of Littlewood–Richardson coefficients in terms of Schur functions, it is

natural to extend the definition of these coefficients to allow more than three arguments: we may
define aζ

αβγ to be the coefficient of sζ in the product sαsβsγ, or equivalently aζ
αβγ = ∑µ∈P aζ

αµ aµ
βγ. We

also define aζ
αβ(1•) = ∑a⩾0 aζ

αβ(1a)
.
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The effect of the coproduct ∆ on Schur functions can also be described in terms of Littlewood–
Richardson coefficients: we have

∆(sλ) = ∑
µ,ν∈P

aλ
µν sµ ⊗ sν

for any λ ∈ P [Mac, I.5, Example 25]. A consequence of this (and the conjugation-symmetry of the
Littlewood–Richardson coefficients) is that if f ∈ Λ with ∆( f ) = ∑i fi ⊗ gi, then ∆(ω( f )) = ∑i ω( fi)⊗
ω(gi).

Schur P-functions

Next we recall the family of Schur P-functions. Our definition (modulo a minor change of notation)
follows Stembridge [St, §6].

Suppose λ is a 2-regular partition. The shifted Young diagram of λ is the set

shYng(λ) =
{
(r, c) ∈ N2 ∣∣ r ⩽ c < r + λr

}
.

As above, we choose a total order ⩽ on X. We define X± to be the set of symbols { x+, x− | x ∈ X},
and we define a total order (also called ⩽) on X± by setting x− < x+ for all x ∈ X, and x± < y± for
all x, y ∈ X with x < y.

Now we define a semistandard shifted λ-tableau to be a filling of the boxes of shYng(λ) with ele-
ments of X± such that:

⋄ the symbols are weakly increasing (with respect to ⩽) down each column and from left to right
along each row;

⋄ for each x ∈ X, the symbol x− appears at most once in each row, and the symbol x+ appears at
most once in each column;

⋄ the entries on the diagonal are all of the form x+.

We write ShtdX(λ) for the set of semistandard shifted λ-tableaux. Given T ∈ ShtdX(λ), we define the
monomial xT to be the product of the symbols in T (with the signs ± ignored). The Schur P-function
labelled by λ is then defined as

Pλ = ∑
T∈ShtdX(λ)

xT.

By [St, Corollary 6.2(a)] Pλ is a symmetric function which is homogeneous of degree |λ|.
We shall need the following results, which are surprisingly difficult to find explicitly in the liter-

ature.

Lemma 3.1. Suppose λ ∈ D. Then ω(Pλ) = Pλ.

Proof. For r ⩾ 0, let pr denote the power-sum symmetric function ∑x∈X xr. From [Mac, p.24] we have
ω(pr) = pr whenever r is odd. Hence the algebra Ω generated by p1, p3, p5, . . . consists entirely of
ω-invariant symmetric functions. By [St, Corollary 6.2(b)] the Schur P-functions comprise a basis
for Ω.

Lemma 3.2. Suppose λ ∈ D and µ ∈ P . Then ⟨Pλ, sλ⟩ = 1, and ⟨Pλ, sµ⟩ = 0 unless λ Q µ.

Proof. By [St, Corollary 6.2 and Lemma 6.3] the transition matrix from Schur P-functions to mono-
mial symmetric functions is unitriangular, in the sense that Pλ equals mλ plus a linear combination
of functions mµ with µ ◁ λ. The definition of Schur functions implies that the transition matrix from
monomial symmetric functions to Schur functions is also unitriangular, and hence the transition ma-
trix from Schur P-functions to Schur functions is unitriangular.
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Corollary 3.3. Suppose λ is a 2-core. Then Pλ = sλ.

Proof. By Lemma 3.1 and the definition of ω, we get ⟨Pλ, sµ⟩ = ⟨Pλ, sµ′⟩ for every µ. So by Lemma 3.2
we must have λ Q µ and λ Q µ′ in order to get ⟨Pλ, sµ⟩ ̸= 0, or in other words λ Q µ Q λ′. In the case
where λ is a 2-core, this gives λ Q µ Q λ, so that µ = λ.

Lemma 3.4. Suppose λ ∈ D and r ⩾ 1 such that λr ⩾ λr+1 +2, and let µ be the partition obtained from
λ by moving a node from row r to row r + 1. Then ⟨Pλ, sµ⟩ = 1.

Proof. First we consider the expansion Pλ = ∑ν Cλνmν as a sum of monomial symmetric functions
and find the coefficient Cλµ. To do this, we write X = {x1, x2, . . . } with x1 < x2 < . . . , and we just need
to find all semistandard shifted λ-tableaux T such that xT = xµ1

1 xµ2
2 . . . . It is easy to see that there are

exactly two such tableaux, namely the tableaux in which all the entries in row s are equal to x+s for
every s, with the exception of the last entry in row r, which is either x+r+1 or x−r+1. (Both possibilities
can occur, since λr ⩾ λr+1 + 2.)

Hence Cλµ = 2. Since λ covers µ in the dominance order and Cλν = 0 when λ S ν, we can write

Pλ = mλ + 2mµ + ∑
νSµ

Cλνmν.

In a similar way there is exactly one semistandard λ-tableau T with xT = xµ1
1 xµ2

2 . . . , so that

sλ = mλ +mµ + ∑
νSµ

Kλνmν.

Hence sµ occurs exactly once in Pλ.

3.2 A reduction operator on symmetric functions

For any partition ν we define a linear map ∂ν on Λ by mapping

sλ 7→ ∑
µ∈P

aλ
µν sµ

and extending linearly. Then ∂ν reduces the degree of a homogeneous function by |ν|. We shall be
particularly interested in the cases ν = (a) and ν = (1a). We will use the following lemma.

Lemma 3.5. Suppose f ∈ Λ, and write

∆( f ) = ∑
µ∈P

gµ ⊗mµ,

where gµ ∈ Λ for each µ. If a is any non-negative integer, then ∂(a)( f ) = g(a).

Proof. Recalling that ∆(sλ) = ∑µ,ν∈P aλ
µν sµ ⊗ sν for every λ and using the definition of ∂ν, we obtain

∆( f ) = ∑
ν∈P

∂ν( f )⊗ sν.

Writing sν = ∑µ Kνµmµ, we have
∆( f ) = ∑

µ,ν
Kνµ∂ν( f )⊗mµ.

Since the mµ are linearly independent, this gives

gµ = ∑
ν

Kνµ∂ν( f )

for each µ, and in particular g(a) = ∂(a)( f ).
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As a consequence, it is easy to determine the effect of the function ∂(a) on a symmetric function
f . Lemma 3.5 says that is the function g(a) appearing in the expansion ∆( f ) = ∑µ∈P gµ ⊗ mµ. To
find this expansion, partition X as the union Y ⊔ Z of two infinite sets; now write each monomial
in f as the product of a monomial function of the elements of Y and a monomial function of the
elements of Z. For given µ, taking the sum of all the terms for which the “Z-part” has the form
zµ1

1 zµ2
2 . . . for distinct z1, z2, . . . , we obtain the summand gµ ⊗ mµ. In particular, for the case µ = (a),

we take all monomials in f in which the Z-part equals za for some z ∈ Z, and the sum of these
monomials is g(a)⊗m(a) = g(a)⊗∑z∈Z za. So to write down g(a), we can just fix an element z ∈ Z, and
find all monomials in f of the form za times a monomial in Y. The sum of these monomials is then
zag(a)(Y) = za(∂(a) f )(Y).

We want to describe the effect of the linear maps ∂(a) and ∂(1a) on Schur P-functions. To this end,
we introduce some notation. Suppose λ and µ are 2-regular partitions. If λ \ µ is a horizontal strip,
then we define Nλµ to be the number of c ⩾ 1 such that λ \ µ contains a node in column c+ 1 but not
in column c, and set Hsλ\µ = 2Nλµ . Otherwise, we set Hsλ\µ = 0. (Our choice of notation reflects the
fact that Hsλ\µ is similar to the quantity hsλ\µ(−1) introduced by Konvalinka and Lauve [KL], but
slightly different: if l(λ) > l(µ), then hsλ\µ(−1) = 2 Hsλ\µ.)

Now we have the following result. This is a kind of Pieri rule for Schur P-functions which appears
(surprisingly) to be new. (A related rule appears in [Mac, III.5.7], but we cannot see how to deduce
our result from this.)

Proposition 3.6. Suppose λ ∈ D(n) and a ⩾ 0. Then

∂(a)Pλ = ∂(1a)Pλ = ∑
µ∈D(n−a)

Hsλ\µ Pµ.

Proof. First we consider ∂(a)Pλ. We calculate this as explained above: we write X as the union of
two disjoint infinite sets Y ⊔ Z, fix z ∈ Z, and consider all the monomials in Pλ of the form za times a
monomial in Y. When we define Pλ in terms of shifted semistandard tableaux, we can choose the total
order ⩽ on X freely; for this proof we choose ⩽ in such a way that y < z for all y ∈ Y. Now we need
to classify shifted semistandard tableaux T which have a entries of the form z± with the remaining
entries lying in Y±. Since y < z for all y ∈ Y, the entries in Y± in such a tableau comprise a shifted
semistandard µ-tableau for some µ ∈ D with µ ⊆ λ. The definition of a shifted semistandard tableau
means that we cannot have boxes (r, c) and (r + 1, c + 1) both containing entries z±, so the shape
defined by the entries z± (that is, the difference shYng(λ) \ shYng(µ)) is a union of non-adjacent
rim hooks. This is the same as saying that λ \ µ is a horizontal a-strip; moreover, the number of rim
hooks comprising shYng(λ) \ shYng(µ) which do not meet the main diagonal equals the integer Nλµ

defined above.
Conversely, given µ ∈ D such that λ \ µ is a horizontal a-strip, and given a shifted semistandard

µ-tableau with entries in Y±, we can add a symbols z± to make a shifted semistandard λ-tableau.
The positions of these symbols are determined by λ, and the signs on these symbols are determined
by the rules for a shifted semistandard tableau, except for the bottom-left entry in each constituent
rim hook of shYng(λ) \ shYng(µ) not meeting the diagonal, whose sign can be chosen freely.

As a consequence, we see that the sum of the monomials xT, where T contains a symbols z± with
the remaining symbols coming from Y±, is ∑µ∈D za Hsλ\µ Pµ(Y). So we get ∂(a)Pλ = ∑µ∈D(n−a) Hsλ\µ Pµ.

To calculate ∂(1a)Pλ, we use the automorphism ω: the definition of the functions ∂ν and the for-
mula for ∆(sλ) means that

∆( f ) = ∑
ν∈P

∂ν f ⊗ sν
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for any f ∈ Λ. Hence
∆(ω( f )) = ∑

ν∈P
ω(∂ν f )⊗ sν′

and so
∂ν′ f = ω(∂νω( f )).

We apply this with ν = (a) and f = Pλ. Using Lemma 3.1, we get

∂(1a)Pλ = ω(∂(a)Pλ) = ω

 ∑
µ∈D(n−a)

Hsλ\µ Pµ

 = ∑
µ∈D(n−a)

Hsλ\µ Pµ.

Now we can derive a corollary which will be an initial case of our main theorem on symmetric
functions. Recall that we write aµ

λ(1•) to mean ∑a⩾0 aµ

λ(1a)
.

Corollary 3.7. Suppose α ∈ D and λ ∈ P . Then

∑
µ∈P

aµ

λ(1•)⟨Pα, sµ⟩ = ∑
β∈D

Hsα\β⟨Pβ, sλ⟩.

Proof. Let d = |α| and l = |λ|. If d < l then clearly both sides are zero. Otherwise, let a = d− l. Then

∑
µ∈P

aµ

λ(1•)⟨Pα, sµ⟩ = ∑
µ∈P(d)

⟨Pα, sµ⟩⟨∂(1a)sµ, sλ⟩

=

〈
∂(1a) ∑

µ∈P(d)
⟨Pα, sµ⟩sµ, sλ

〉
=

〈
∂(1a)Pα, sλ

〉
=

〈
∑

β∈D(l)
Hsα\β Pβ, sλ

〉
by Proposition 3.6

= ∑
β∈D

Hsα\β⟨Pβ, sλ⟩.

3.3 Main result on symmetric functions

In this section we will prove our main result on symmetric functions, which we will later use to
derive results on decomposition numbers. First we give another initial case for our main theorem.
We will deduce this result later from the decomposition number results in [Fa5], though it would
be preferable to have a proof purely in the context of symmetric functions. Recall the definition of
2-quotient (µ(0), µ(1)) and sign ϵ∗(µ) from Section 2.2.

Proposition 3.8. Suppose λ, γ ∈ P . Then

∑
µ∈P

aµ

λ(1•) ϵ∗(µ) aγ

µ(0)µ(1) = ϵ∗(λ) aγ

λ(0)λ(1)(1•)
.

Now we can give the main theorem of this section.

Theorem 3.9. Suppose λ, γ ∈ P and α ∈ D. Then

∑
µ,ν,ζ∈P

aµ

λ(1•)⟨Pα, sζ⟩ϵ∗(ν) aγ

ν(0)ν(1)
aµ

νζ = ∑
β∈D

η,ξ∈P

Hsα\β⟨Pβ, sη⟩ϵ∗(ξ) aγ

ξ(0)ξ(1)(1•)
aλ

ξη .
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We observe that Corollary 3.7 is the case γ = ∅ of Theorem 3.9. To see this, consider the formula
in Theorem 3.9 with γ = ∅. In order to get a non-zero summand on the left-hand side, we must
have ν = ∅. This then means that ζ = µ (otherwise aµ

∅ζ = 0) and the left-hand side of the equation in
Theorem 3.9 reduces to the left-hand side of the formula in Corollary 3.7. In order to get a non-zero
summand on the right-hand side of the formula in Theorem 3.9 when γ = ∅, we need ξ = ∅ and
hence η = λ, and we are left with the right-hand side of the formula in Corollary 3.7. Similarly, we
see that Proposition 3.8 is the special case α = ∅ of Theorem 3.9.

We will prove Theorem 3.9 using Corollary 3.7 and Proposition 3.8, but first we need one more
result about Littlewood–Richardson coefficients; this comes from Mackey’s formula applied to char-
acters of symmetric groups.

Lemma 3.10 [CT, Lemma 2.2(3)]. Suppose λ, ν, ζ ∈ P . Then

∑
µ∈P

aµ

λ(1•) aµ
νζ = ∑

η,ξ∈P
aλ

ηξ aν
ξ(1•) aζ

η(1•) .

Now we can prove our main result.

Proof of Theorem 3.9. Using Lemma 3.10, the left-hand side of the formula in Theorem 3.9 equals

∑
η,ξ,ν,ζ∈P

⟨Pα, sζ⟩ϵ∗(ν) aγ

ν(0)ν(1)
aλ

ηξ aν
ξ(1•) aζ

η(1•) .

Using Proposition 3.8 with ν, ξ in place of µ, λ, this becomes

∑
η,ξ,ζ∈P

⟨Pα, sζ⟩ aλ
ηξ aζ

η(1•) ϵ∗(ξ) aγ

ξ(0)ξ(1)(1•)
.

Using Corollary 3.7 with η, ζ in place of λ, µ, this becomes

∑
η,ξ∈P
β∈D

aλ
ηξ ϵ∗(ξ) aγ

ξ(0)ξ(1)(1•)
Hsα\β⟨Pβ, sη⟩,

which is what we want.

4 Spin representations of symmetric groups and the main theorem

4.1 Representations of symmetric groups and their double covers

In this section we summarise the background theory we shall need on representation theory of
the symmetric groups and their double covers, sometimes specialising to the case of characteristic 2,
and state our main theorem.

Essential references for the symmetric group are the books of James [J3] and Mathas [Mat]; for the
double cover S̃n, the book by Hoffman and Humphreys [HH] and (for the case of characteristic 2)
the paper by Bessenrodt and Olsson [BO] are recommended. In contrast to some of these references,
we work here mostly with characters rather than modules.

We begin with the ordinary character theory of the symmetric group Sn, which has been well
understood for more than a hundred years. For each partition λ of n, we let Sλ denote the Specht
module, defined over an arbitrary field by James. Over a field of characteristic 0 the Specht modules
are irreducible, and give a complete set of irreducible modules for Sn. We write JλK for the character
of Sλ.
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Now we consider double covers. Let S̃n denote the double cover of Sn with generators s1, . . . , sn−1, z,
subject to relations

z2 = 1, zsi = siz, s2
i = 1,

sisj = zsjsi for j > i + 1, sisjsi = sjsisj for j = i + 1.

As long as n ⩾ 4, S̃n is a Schur cover of Sn, which means that linear representations of S̃n are
equivalent to projective representations of Sn. If we let Ãn denote the inverse image of the alternating
group An under the covering map S̃n → Sn, then Ãn is a double cover of An, and is a Schur cover
provided n ⩾ 4 with n ̸= 6, 7.

(In fact for n ̸= 6 there is a different Schur cover of Sn defined in a similar way, but the two covers
are isoclinic, so their representation theories are essentially identical. The double cover Ãn is the
unique Schur cover of An for n ̸= 6, 7 .)

The ordinary character theory of S̃n goes back to Schur [Sc]. On an irreducible representation
(over any field) the central involution z acts as either the identity or minus the identity. In the for-
mer case the representation is then just a lift of a representation of Sn; so the characters JλK can be
extended to irreducible characters of S̃n, which we still write as JλK. In particular, J1nK is the one-
dimensional sign character, which sends each si to −1 and z to 1. Given any class function on S̃n, the
associate class function is obtained by multiplying by the sign character.

Representations on which z does not act as the identity are called spin representations. The classi-
fication of irreducible spin characters can be given as follows. Let us write ev(λ) for the number of
positive even parts of a partition λ. Then for every 2-regular partition λ of n with ev(λ) even, there
is a self-associate irreducible spin character ⟨λ⟩ of S̃n. For every 2-regular partition λ with ev(λ)
odd, there is a pair of associate irreducible characters ⟨λ⟩+, ⟨λ⟩−. These characters give a complete
set of irreducible spin characters of S̃n. (The characters themselves were found by Schur; explicit
constructions of the corresponding representations were given much later, by Nazarov [N].)

In this paper we introduce an unusual notation, as follows.

Suppose λ ∈ D(n). We write

⟨⟨λ⟩⟩ =
{
⟨λ⟩ if ev(λ) is even

1√
2
(⟨λ⟩+ + ⟨λ⟩−) if ev(λ) is odd.

This notation will simplify several formulæ appearing below, including the degree formula for
spin characters and the branching rules. Observe that ⟨⟨λ⟩⟩ is a self-associate class function, and that
(with ( : ) denoting the usual inner product on ordinary characters) (⟨⟨λ⟩⟩ : ⟨⟨λ⟩⟩) = 1.

Now we consider representations in characteristic 2, again beginning with the symmetric group
Sn. If λ is a 2-regular partition, then the Specht module Sλ defined over a field of characteristic 2 has
an irreducible head Dλ, called the James module. The modules Dλ for λ ∈ D(n) give a complete set of
irreducible Sn-modules in characteristic 2. We let φ(λ) denote the 2-modular Brauer character of Dλ.

For the double cover S̃n, observe that there are no irreducible spin characters in characteristic 2,
so a complete set of irreducible 2-modular Brauer characters is given by the lifts of the characters
φ(µ), for µ ∈ D(n).

For any character χ, we write χ for its 2-modular reduction, i.e. the 2-modular Brauer character
obtained by taking the values of χ on elements of odd order.

4.2 Decomposition numbers

We are interested in computing the decomposition numbers for S̃n; that is, the multiplicities of the
characters φ(µ) in the modular reductions of the ordinary irreducible characters. For any ordinary
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character χ, we write [χ : φ(µ)] for the multiplicity of φ(µ) as an irreducible constituent of χ. In
particular, for λ ∈ P(n) we write

Dλµ = [JλK : φ(µ)].

The integers Dλµ are then the entries of the decomposition matrix for Sn. For λ ∈ D(n), we write

Dspn
λµ = [⟨⟨λ⟩⟩ : φ(µ)].

Dspn
λµ then belongs to Z if ev(λ) is even, or to

√
2Z if ev(λ) is odd, so is not quite a decomposition

number in the conventional sense. In fact, when ev(λ) is odd, the characters ⟨λ⟩+ and ⟨λ⟩− differ
only on elements of even order, so have the same 2-modular reduction, with the result that

[⟨λ⟩+ : φ(µ)] = [⟨λ⟩− : φ(µ)] = 1√
2

Dspn
λµ .

So the full decomposition matrix for S̃n can be recovered immediately from the numbers Dspn
λµ .

In fact, in characteristic 2, knowledge of the decomposition matrix of Sn is enough to determine
the decomposition matrix for S̃n. The natural map S̃n → Sn is bijective on (conjugacy classes of)
elements of odd order, and via this bijection we can identify 2-modular Brauer characters for Sn and
S̃n. The 2-modular reductions JξK span the space of 2-modular Brauer characters, so for any spin
character ⟨⟨λ⟩⟩ we can equate ⟨⟨λ⟩⟩ with a linear combination ∑ξ aξJξK; in fact, it suffices to use only
the characters JξK for 2-regular partitions ξ. To find this linear combination, we need to calculate
the values of ⟨⟨λ⟩⟩ and JξK on elements of odd order; there are well-known algorithms for doing this,
which are implemented in GAP [GAP]. Now given ⟨⟨λ⟩⟩ = ∑ξ aξJξK, we obtain Dspn

λµ = ∑ξ aξ Dξµ for
every µ, and so we have all the decomposition numbers for S̃n.

4.3 Irreducible and homogeneous characters

Our main interest is in determining which ordinary irreducible characters remain irreducible in
characteristic 2. This problem was solved for S̃n in [Fa5], and in this paper we will solve the same
problem for the double cover of the alternating group.

More generally, we will say that an ordinary character χ is homogeneous (in characteristic 2) if
there is only one µ for which [χ : φ(µ)] ̸= 0. If χ is an irreducible character of Sn, then χ being
homogeneous in characteristic 2 is equivalent to it remaining irreducible in characteristic 2, since
(thanks to James [J1]) it is known that χ has a composition factor that occurs exactly once. But for spin
characters of S̃n, the question of homogeneity is more complex than the question of irreducibility.
Since we are only concerned with characteristic 2 in this paper, we will just say “homogeneous” to
mean homogeneous in characteristic 2.

In fact, a result of Bessenrodt and Olsson gives us a very good start by identifying a particular
composition factor of the 2-modular reduction of an ordinary irreducible spin character. For a 2-
regular partition λ, recall the partition λdblreg defined in Section 2.3.

Theorem 4.1 [BO, Theorem 5.2]. Suppose λ ∈ D. Then Dspn

λ(λdblreg)
= 2ev(λ)/2.

This is very useful, because it means that if ⟨⟨λ⟩⟩ is homogeneous, then ⟨⟨λ⟩⟩ must equal 2ev(λ)/2 φ(λdblreg).
Hence an irreducible character ⟨λ⟩ or ⟨λ⟩± is irreducible in characteristic 2 if and only if ⟨⟨λ⟩⟩ is ho-
mogeneous and ev(λ) equals 0 or 1.
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4.4 The double cover of the alternating group and the main theorem

The main theorem in this paper concerns the double cover Ãn of the alternating group. As with
S̃n, the ordinary irreducible characters of Ãn come in two types: those lifted from characters of An,
and spin characters. For characters lifted from An, the question of irreducibility in characteristic 2
is exactly the same as for An, and this question was answered in [Fa3]. So in this paper we need
only address spin characters. The ordinary irreducible spin characters of An are labelled by 2-regular
partitions λ of n, but here the situation is opposite to that in S̃n: if ev(λ) is even, there is a pair of
associate spin characters ⟨λ⟩+, ⟨λ⟩−, while if ev(λ) is odd there is a self-associate spin character ⟨λ⟩.
These characters are obtained by restricting the corresponding characters of S̃n, and give a complete
set of ordinary irreducible spin characters of An.

In [Fa5] our main question for Ãn was reduced to a problem about S̃n, as follows.

Proposition 4.2 [Fa5, Section 7.1]. Suppose λ ∈ D(n). Then the spin character ⟨λ⟩ or ⟨λ⟩± for Ãn

remains irreducible in characteristic 2 if and only if ⟨⟨λ⟩⟩ is homogeneous, ev(λ) ⩽ 2 and λ does not
have the form (4b) for b ⩾ 1.

We are now almost ready to state our main theorem. First we need to recall the definition of a
2-Carter partition. Say that λ ∈ P is 2-Carter if for every r ⩾ 1, λr − λr+1 + 1 is divisible by a power
of 2 greater than λr+1 − λr+2.

An equivalent definition of 2-Carter partitions may be given in terms of hook lengths: if (r, c) is
a node of λ, the (r, c)-hook length hr,c(λ) is the integer λr + λ′

c − r − c + 1. It is proved in [J2, Lemma
3.14] that λ is 2-Carter if and only if ν2(hr,c(λ)) = ν2(hs,c(λ)) for every pair of nodes (r, c) and (s, c)
in the same column of [λ].

From Proposition 4.2 the character(s) labelled by λ ∈ D(n) can be irreducible in characteristic 2
only if ev(λ) ⩽ 2. For the cases where ev(λ) ⩽ 1, we can read the classification directly from [Fa5,
Theorem 3.3], using Proposition 4.2.

Theorem 4.3. Suppose λ ∈ D(n).

1. If ev(λ) = 0, then the spin characters ⟨λ⟩+ and ⟨λ⟩− of Ãn remain irreducible in characteristic
2 if and only if λ has the form τ + 4α, where τ is a 4-bar-core and α is a 2-Carter partition with
l(τ) ⩾ l(α).

2. If ev(λ) = 1, then the spin character ⟨λ⟩ of Ãn remains irreducible in characteristic 2 if and only
if one of the following occurs:

(a) λ has the form τ + 4α⊔ (2), where τ is a 4-bar-core and α is a 2-Carter partition with α = ∅
or τl(α) ⩾ 3;

(b) λ equals (4b− 2) or (4b− 2, 1) for some b ⩾ 2;

(c) λ = (3, 2, 1).

So our task in the present paper is to address the case where ev(λ) = 2. Our main result is the
following.

Theorem 4.4. Suppose λ ∈ D(n) with ev(λ) = 2. Then the irreducible spin characters ⟨λ⟩+ and ⟨λ⟩−
of Ãn remain irreducible in characteristic 2 if and only if one of the following occurs:

1. λ has the form τ + 4α⊔ (4, 2) where τ is a 4-bar-core, α is a 2-Carter partition and l(τ) > l(α);

2. λ is one of (4, 3, 2, 1), (5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1).
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For the rest of the paper we will work with S̃n; in view of Proposition 4.2, our task is to show
that for λ ∈ D(n) with ev(λ) = 2, the character ⟨⟨λ⟩⟩ for S̃n is homogeneous if and only if one of the
conditions in Theorem 4.4 occurs.

It is an interesting question to ask when ⟨⟨λ⟩⟩ is homogeneous in general. In Section 5 we answer
this for the case where λ is a separated partition, which appears to be the generic case. A full solution
involves understanding how the sequence of “exceptional” partitions from Theorems 4.3 and 4.4,
namely

(3, 2, 1), (4, 3, 2, 1), (5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1), . . .

continues. It appears from calculations that the partitions in this sequence are close to being 2-cores.
In particular, we conjecture that if λ is a 2-core, then ⟨⟨λ⟩⟩ is homogeneous. But the more general
pattern remains mysterious.

For the remainder of Section 4 we recall some more of the background we shall need on the
representation theory of Sn and S̃n, and prove some preliminary results.

4.5 The Schur algebra and the (−1)-Schur algebra

In this paper we shall need to consider the Schur algebra introduced by Green [G], and its quan-
tum analogue introduced by Dipper and James [DJ]. We let S(n) denote the classical Schur algebra
defined over an infinite field F of characteristic 2. We also let S◦(n) denote the q-Schur algebra over C
with quantum parameter q = −1. These algebras are denoted SF(1, n) and SC(−1, n) in the notation
of Dipper and James.

For any partition λ ∈ P(n), there is a Weyl module ∆λ for S(n), with a simple head Lλ. The
modules Lλ give a complete set of irreducible modules for S(n). Note that we use the convention
from James’s paper [J4], in which the Specht module Sλ is the image of ∆λ (not ∆λ′

) under the Schur
functor.

Given λ, µ ∈ P(n), we write Dλµ for the composition multiplicity [∆λ : Lµ] for the Schur algebra
S(n). This is consistent with the notation introduced in Section 4.2, since [Sλ : φ(µ)] = [∆λ : Lµ] when
µ is 2-regular.

Correspondingly, there are Weyl modules ∆λ with simple heads Lλ for the (−1)-Schur algebra
S◦(n). In this case, we write D̊λµ for the decomposition number [∆λ : Lµ]. These decomposition
numbers are better understood than the decomposition numbers for S(n) in that there is an algorithm
to compute them. However, the two sets of decomposition numbers are closely related. For a fixed
n, let D denote the matrix with entries Dλµ for λ, µ ∈ P(n), and define D̊ similarly.

Proposition 4.5 [Mat, Theorem 6.35]. For a given n, there is a square matrix A with non-negative
integer entries such that D = D̊A.

The matrix A is called the adjustment matrix for S(n). The decomposition numbers for both S(n)
and S◦(n) satisfy the following unitriangularity property, which comes from the fact that q-Schur
algebras are quasi-hereditary.

Lemma 4.6. Suppose λ, µ ∈ P(n). Then Dλλ = D̊λλ = 1, while Dλµ = D̊λµ = 0 unless µ Q λ.

As a consequence, the adjustment matrix is also unitriangular, i.e. Aλλ = 1, while Aλµ = 0 when
µ S λ.

A key component in the proof of our main theorem will be the classification of irreducible Weyl
modules.

Theorem 4.7 [JM2, Theorem 4.5]. Suppose λ ∈ P(n). Then the Weyl module ∆λ for S(n) is irre-
ducible if and only if λ is 2-Carter.
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(Note that [JM2] uses the opposite convention for labelling Weyl modules to ours, so partitions
need to be conjugated when reading Theorem 4.7 from that reference.)

4.6 Blocks

In the modular representation theory of any group, it is useful to sort characters into blocks. Here
we summarise the combinatorics underlying the 2-blocks of Sn and S̃n. Since we are only concerned
with characteristic 2 in this paper, we will say simply “block” to mean “2-block”. The material here
is taken directly from [Fa5].

Recall from Section 2.2 that the 2-core of a partition λ is the partition obtained by repeatedly
removing rim 2-hooks. The number of rim 2-hooks removed we call the 2-weight of λ. The following
result is a special case of the Brauer–Robinson Theorem [B, R].

Theorem 4.8. Suppose λ, µ ∈ P(n). Then JλK and JµK lie in the same 2-block of Sn if and only if λ

and µ have the same 2-core.

The distribution of irreducible Brauer characters into blocks is given by the same rule: since a
Brauer character φ(µ) occurs as a composition factor of JµK, it lies in the same block as JµK.

Theorem 4.8 yields a convenient way of labelling the 2-blocks of Sn: we can define the core of
a block to be the common 2-core of the partitions labelling the irreducible characters in that block.
Two partitions with the same size and the same 2-core obviously have the same 2-weight, so if n is
unspecified we can label a block by its core and weight, i.e. the common 2-core and 2-weight of the
partitions labelling characters in that block.

It is sometimes also convenient to label blocks in terms of residues: recall from Lemma 2.4 that
two partitions of the same size have the same 2-core if and only if they have the same content. So we
can define the content of a block to be the content of any partition labelling an irreducible character
in that block.

A similar statement [JM2, Theorem 4.24] applies for the blocks of the Schur algebra S(n) and the
(−1)-Schur algebra S◦(n): two Weyl modules ∆λ and ∆µ, or two simple modules Lλ and Lµ, lie in
the same block (for either algebra) if and only if λ and µ have the same 2-core.

Now we come to the 2-blocks of S̃n; these were determined by Bessenrodt and Olsson [BO, The-
orem 4.1]. For the lifts of the ordinary characters of Sn, it is still the case that JλK and JµK lie in the
same 2-block if and only if λ and µ have the same 2-core; the same statement holds also for the lifts
of the Brauer characters φ(µ). Since these are the only irreducible Brauer characters of S̃n, it follows
that there are no other 2-blocks. So the 2-blocks of S̃n can also be labelled by their 2-cores, and to
complete the picture of 2-blocks it suffices to say which blocks the spin characters ⟨⟨λ⟩⟩ lie in. (This
question makes sense even with our unusual definition of ⟨⟨λ⟩⟩, because when ev(λ) is odd the char-
acters ⟨λ⟩+ and ⟨λ⟩− lie in the same block.) In fact this can be inferred directly from Theorem 4.1:
⟨⟨λ⟩⟩ lies in the block whose core is the 2-core of λdblreg.

There is a more direct way to see whether two spin characters lie in the same block: if λ, µ ∈ D(n),
then by Lemma 2.7 ⟨⟨λ⟩⟩ and ⟨⟨µ⟩⟩ lie in the same block of S̃n if and only if λ and µ have the same 4-
bar-core. So we can define the bar-core of a block of S̃n to be the common 4-bar-core of the partitions
labelling spin characters in that block.

We can also express the block classification for spin characters in terms of residues. We define the
spin residue of a node (r, c) to be the residue of ⌊c/2⌋ modulo 2. Then we can define the spin-content
of a 2-regular partition to be the multiset of the spin residues of its nodes. It is an easy exercise to
check that the spin-content of λ equals the content of λdblreg, so ⟨⟨λ⟩⟩ lies in the block whose content
is the spin-content of λ.

For example, take λ = (6, 2, 1), for which λdbl = (32, 13) and λdblreg = (5, 3, 1). The character ⟨⟨λ⟩⟩
lies in the block with content {05, 14}, as we see from the following diagram for these three partitions.
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In the diagram for λ, nodes are labelled with their spin-residues, while in the other two diagrams
nodes are labelled with their residues.

λ λdbl λdblreg

0 1 1 0 0 1
0 1
0

0 1 0
1 0 1
0
1
0

0 1 0 1 0
1 0 1
0

4.7 The inverse of the decomposition matrix of the Schur algebra

A very useful result due to James is a reduction theorem for the entries of the inverse of the
decomposition matrix for a q-Schur algebra; this derives from Steinberg’s tensor product theorem.
The cases we need are as follows.

Proposition 4.9. Suppose α, µ ∈ P and β ∈ D with 2|α|+ |β| = |µ|. Then

D̊−1
(α⊔α⊔β)µ

= ∑
λ,ξ∈P

D̊−1
βλ ϵ∗(ξ) aα

ξ(0)ξ(1)
aµ

λξ

and

D−1
(α⊔α⊔β)µ

= ∑
λ,ξ,γ∈P

D−1
βλ D−1

αγ ϵ∗(ξ) aγ

ξ(0)ξ(1)
aµ

λξ

Proof. This is proved in [J4, Corollary 6.9], but quite a bit of translation of notation is needed, so we
explain this here. If we take the first formula in [J4] with e = p = 2, then the terms c and c∗ are both
just our D−1. Replacing the variables ρ, α, β, σ with α, β, λ, γ in that formula, we obtain

D−1
(α⊔α⊔β)µ

= (−1)|α| ∑
λ,γ∈P

D−1
βλ D−1

αγ υ(λ, γ, µ).

The term υ(λ, γ, µ) is defined in [J4, Definitions 2.13 and 2.20] as

∑
ξ

ϵ(ξ) aγ

ξ(0)ξ(1)
aµ

λξ ,

summing over ξ ∈ P(2|γ|) with empty 2-core. The term ϵ(ξ) is defined like our ϵ∗(ξ) but with
horizontal and vertical rim-hooks interchanged, so that ϵ(ξ) = (−1)|γ|ϵ∗(ξ). Substituting this above,
we obtain our second formula.

For our first formula, we need to take e = 2 and p very large, and use the second formula in [J4].
(It is known that the decomposition matrix for the (−1)-Schur algebra over C is the same as over
a field of very large finite characteristic.) Now c is our D̊−1, so the formula in [J4] gives our first
formula.
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Corollary 4.10. Suppose α, µ ∈ P and β is a 2-core with 2|α|+ |β| = |µ|. Then

D̊−1
(α⊔α⊔β)µ

= ∑
ξ∈P

ϵ∗(ξ) aα
ξ(0)ξ(1)

aµ
βξ ,

D−1
(α⊔α⊔β)µ

= ∑
γ∈P

D−1
αγ D̊−1

(γ⊔γ⊔β)µ
,

A−1
(α⊔α⊔β)µ

=

{
D−1

αγ if µ = γ⊔ γ⊔ β for some γ ∈ P
0 otherwise,

A(α⊔α⊔β)µ =

{
Dαγ if µ = γ⊔ γ⊔ β for some γ ∈ P
0 otherwise.

Proof. This corollary was proved in the special cases β = ∅, (1) in [Fa5]. The fact that β is a 2-core
means that for both S(|β|) and S◦(|β|) the Weyl module ∆β lies in a block by itself, so that

D̊−1
βλ = D−1

βλ = δβλ.

Substituting this into the two formulæ in Proposition 4.9 gives the first two statements. The last two
statements are proved exactly as in [Fa5, Corollary 2.5].

4.8 Induction and restriction

It will be very helpful for us to use induction and restriction between different symmetric groups
and their double covers. We recall the essential background we shall need; much of this is taken from
[Fa5], where further references can be found.

Given a character χ of S̃n, we write χ↓S̃n−1
for its restriction to S̃n−1, and χ↑S̃n+1 for the corre-

sponding induced character for S̃n+1. In fact, we use refinements of these operations, introduced in
the symmetric group case by Robinson. Suppose χ is a character of S̃n, lying in the block B with con-
tent {0a, 1b}. Then we write e0χ for the component of χ↓S̃n−1

lying in the block with content {0a−1, 1b}
if there is such a block, and set e0χ = 0 otherwise. Similarly, we write e1χ for the component of χ↓S̃n−1

lying in the block with content {0a, 1b−1} if there is such a block, and set e1χ = 0 otherwise. We ex-
tend the functions e0, e1 linearly. These functions e0, e1 can be applied either to ordinary characters
or to 2-modular Brauer characters, and for any character χ we have χ↓S̃n−1

= e0χ + e1χ (this follows
from the classical branching rule for ordinary irreducible representations of Sn, together with the
block classification). Defining these functions for any n, we can consider powers ea

i for a ⩾ 0. In fact,
it will be useful to define divided powers e(a)

i = ea
i /a!. Given a non-zero character χ and a residue i, we

define ϵiχ to be the largest a ⩾ 0 for which e(a)
i ̸= 0, and we write e(max)

i χ = e(ϵiχ)
i χ.

A similar situation applies for induction of characters to S̃n+1: we can write χ↑S̃n+1 = f0χ + f1χ,
where f0 and f1 are functions defined using the block classification in a similar way to e0 and e1. We
define divided powers f(a)

i , and for a non-zero character χ we define ϕiχ to be the largest a for which

f(a)
i χ is non-zero, and write f(max)

i χ = f(ϕiχ)
i χ.

We can describe the effect of these functions on the irreducible spin characters as follows. Given

2-regular partitions λ and µ, a residue i ∈ {0, 1} and an integer a ⩾ 0, we write λ
ia

=⇒ µ if µ can be
obtained from λ by adding a nodes of spin residue i. Then we have the following, which extends the
spin branching rule of Dehuai and Wybourne [DW].
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Proposition 4.11. Suppose λ ∈ D(n), µ ∈ D(n − a) and i ∈ {0, 1}. Then
(

e(a)
i ⟨⟨λ⟩⟩ : ⟨⟨µ⟩⟩

)
> 0 if and

only if µ
ia

=⇒ λ. If this is the case, let b be the number of values c ⩾ 2 such that λ \ µ contains a node
in column c but not in column c− 1 or c+ 1. Then(

e(a)
i ⟨⟨λ⟩⟩ : ⟨⟨µ⟩⟩

)
= 2b/2.

Proof. This is essentially proved in [Fa5, Proposition 2.17], though the result there is more compli-
cated than the formula here, with four cases depending on the parities of ev(λ) and ev(µ). The
present version is simpler because of our definition of the notation ⟨⟨λ⟩⟩.

An analogous result holds for f(a)
i ⟨⟨λ⟩⟩, and we refer to these results together as the spin branching

rules.
From the spin branching rule we can immediately determine the effect of the functions e(max)

i and

f(max)
i on spin characters. Let λ be a 2-regular partition, and let λ↓i be the smallest 2-regular partition

which can be obtained by removing nodes of spin residue i from λ. We refer to these nodes as the
i-spin-removable nodes of λ. From the spin branching rule, e(max)

i ⟨⟨λ⟩⟩ is a non-zero scalar multiple of
⟨⟨λ↓i⟩⟩. Similarly, we define λ↑i to be the largest 2-regular partition which can be obtained by adding
nodes of spin residue i to λ. These nodes are called the i-spin-addable nodes of λ, and f(max)

i ⟨⟨λ⟩⟩ is a
non-zero multiple of ⟨⟨λ↑i⟩⟩.

We define a spin-removable node of λ to be a node which is either a 0- or a 1-spin-removable
node of λ; in other words, a node of λ that can be removed (possibly together with some other nodes
of the same spin residue) to leave a smaller 2-regular partition. Note that a spin-removable node
is not necessarily a removable node as defined in Section 2.1; for example, the node (2, 2) is a spin-
removable node of the partition (4, 3). Also, a node which is removable in the conventional sense
might not be spin-removable if removing it would cause the partition no longer to be 2-regular. We
define spin-addable nodes similarly to spin-removable nodes.

We will also need to recall Kleshchev’s modular branching rules, which partially describe the
effect of ei and fi on irreducible 2-modular Brauer characters. In fact, we will just need to know the
effect of e(max)

i and f(max)
i . To set this up, we need to consider sign sequences. Suppose s = s1 . . . sr

is a finite sequence consisting of signs + and −. The reduction of s is the subsequence obtained by
repeatedly deleting successive pairs +−.

Now suppose µ is a 2-regular partition and i ∈ {0, 1}. The i-signature of µ is defined to be the
sign sequence obtained by working from top to bottom of the Young diagram of µ, writing a + for
each addable i-node and a − for each removable i-node. The reduction of this sign sequence is called
the reduced i-signature of µ. The removable nodes corresponding to minus signs in the reduced i-
signature are called the normal i-nodes of µ, and the addable nodes corresponding to the plus signs
in the reduced i-signature are called the conormal i-nodes.

With these definitions, we have the following. This (and many more results) can be found in the
survey [BK] (in particular, see the discussion following Lemma 2.12).

Theorem 4.12. Suppose χ is an irreducible 2-modular Brauer character of S̃n, and i ∈ {0, 1}. Then
e(max)

i χ and f(max)
i χ are irreducible Brauer characters. Specifically, write χ = φ(µ) for µ ∈ D, and

let µ− be the partition obtained by removing all the normal i-nodes from µ, and µ+ the partition
obtained by adding all the conormal i-nodes to µ. Then µ−, µ+ are 2-regular, and

e(max)
i φ(µ) = φ(µ−), f(max)

i φ(µ) = φ(µ+).
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Now take a 2-regular partition λ, and recall that φ(λdblreg) is an irreducible constituent of the
Brauer character ⟨⟨λ⟩⟩. Since restriction is an exact functor, this immediately gives ϵi φ(λ

dblreg) ⩽
ϵi⟨⟨λ⟩⟩, and we write λ i if ϵi φ(λ

dblreg) < ϵi⟨⟨λ⟩⟩. It will be very useful to be able to determine from
λ (without calculating λdblreg) exactly when λ i. In fact a complete answer to this question is quite
complicated, so we just give a simple sufficient condition for λ i.

First we need some results on counting nodes and addable and removable nodes. Recall that for
l ⩾ 0 the lth ladder in N2 is the set of nodes (r, c) with r + c = l + 2. Given a partition µ, we write

ladl(µ) for the number of nodes of µ in ladder l,

lad+
l (µ) for the number of addable nodes of µ in ladder l,

lad−
l (µ) for the number of removable nodes of µ in ladder l,

setting all of these numbers to be zero when l < 0.
These numbers are related to each other by the following result. (Here and throughout, we use

the Kronecker delta.)

Lemma 4.13. If µ ∈ P and l ⩾ 0, then

lad+
l (µ)− lad−

l−2(µ) = δl0 − ladl(µ) + 2 ladl−1(µ)− ladl−2(µ).

Proof. A version of this lemma for arbitrary characteristic is given in [Fa4, Lemma 4.8], though it is
only proved there in odd characteristic (which is the only case needed in that paper). We prove it by
induction on |µ|, with the case µ = ∅ being trivial. Assuming µ ̸= ∅, let (r, c) be a removable node
of µ, and let m = r + c − 2. Let ξ be the partition obtained from µ by removing the node (r, c). Then
for any k (writing 1(S) for the indicator function of the truth of a statement S)

ladk(µ) = ladk(ξ) +1(k = m)

lad+
k (µ) = lad+

k (ξ)−1(k = m)

+1(k = m+ 1 and either r = 1 or (r − 1, c+ 1) ∈ ξ)

+1(k = m+ 1 and either c = 1 or (r + 1, c− 1) ∈ ξ)

lad−
k (µ) = lad−

k (ξ) +1(k = m)

−1(k = m− 1, r > 1 and (r − 1, c+ 1) /∈ ξ)

−1(k = m− 1, c > 1 and (r + 1, c− 1) /∈ ξ).

Hence the result of the lemma holds for µ if and only if it holds for ξ.

We now give a spin analogue of Lemma 4.13. For l ⩾ 0, define the lth slope in N2 to be the set
of nodes (r, c) for which 2r + ⌊c/2⌋ = l + 2. We say that the mth slope is longer than the lth slope if
m > l. Given a 2-regular partition λ, we write

slpl(λ) for the number of nodes of λ in slope l,

slp+
l (λ) for the number of spin-addable nodes of λ in slope l,

slp−
l (λ) for the number of spin-removable nodes of λ in slope l,

again setting all these numbers to be zero when l < 0. We also need to define slp∗
l (λ) to be the number

of nodes (r, c) in slope l such that c is even, r ⩾ 2, and (λr−1, λr, λr+1) = (c+ 1, c, c− 1).
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Example. Take λ = (15, 9, 8, 7, 1) and l = 8. The Young diagram of λ with nodes in the 8th slope
marked is as follows.

× ×
× ×

× ×
× ×

×

We see that slp6(λ) = 4, slp+
6 (λ) = 2 (note that both of the nodes (1, 16) and (1, 17) are spin-addable,

but (3, 9) is not) and slp−
6 (λ) = 1. Also slp∗

6(λ) = 1, because of the node (3, 8).

Ladders and slopes are related by the following lemma, which is stated implicitly in [BO].

Lemma 4.14 [Fa5, Lemma 2.11]. Suppose λ is a 2-regular partition. Then for every l ⩾ 0,

slpl(λ) = ladl(λ
dblreg).

Now we give the analogue of Lemma 4.13 for slopes.

Lemma 4.15. If λ ∈ D and l ⩾ 0, then

slp+
l (λ)− slp−

l−2(λ) = δl0 − slpl(λ) + 2 slpl−1(λ)− slpl−2(λ) + slp∗
l (λ)− slp∗

l−2(λ).

Proof. Suppose (r, c) is a node in slope l, with c odd. Assuming r ⩾ 3 and c ⩾ 3, consider the set of
eight nodes

(r − 2, c+ 1), (r − 1, c− 1), (r − 1, c), (r − 1, c+ 1), (r, c− 2), (r, c− 1), (r, c), (r + 1, c− 2)

lying in slopes l − 3, l − 2, l − 2, l − 1, l − 1, l, l, l + 1 respectively. The configuration of these nodes
(labelled with the slopes containing them) is as follows.

l−3

l−2 l−2 l−1

l−1 l l

l+1

By considering the possibilities for which of these nodes are nodes of λ, we can check that the
formula in the lemma is true when restricted to these eight nodes. The possible cases are given in the
following table, where for each case we shade the nodes contained in λ and give the contributions to
the formula coming from these eight nodes.

slpl−2(λ) slpl−1(λ) slpl(λ) slp−
l−2(λ) slp+

l (λ) slp∗
l−2(λ) slp∗

l (λ)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 1 0 0 0
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slpl−2(λ) slpl−1(λ) slpl(λ) slp−
l−2(λ) slp+

l (λ) slp∗
l−2(λ) slp∗

l (λ)

1 0 0 1 0 0 0

1 1 0 0 0 1 0

2 0 0 2 0 0 0

1 1 0 0 1 0 0

2 1 0 0 0 0 0

2 1 0 1 1 0 0

2 2 0 0 2 0 0

2 1 1 1 0 0 0

2 2 1 0 1 0 0

2 1 1 0 0 0 1

2 2 1 0 1 0 0

2 2 2 0 0 0 0

2 2 2 0 0 0 0

A similar statement holds if r ⩽ 2 or c = 1 (where there are fewer nodes to consider). Summing
over all pairs (r, c), we account for the nodes in slopes l − 2, l − 1, l once each, and obtain the desired
result.

Before giving our main result, we need a simple lemma about reduction of sign sequences. We
leave the proof as an exercise.

Lemma 4.16. Suppose s = s1 . . . sr is a sign sequence. Let m denote the total number of minus signs in
s. Suppose that for some t we can find distinct integers a1, . . . , at, b1, . . . , bt such that sai = +, sbi = −
and ai < bi for each i. Then the total number of minus signs in the reduction of s is at most m− t.

Finally we can give our sufficient condition to have λ i when λ ∈ D. This is analogous to [Fa4,
Proposition 4.9] for linear representations of symmetric groups, though weaker, in that the condition
we give is sufficient but not necessary for λ i.
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Proposition 4.17. Suppose λ is a 2-regular partition and i ∈ {0, 1}, and that λ has both an i-spin-
removable node and an i-spin-addable node, with the i-spin-addable node in a longer slope than the
i-spin-removable node. Then λ i.

Proof. For this proof we use the following notation: given an integer u, define [u] to be a sequence
of plus signs of length u if u ⩾ 0, or a sequence of minus signs of length −u if u < 0. Observe that if
u, v ∈ Z with either u ⩾ 0 or v ⩽ 0, then the reduction of the concatenation [u][v] is [u+ v].

We write µ = λdblreg. From the remarks following the proof of Proposition 4.11, we have

ϵi⟨⟨λ⟩⟩ = ∑
l≡i (mod 2)

slp−
l (λ).

We need to show that ϵi φ(µ) is less than this, and we consider the i-signature of µ. Observe that
as we read the addable and removable i-nodes of a 2-regular partition from top to bottom, nodes in
higher-numbered ladders occur before nodes in lower-numbered ladders, and within any ladder the
removable nodes come before the addable nodes. So the i-signature of µ is

. . . [lad+
i+6(µ)][− lad−

i+4(µ)][lad+
i+4(µ)][− lad−

i+2(µ)][lad+
i+2(µ)][− lad−

i (µ)][lad+
i (µ)].

By the observation above, the reduction of this sequence is the same as the reduction of

. . . [lad+
i+6(µ)− lad−

i+4(µ)][lad+
i+4(µ)− lad−

i+2(µ)][lad+
i+2(µ)− lad−

i (µ)][lad+
i (µ)],

and by Lemmas 4.13, 4.14 and 4.15 this equals

. . . [slp+
i+6(λ)− slp−

i+4(λ)− slp∗
i+6(λ) + slp∗

i+4(λ)]

[slp+
i+4(λ)− slp−

i+2(λ)− slp∗
i+4(λ) + slp∗

i+2(λ)]

[slp+
i+2(λ)− slp−

i (λ)− slp∗
i+2(λ) + slp∗

i (λ)]

[slp+
i (λ)− slp∗

i (λ)].

Again using the observation above, the reduction of this sequence is the same as the reduction of the
sequence

. . . [slp+
i+6(λ)][slp∗

i+4(λ)][− slp−
i+4(λ)][− slp∗

i+6(λ)]

[slp+
i+4(λ)][slp∗

i+2(λ)][− slp−
i+2(λ)][− slp∗

i+4(λ)]

[slp+
i+2(λ)][slp∗

i (λ)][− slp−
i (λ)][− slp∗

i+2(λ)]

[slp+
i (λ)][− slp∗

i (λ)].

By assumption there are m < n with m, n ≡ i (mod 2) such that slp−
m(λ) and slp+

n (λ) are both posi-
tive. This means that (letting s denote the sign sequence immediately above) we can choose integers
a1, . . . , at, b1, . . . , bt with t = 1 + ∑l≡i (mod 2) slp∗

l (λ), such that the hypotheses of Lemma 4.16 are sat-
isfied. Hence the reduction of s (which is the reduced i-signature of µ) contains fewer than ϵi⟨⟨λ⟩⟩
minus signs.

4.9 Dimension arguments

For some cases in the proof of our main theorem, we employ dimension arguments similar to
those used in [Fa5]. The idea in [Fa5] is very simple: the 2-modular reduction ⟨⟨λ⟩⟩ cannot equal
φ(λdblreg) if there is another character ⟨⟨µ⟩⟩ of smaller degree such that ⟨⟨µ⟩⟩ also has φ(λdblreg) as a
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composition factor. Here we extend this idea to show that ⟨⟨λ⟩⟩ cannot be homogeneous in certain
cases, by keeping track of the multiplicity of φ(λdblreg).

Given λ ∈ D(n), we define deg⟨⟨λ⟩⟩ to be the degree of ⟨⟨λ⟩⟩, i.e. the value of this character at the
identity element of S̃n. This is given by the bar-length formula, which goes back to Schur [Sc]. With
our unusual notation ⟨⟨λ⟩⟩, this formula reads

deg⟨⟨λ⟩⟩ = 2(n−l(λ))/2 n!
∏1⩽i⩽m λi!

∏
1⩽i<j⩽m

λi − λj

λi + λj
.

So deg⟨⟨λ⟩⟩ lies in N if ev(λ) is even, or
√

2N if ev(λ) is odd. Now define the divided degree

ddeg⟨⟨λ⟩⟩ = deg⟨⟨λ⟩⟩
Dspn

λλdblreg

= 2− ev(λ)/2 deg⟨⟨λ⟩⟩.

Now we have the following; this is a simple modification of [Fa5, Lemma 4.1].

Lemma 4.18. Suppose λ, µ ∈ D, with λdblreg = µdblreg and ddeg⟨⟨λ⟩⟩ > ddeg⟨⟨µ⟩⟩. Then ⟨⟨λ⟩⟩ is inhomo-
geneous.

Now we give several results which allow us to exploit Lemma 4.18 in certain situations. We begin
with a row-removal lemma.

Lemma 4.19. Suppose λ, µ ∈ D(n) with µ ▷ λ, and m is an integer with m > µ1. Define

λ+ = (m, λ1, λ2, . . . ),

µ+ = (m, µ1, µ2, . . . ).

Then
ddeg⟨⟨λ+⟩⟩
ddeg⟨⟨µ+⟩⟩ >

ddeg⟨⟨λ⟩⟩
ddeg⟨⟨µ⟩⟩ .

Furthermore, if λdblreg = µdblreg, then (λ+)dblreg = (µ+)dblreg.

Proof. A weaker version of the first statement (using degree rather than divided degree) is proved
in [Fa5, Lemma 4.8]. We consider the ratio of the left-hand side to the right-hand side, which we
evaluate using the bar-length formula. Using the fact that l(λ+)− l(µ+) = l(λ)− l(µ) and ev(λ+)−
ev(µ+) = ev(λ)− ev(µ), we find that this ratio equals

∏
i⩾1

m+ µi

m− µi

m− λi

m+ λi
.

This ratio is greater than 1, by [Fa5, Lemma 4.7].
The second statement is the same as in [Fa5, Lemma 4.8].

Next we import three results from [Fa5] comparing divided degrees for specific partitions. We
remark that the results we use from [Fa5] are all stated for degree rather than divided degree, and
[Fa5] does not use our unusual definition of ⟨⟨λ⟩⟩; but in fact if λ has at most one even part (which
is the case for all partitions appearing in the next three lemmas) then ddeg⟨⟨λ⟩⟩ = deg⟨λ(±)⟩, so the
results in [Fa5] can be imported directly.

Lemma 4.20 [Fa5, Lemma 4.2]. Given a ⩾ 2, define

λa = (4a, 4a− 3 4. . . 5), µa = (4a+ 1 4. . . 9, 4).

Then (λa)dblreg = (µa)dblreg, and ddeg⟨⟨λa⟩⟩ > ddeg⟨⟨µa⟩⟩.
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Lemma 4.21. Given a ⩾ 1, define

λa = (4a, 4a− 3 4. . . 1), µa = (4a+ 1 4. . . 5).

Then (λa)dblreg = (µa)dblreg and ddeg⟨⟨λa⟩⟩ > ddeg⟨⟨µa⟩⟩.

Proof. This is just the case m = 0 of [Fa5, Proposition 4.3].

Lemma 4.22. Given a ⩾ 1, define

λa = (4a+ 2, 4a− 1 4. . . 3), µa = (4a+ 3 4. . . 7, 2).

Then (λa)dblreg = (µa)dblreg, and ddeg⟨⟨λa⟩⟩ > ddeg⟨⟨µa⟩⟩.

Proof. This is the case m = 0 of [Fa5, Proposition 4.6].

Now we prove a new result on the same lines.

Lemma 4.23. Given a ⩾ 1, define

λa = (4a+ 2, 4a− 1 4. . . 7, 2), µa = (4a+ 3 4. . . 7, 1).

Then λdblreg = µdblreg and ddeg⟨⟨λ⟩⟩ > ddeg⟨⟨µ⟩⟩.

Proof. The first claim is very easy to check. For the second, we use induction on a. The base case is
a simple check, and the inductive step follows from the claim that

ddeg⟨⟨λa+1⟩⟩ddeg⟨⟨µa⟩⟩
ddeg⟨⟨λa⟩⟩ddeg⟨⟨µa+1⟩⟩ > 1.

In fact, we can calculate this ratio directly from the bar-length formula: it is

(a+ 1)2(4a− 1)(4a+ 1)(4a+ 7)(4a+ 9)
a2(2a+ 3)(2a+ 5)(8a+ 5)(8a+ 9)

.

To see that this ratio is always greater than 1, we subtract the denominator from the numerator to get

64a5 + 364a4 + 544a3 + 126a2 − 190a− 63

which is obviously positive for a ⩾ 1.

5 Rouquier blocks and separated partitions

5.1 Decomposition numbers for Rouquier blocks

In this section we work with Rouquier blocks of S̃n. These are blocks whose decomposition
numbers are relatively well-behaved, and which play an important role in the classification of homo-
geneous spin characters.

Our main result (Theorem 5.3) is a formula for the spin decomposition numbers in Rouquier
blocks. From this we will be able to deduce which spin characters in Rouquier blocks are homoge-
neous. We then extend these results to characters labelled by a family of partitions which we call
separated.
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We begin by recalling the essential definitions and background on Rouquier blocks. Rouquier
blocks of symmetric groups have been studied in numerous places, but Rouquier blocks of the double
covers are first treated in [Fa5]. First we fix some notation.

Throughout Sections 5.1 and 5.2 we fix a 2-core σ, and we let τ = σdbl be the corresponding 4-bar-core.
For w ⩾ 0 we write Bw for the block of S̃|σ|+2w with 2-core σ and weight w.

We say that the block Bw is Rouquier if w ⩽ l(σ) + 1. One thing that makes Rouquier blocks easy
to understand is the simple description of the partitions labelling the characters.

Proposition 5.1. Suppose 0 ⩽ w ⩽ l(σ) + 1.

1. [Fa5, Lemma 5.1] The 2-regular partitions labelling irreducible Brauer characters in Bw are pre-
cisely the partitions σ + 2µ, for µ ∈ P(w).

2. [Fa5, Corollaries 5.3 and 5.5] The 2-regular partitions labelling spin characters in Bw are pre-
cisely the partitions τ + 4α⊔ 2β, for α ∈ P and β ∈ D with 2|α|+ |β| = w.

So the spin decomposition number problem in Rouquier blocks amounts to finding the decom-
position numbers Dspn

(τ+4α⊔2β)(σ+2µ)
for all µ, α ∈ P and β ∈ D with |µ| = 2|α|+ |β| ⩽ l(σ) + 1.

The corresponding result for decomposition numbers of Sn in characteristic 2 is as follows. Recall
that for partitions λ, µ ∈ P(w), Dλµ denotes the decomposition number for the Schur algebra S(w)
(which coincides with the corresponding decomposition number for Sn if µ is 2-regular), and Aλµ

denotes the (λ, µ)-entry of the adjustment matrix.

Theorem 5.2 [JM1, Corollary 2.6], [T, Theorem 132]. Suppose w ⩽ l(σ) + 1 and λ, µ ∈ P(w). Then

D̊(σ+2λ)(σ+2µ) = δλµ, D(σ+2λ)(σ+2µ) = Dλµ

and hence
A(σ+2λ)(σ+2µ) = Dλµ.

Our calculations in Rouquier blocks will be based around projective characters. Recall that a
character of S̃n is projective (in characteristic 2) if it vanishes on elements of even order. In fact we
work with virtual projective characters, i.e. Z-linear combinations of projective characters.

Given µ ∈ D(n), the projective cover of the James module Dµ may be lifted to an ordinary rep-
resentation of S̃n, and we write prj(µ) for the character of this representation; this is called an inde-
composable projective character, and the characters prj(µ) for µ ∈ D(n) give a basis for the space of
virtual projective characters.

Brauer reciprocity says that prj(µ) is given in terms of irreducible characters by the entries in the
column of the decomposition matrix corresponding to µ. With our unusual definition of ⟨⟨λ⟩⟩ and
Dspn

λµ , this amounts to the following statement:

prj(µ) = ∑
λ∈P(n)

DλµJλK + ∑
λ∈D(n)

Dspn
λµ ⟨⟨λ⟩⟩.

Now suppose w ⩽ l(σ) + 1, and consider projective characters in the Rouquier block Bw. By
Proposition 5.1(1), these are linear combinations of the characters prj(σ+ 2µ) for µ ∈ P(w). For each
µ ∈ P(w) we define a virtual projective character ωµ in Bw by

ωµ = ∑
λ∈P(w)

D−1
λµ prj(σ + 2λ).
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Then

prj(σ + 2µ) = ∑
λ∈P(w)

Dλµωλ

and Theorem 5.2 implies that ωµ is the unique virtual projective character in Bw satisfying

(ωµ : Jσ + 2νK) = δµν

for all ν.
Now we can state our main theorem for Rouquier blocks. (Recall the notation for symmetric

functions from Section 3.)

Theorem 5.3. Suppose w ⩽ l(σ) + 1. Suppose µ, α ∈ P and β ∈ D with |µ| = 2|α|+ |β| = w. Then

(ωµ : ⟨⟨τ + 4α⊔ 2β⟩⟩) = 2l(β)/2 ∑
γ,ζ∈P

⟨Pβ, sζ⟩ aµ
γζ ϵ∗(γ) aα

γ(0)γ(1) .

Hence

Dspn
(τ+4α⊔2β)(σ+2µ)

= 2l(β)/2 ∑
λ∈P(w)

Dλµ ∑
γ,ζ∈P

⟨Pβ, sζ⟩ aλ
γζ ϵ∗(γ) aα

γ(0)γ(1) .

Example. Take w = 4, with α = (1), β = (2) and µ = (2, 12), and examine the terms in the formula
for Dspn

(τ+4α⊔2β)(σ+2µ)
. The decomposition matrix for S(4) shows that Dλµ = 1 for λ = (2, 12) and

(14), and Dλµ = 0 otherwise. To get a(1)
γ(0)γ(1) non-zero, we need γ(0) and γ(1) to equal ∅ and (1) in

some order. Assuming γ also has empty 2-core (so that ϵ∗(γ) ̸= 0), we obtain γ = (2) or (12). The
Schur P-function P(2) is easily seen to equal s(2) + s(12). So we need to consider pairs of partitions

γ, ζ ∈ {(2), (12)}. For such a pair we get a(2,12)
γζ = 1 as long as at least one of γ and ζ is (12), and we

get a(1
4)

γζ = 1 only if they both equal (12). So the final summation consists of four terms: three of these
(with γ = (12)) contribute a coefficient of 1, and the other one (with γ = (2)) gives −1. Combining
this with the initial coefficient 2l(β)/2 =

√
2, we end up with Dspn

(τ+4α⊔2β)(σ+2µ)
= 2

√
2.

In fact, we already know a special case of Theorem 5.3 from [Fa5].

Proposition 5.4. Theorem 5.3 holds in the case β = ∅.

Proof. Since P∅ = s∅, Theorem 5.3 in the case β = ∅ asserts that

(ωµ : ⟨⟨τ + 4α⟩⟩) = ∑
γ

aµ
γ∅ ϵ∗(γ) aα

γ(0)γ(1)

= ϵ∗(µ) aα
µ(0)µ(1) . (†)

[Fa5, Theorem 5.14] says that for any µ,

Dspn
(τ+4α)(σ+2µ)

= A(α⊔α)µ.

From above, Dspn
(τ+4α)(σ+2µ)

= (prj(σ + 2µ) : ⟨⟨τ + 4α⟩⟩), and prj(σ + 2µ) = ∑λ Dλµωλ. Hence

(ωµ : ⟨⟨τ + 4α⟩⟩) = ∑
λ

D−1
λµ (prj(σ + 2λ) : ⟨⟨τ + 4α⟩⟩)

= ∑
λ

D−1
λµ A(α⊔α)λ

= (AD−1)(α⊔α)µ

= D̊−1
(α⊔α)µ

.

By Corollary 4.10, D̊−1
(α⊔α)µ

equals the right-hand side of (†).
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In order to prove Theorem 5.3 by induction, we will need some results on inducing characters in
Rouquier blocks. For a ⩾ 0 we define f(a)

• to be the function f(a)
0 f(a)

1 if l(σ) is odd, or f(a)
1 f(a)

0 if l(σ) is
even. Given w ⩽ l(σ) + 1, our technique to find characters in the Rouquier block Bw will be to apply
f(a)
• to characters in the block Bw−a (which is also a Rouquier block).

First we show how to apply f(a)
• to a character ωλ. This result is essentially contained in [Fa5] (and

is effectively a special case of [CT, Lemma 3.1]).

Proposition 5.5. Suppose λ ∈ P with |λ|+ a ⩽ l(σ) + 1. Then

f(a)
• ωλ = ∑

µ

aµ

λ(1a)
ωµ.

Proof. The function f(a)
• takes characters in B|λ| to characters in B|λ|+a. It also takes projective char-

acters to projective characters, so f(a)
• ωλ must be a linear combination of the virtual characters ωµ for

µ ∈ P(|λ|+ a). Since ωλ is characterised by
(
ωλ : Jσ + 2µK

)
= δλµ, we need to show that(

f(a)
• ωλ : Jσ + 2µK

)
= aµ

λ(1a)

for each µ. By definition ωλ equals Jσ + 2λK plus a combination of characters of the form JϵK with ϵ

2-singular, plus a linear combination of spin characters. By [Fa5, Lemma 5.9],(
f(a)
• Jσ + 2λK : Jσ + 2µK

)
= ⟨easλ, sµ⟩,

where ea is the ath elementary symmetric function, which coincides with the Schur function s(1a). So(
f(a)
• Jσ + 2λK : Jσ + 2µK

)
= aµ

λ(1a)
,

while (also from [Fa5, Lemma 5.9])
(

f(a)
• χ : Jσ + 2µK

)
= 0 for any other irreducible character χ appear-

ing in ωλ. The result follows.

Next we show how to apply f(a)
• to a spin character.

Proposition 5.6. Suppose α, γ ∈ P and β, ζ ∈ D, and 2|α|+ |β| ⩽ 2|γ|+ |ζ| ⩽ l(σ) + 1. Let a = 2|γ| −
2|α|+ |ζ| − |β|. Then(

f(a)
• ⟨⟨τ + 4α⊔ 2β⟩⟩ : ⟨⟨τ + 4γ⊔ 2ζ⟩⟩

)
= 2(l(ζ)−l(β))/2 aγ

α(1•) Hsζ\β .

Proof. For this proof write λ = τ + 4α⊔ 2β and µ = τ + 4γ⊔ 2ζ. We assume l(σ) is even throughout
the proof; the other case is the same but with the residues 0 and 1 swapped throughout.

In order for the left-hand side of the formula in the proposition to be non-zero, we must have
λ ⊆ µ by the spin branching rules. In order for the right-hand side to be non-zero, we must have
α ⊆ γ and β ⊆ ζ, which also gives λ ⊆ µ. So the formula is true (with both sides zero) if λ ̸⊆ µ.

So we assume for the rest of the proof that λ ⊆ µ. Let s = l(γ). Then we claim that:

⋄ up to row s, λ agrees with τ + 4α and µ agrees with τ + 4γ;

⋄ from row s+ 1 on, λ agrees with τ ⊔ 2β and µ agrees with τ ⊔ 2ζ.
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First we address µ. One of the parts of µ is 2ζ1, and we claim that this does not occur among the first
s parts of µ. The relationship between σ and τ means that τr = 2l(σ)− 4r + 3 for r ⩽ l(τ). So

2ζ1 ⩽ 2|ζ|
⩽ 2l(σ) + 2− 4|γ|
⩽ 2l(σ) + 2− 4s

= τs − 1.

Hence the s largest parts of µ are τ1 + 4γ1, . . . , τs + 4γs. So

(µ1, . . . , µs) = (τ1 + 4γ1, . . . , τs + 4γs), (µs+1, µs+2, . . . ) = (τs+1, τs+2, . . . )⊔ 2ζ,

which proves our claim for µ. To prove the same claim for λ, we first need to show that 2β1 < τs. If
this is not true, then λ contains at least s+ 1 parts greater than or equal to τs, and in particular λs+1 ⩾
τs. Our assumption that λ ⊆ µ then means that µs+1 ⩾ τs; but from above µs+1 = max{τs+1, 2ζ1} < τs,
a contradiction.

So 2β1 < τs, and hence the first s parts of λ are τ1 + 4α1, . . . , τs + 4αs, while

(λs+1, λs+2, . . . ) = (τs+1 + 4αs+1, τs+2 + 4αs+2, . . . )⊔ 2β.

If αs+1 > 0, this gives λs+1 ⩾ τs, but we have just shown that this cannot be the case. So l(α) ⩽ s and

(λs+1, λs+2, . . . ) = (τs+1, τs+2, . . . )⊔ 2β,

so our claim is proved.
Having proved our claim, it is easy to see that to have λ ⊆ µ we must have α ⊆ γ and (using

Lemma 2.1) β ⊆ ζ. So we assume this is the case. If
(

f(r)1 f(r)0 ⟨⟨λ⟩⟩ : ⟨⟨µ⟩⟩
)
> 0, there must be a 2-regular

partition ν such that λ
0r

=⇒ ν
1r

=⇒ µ. The partition ν is unique if it exists: it is obtained from λ by
adding all the nodes of µ \ λ of spin residue 0. This gives νr ⩽ λr + 2 and µr ⩽ νr + 2 for every r, and
in particular γr ⩽ αr + 1 for every r; so γ \ α must be a vertical strip in order for ν to exist, in which
case νr = λr + 2(γr − αr) for r = 1, . . . , s.

We also claim that ζ \ β must be a horizontal strip if ν exists. The construction of ν means that for
r = 1, . . . , τs,

ν′r =

{
τ′

r + (2ζ)′r if r ≡ 0, 1 (mod 4)

τ′
r + (2β)′r if r ≡ 2, 3 (mod 4).

Since ν must be a partition, we must also have ν′r ⩽ ν′r−1 for all r ⩾ 2. For r ̸≡ 0 (mod 4) this is
immediate, while for r ≡ 0 (mod 4) this condition says

τ′
r + (2ζ)′r ⩽ τ′

r−1 + (2β)′r−1.

The assumption that l(σ) is even means that τ′
r = τ′

r−1 − 1 when r ≡ 0 (mod 4), so our condition
becomes

(2ζ)′r ⩽ (2β)′r−1 + 1,

i.e.
ζ ′r/2 ⩽ β′

r/2 + 1
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whenever r ≡ 0 (mod 4). The partition ν must also be 2-regular, i.e. ν′r ⩾ ν′r−1 − 1 for all r ⩾ 2. This is
immediate when r ̸≡ 2 (mod 4), while for r ≡ 2 (mod 4) it says

τ′
r + (2β)′r ⩾ τ′

r−1 + (2ζ)′r−1 − 1.

This reduces to
β′

r/2 ⩾ ζ ′r/2 − 1

whenever r ≡ 2 (mod 4). So in order for our 2-regular partition ν to exist we need β′
r ⩾ ζ ′r − 1 for all

r, so that ζ \ β is a horizontal strip.
So the formula in the proposition is true (with both sides zero) if either γ \ α is not a vertical strip

or ζ \ β is not a horizontal strip. So we may assume from now on that γ \ α is a vertical strip and
ζ \ β is a horizontal strip. We then need to show that

(
f(a)
1 f(a)

0 ⟨⟨λ⟩⟩ : ⟨⟨µ⟩⟩
)
= 2(l(ζ)−l(β))/2 Hsζ\β. We do

this using two applications of Proposition 4.11. For this, we just need to count the number of pairs of
consecutive columns both containing a node of ν \λ, and the number of pairs of consecutive columns
both containing a node of µ \ ν. We start with the nodes of ν \ λ. For r = 1, . . . , s we have νr − λr ∈
{0, 2}, so the added nodes come in |γ| − |α| pairs lying in adjacent columns. In rows s + 1, s + 2, . . . ,
we add at most one node in each column. We have a pair of added 0-nodes in adjacent columns for
every r ≡ 0 (mod 4) with ν′r > λ′

r and ν′r+1 > λ′
r+1; writing r = 4t, this is the same as saying

τ′
4t + (2ζ)′4t > τ′

4t + (2β)′4t, τ′
4t+1 + (2ζ)′4t+1 > τ′

4t+1 + (2β)′4t+1,

which is the same as
ζ ′2t > β′

2t, ζ ′2t+1 > β′
2t+1.

So the number of pairs of nodes added in consecutive columns equals the number of even values of
x such that ζ \ β contains nodes in columns x and x + 1. Call this number Xev

ζβ. Define Xod
ζβ similarly,

and observe that Xev
ζβ + Xod

ζβ + Nζβ + l(ζ)− l(β) = |ζ| − |β|. Now Proposition 4.11 gives(
f(a)
0 ⟨⟨λ⟩⟩ : ⟨⟨ν⟩⟩

)
= 2(a−l(ν)+l(λ))/2−|γ|+|α|−Xev

ζβ .

In a similar way we get (
f(a)
1 ⟨⟨ν⟩⟩ : ⟨⟨µ⟩⟩

)
= 2(a−l(µ)+l(ν))/2−|γ|+|α|−Xod

ζβ .

Since there is no other ξ with
(

f(a)
0 ⟨⟨λ⟩⟩ : ⟨⟨ξ⟩⟩

)(
f(a)
1 ⟨⟨ξ⟩⟩ : ⟨⟨µ⟩⟩

)
> 0, we obtain(

f(a)
• ⟨⟨λ⟩⟩ : ⟨⟨µ⟩⟩

)
= 2(l(β)−l(ζ))/2+|ζ|−|β|−Xev

ζβ−Xod
ζβ

= 2(l(ζ)−l(β))/2+Nζβ

as required.

Now we can use Proposition 5.4 to give the deferred proof of Proposition 3.8.

Proof of Proposition 3.8. If |λ| > 2|γ| then both sides are zero. Otherwise, let a = 2|γ| − |λ|, and
consider the coefficient of ⟨⟨τ + 4γ⟩⟩ in f(a)

• ωλ.
As a consequence of Propositions 5.4 and 5.5, we obtain(

f(a)
• ωλ : ⟨⟨τ + 4γ⟩⟩

)
= ∑

µ

aµ

λ(1a)
ϵ∗(µ) aγ

µ(0)µ(1) ,
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which is the left-hand side of the formula in Proposition 3.8. On the other hand, using Propositions
5.1(2), 5.4 and 5.6, we obtain(

f(a)
• ωλ : ⟨⟨τ + 4γ⟩⟩

)
= ∑

α

ϵ∗(λ) aα
λ(0)λ(1)

(
f(a)
• ⟨⟨τ + 4α⟩⟩ : ⟨⟨τ + 4γ⟩⟩

)
= ∑

α

ϵ∗(λ) aα
λ(0)λ(1) aγ

α(1•)

= ϵ∗(λ) aγ

λ(0)λ(1)(1•)
,

which is the right-hand side.

Now we come to the proof of our main result on Rouquier blocks.

Proof of Theorem 5.3. We just need to prove the first statement; the second statement then follows
from the remarks preceding the theorem.

Write G(µ, α, β) for the right-hand side of the equation in Theorem 5.3, defining G(µ, α, β) = 0 if
|µ| ̸= 2|α|+ β|. We proceed by induction on w, and for fixed w by induction on µ (with respect to the
dominance order). For the case w = 0, the only irreducible 2-modular Brauer character in Bw is φ(σ),
and σ = τdblreg, so that by Theorem 4.1(

ω∅ : ⟨⟨τ⟩⟩
)
= (prj(σ) : ⟨⟨τ⟩⟩) = 1,

in agreement with the theorem.
Now assume w > 0 and that (ων : ⟨⟨τ + 4ζ ⊔ 2η⟩⟩) = G(ν, ζ, η) for all η, ζ whenever |ν|< w or ν ◁ µ.

Suppose the last non-empty column of µ has length a, and let µ− denote the partition obtained by
removing this last column. By our inductive hypothesis(

ωµ−
: ⟨⟨τ + 4α− ⊔ 2β−⟩⟩

)
= G(µ−, α−, β−)

for all α− ∈ P and β− ∈ D with 2|α−|+ |β−| = |µ−|. Hence we can compute(
f(a)
• ωµ−

: ⟨⟨τ + 4α⊔ 2β⟩⟩
)
= ∑

α−∈P
β−∈D

G(µ−, α−, β−)
(

f(a)
• ⟨⟨τ + 4α− ⊔ 2β−⟩⟩ : ⟨⟨τ + 4α⊔ 2β⟩⟩

)

= ∑
α−∈P
β−∈D

2l(β−)/2 ∑
ξ,η∈P

⟨Pβ− , sη⟩ aµ−

ξη ϵ∗(ξ) aα−

ξ(0)ξ(1)
2(l(β)−l(β−))/2 Hsβ\β− aα

α−(1•)

= 2l(β))/2 ∑
β−∈D
ξ,η∈P

⟨Pβ− , sη⟩ aµ−

ξη ϵ∗(ξ) aα
ξ(0)ξ(1)(1•) Hsβ\β−

= 2l(β))/2 ∑
ν,ξ,η∈P

aν
µ−(1•)⟨Pβ, sη⟩ϵ∗(ξ) aα

ξ(0)ξ(1)
aν

ξη by Theorem 3.9

= ∑
ν∈P

aν
µ−(1•) G(ν, α, β).

Since G(ν, α, β) = 0 unless |ν| = |µ|, we can write this as

∑
ν∈P(w)

aν
µ−(1a) G(ν, α, β).
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By Proposition 5.5 we also have(
f(a)
• ωµ−

: ⟨⟨τ + 4α⊔ 2β⟩⟩
)
= ∑

ν∈P(w)

aν
µ−(1a) (ω

ν : ⟨⟨τ + 4α⊔ 2β⟩⟩) ,

so that

∑
ν∈P(w)

aν
µ−(1a) (ω

ν : ⟨⟨τ + 4α⊔ 2β⟩⟩) = ∑
ν∈P(w)

aν
µ−(1a) G(ν, α, β).

Since µ− is obtained by removing the last column from µ, every partition ν with aν
µ−(1a) > 0 sat-

isfies ν P µ. The inductive hypothesis gives (ων : ⟨⟨τ + 4α⊔ 2β⟩⟩) = G(ν, α, β) for ν ◁ µ, and hence
(ωµ : ⟨⟨τ + 4α⊔ 2β⟩⟩) = G(µ, α, β) as well.

5.2 Homogeneous spin characters in Rouquier blocks

In this section we use Theorem 5.3 to classify homogeneous spin characters in Rouquier blocks.
Our main result here is as follows.

Theorem 5.7. Suppose α ∈ P and β ∈D with 2|α|+ |β|⩽ l(σ)+1. Then ⟨⟨τ+4α⊔2β⟩⟩ is homogeneous
if and only if β is a 2-core and α is 2-Carter.

For the rest of Section 5.2 we fix α ∈ P and β ∈ D with 2|α|+ |β| ⩽ l(σ) + 1, and we write λ =
⟨⟨τ + 4α⊔ 2β⟩⟩.

We begin with the case where β is a 2-core.

Proposition 5.8. Suppose β is a 2-core. Then for µ ∈ P(w),

Dspn
λ(σ+2µ)

= 2l(β)/2 A(α⊔α⊔β)µ.

Hence ⟨⟨λ⟩⟩ is homogeneous if and only if α is 2-Carter.

Proof. Since β is a 2-core we have Pβ = sβ by Corollary 3.3. We also have D̊−1
βκ = δβκ for any κ, because

∆β lies in a block of S◦(|β|) by itself. So (with variables re-labelled) the first formula in Proposition 4.9
becomes

D̊−1
(α⊔α⊔β)ν

= ∑
γ∈P

ϵ∗(γ) aα
γ(0)γ(1) aν

βγ .

Now the formula in Theorem 5.3 becomes

Dspn
(τ+4α⊔2β)(σ+2µ)

= 2l(β)/2 ∑
ν∈P(w)

Dνµ ∑
γ∈P

aν
γβ ϵ∗(γ) aα

γ(0)γ(1)

= 2l(β)/2 ∑
ν∈P(w)

D̊−1
(α⊔α⊔β)ν

Dνµ

= 2l(β)/2 A(α⊔α⊔β)µ.

By Corollary 4.10, A(α⊔α⊔β)µ equals Dαγ if µ has the form γ ⊔ γ ⊔ β, and 0 otherwise. So in order for
⟨⟨λ⟩⟩ to be homogeneous, there must be a unique γ with Dαγ > 0; in other words, ∆α is homogeneous.
By Lemma 4.6 and Theorem 4.7, this is the same as saying that α is 2-Carter.

Now we come to the case where β is not a 2-core.
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Lemma 5.9. Suppose η ∈ P is obtained from β by moving a node from row r to row r + 1 for some r,
and let

µ = α⊔ α⊔ β′, ν = α⊔ α⊔ η′.

Then (ωµ : ⟨⟨λ⟩⟩) > 0 and (ων : ⟨⟨λ⟩⟩) > 0.

Proof. By Theorem 5.3(
ωξ : ⟨⟨τ + 4α⊔ 2β⟩⟩

)
= 2l(β)/2 ∑

γ,ζ∈P
⟨Pβ, sζ⟩ aξ

γζ ϵ∗(γ) aα
γ(0)γ(1)

for any ξ. Suppose we have γ, ζ such that the summand ⟨Pβ, sζ⟩ aξ
γζ ϵ∗(γ) aα

γ(0)γ(1) is non-zero. In order
to have ⟨Pβ, sζ⟩ ̸= 0, we need ⟨Pβ, sζ ′⟩ ̸= 0 by Lemma 3.1, and hence β Q ζ ′ by Lemma 3.2. In order to
have aξ

γζ aα
γ(0)γ(1) ̸= 0, we need ξ Q γ⊔ ζ and α P γ(0)+γ(1) by Lemma 2.8. Using Lemmas 2.3 and 2.6

as well, we find

ξ Q γ⊔ ζ Q (γ(0) + γ(1))⊔ (γ(0) + γ(1))⊔ ζ Q α⊔ α⊔ ζ Q α⊔ α⊔ β′. (†)

In the case ξ = µ, we must therefore have equality throughout, so that γ = α⊔ α and ζ = β′. We then
obtain

⋄ ⟨Pβ, sζ⟩ = 1 by Lemmas 3.1 and 3.2;

⋄ aµ
γζ aα

γ(0)γ(1) = 1 by Lemma 2.8, because µ = γ⊔ ζ and α = γ(0) + γ(1);

⋄ ϵ∗(γ) = 1 because all the columns of γ have even length.

So we get (ωµ : ⟨⟨λ⟩⟩) > 0.
Now consider (†) with ξ = ν. The relationship between β and η means that α⊔ α⊔ β′ is obtained

from α⊔ α⊔ η′ by moving a node from column r + 1 to column r, so α⊔ α⊔ η′ covers α⊔ α⊔ β′ in the
dominance order, by Lemma 2.2. Hence we must have equality in three of the four inequalities in (†).
This gives at most four possible cases.

1. α⊔ α⊔ η′ = γ⊔ ζ = (γ(0) + γ(1))⊔ (γ(0) + γ(1))⊔ ζ = α⊔ α⊔ ζ.

These equalities are satisfied if and only if γ = α⊔ α and ζ = η′. And now we have:

⋄ ⟨Pβ, sζ⟩ = 1 by Lemmas 3.1 and 3.4;

⋄ aν
γζ aα

γ(0)γ(1) = 1 by Lemma 2.8, because ν = γ⊔ ζ and α = γ(0) + γ(1);

⋄ ϵ∗(γ) = 1 because all the columns of γ have even length.

Hence ⟨Pβ, sζ⟩ aν
γζ ϵ∗(γ) aα

γ(0)γ(1) = 1 in this case.

2. α⊔ α⊔ η′ = γ⊔ ζ = (γ(0) + γ(1))⊔ (γ(0) + γ(1))⊔ ζ and α⊔ α⊔ ζ = α⊔ α⊔ β′.

Here the second equality tells us that all the columns of γ have even length, and then the first
equality implies that ηs ≡ ζ ′s (mod 2) for all s. But the final equality gives ζ ′ = β, a contradiction.

3. α⊔ α⊔ η′ = γ⊔ ζ and (γ(0) + γ(1))⊔ (γ(0) + γ(1))⊔ ζ = α⊔ α⊔ ζ = α⊔ α⊔ β′.

Here the last equality gives ζ = β′, and the first equality then gives α ⊔ α ⊔ η′ = γ ⊔ β′, so γ is
obtained from α ⊔ α by moving a node from column r to column r + 1. If α′

r = α′
r+1 then there

is no such γ, so assume α′
r > α′

r+1. Now Lemma 2.5 says that α = γ(0)+γ(1) (so that the second
equality is satisfied) and:
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⋄ ⟨Pβ, sζ⟩ = 1 by Lemmas 3.1 and 3.2;

⋄ aν
γζ aα

γ(0)γ(1) = 1 by Lemma 2.8, because ν = γ⊔ ζ and α = γ(0) + γ(1);

⋄ ϵ∗(γ) = −1 by Lemma 2.5.

Hence ⟨Pβ, sζ⟩ aν
γζ ϵ∗(γ) aα

γ(0)γ(1) = −1 in this case.

4. γ⊔ ζ = (γ(0) + γ(1))⊔ (γ(0) + γ(1))⊔ ζ = α⊔ α⊔ ζ = α⊔ α⊔ β′.

In this case (using Lemma 2.6) the equalities are satisfied if and only if γ = α⊔ α and ζ = β′. So:

⋄ ⟨Pβ, sζ⟩ = 1 by Lemmas 3.1 and 3.2;

⋄ ϵ∗(γ) = 1 because the columns of γ have even length;

⋄ aα
γ(0)γ(1) = 1 by Lemma 2.8, because α = γ(0) + γ(1).

Under the additional assumption that α′
r > α′

r+1, we claim that aν
γζ > 0; that is, aα⊔α⊔η′

(α⊔α)β′ > 0.

Replacing partitions with their conjugates, we just need to show that a2α′+η

(2α′)β
> 0, and this follows

from Lemma 2.9.

So in this case we have ⟨Pβ, sζ⟩ aν
γζ ϵ∗(γ) aα

γ(0)γ(1) ⩾ 0, and the inequality is strict if α′
r > α′

r+1.

Summing over the four cases, we conclude that (ων : ⟨⟨τ + 4α⊔ 2β⟩⟩) > 0, as required.

Proof of Theorem 5.7. The case where β is a 2-core is addressed in Proposition 5.8. So assume β is
not a 2-core. Then there is r ⩾ 1 such that βr ⩾ βr+1 + 2. Let η be the partition obtained from β by
moving a node from row r to row r+ 1, and define µ, ν as in Lemma 5.9. Then we claim that Dspn

λ(σ+2µ)

and Dspn
λ(σ+2ν)

are both positive, so that ⟨⟨λ⟩⟩ is inhomogeneous.
For any π,

Dspn
λ(σ+2π)

= (prj(σ + 2π) : ⟨⟨λ⟩⟩)

= ∑
ξ

Dξπ

(
ωξ : ⟨⟨λ⟩⟩

)
.

Now Dξπ > 0 only if π Q ξ. On the other hand, the argument in the first paragraph of the proof of
Lemma 5.9 shows that

(
ωξ : ⟨⟨λ⟩⟩

)
is non-zero only if ξ Q µ. So (using Lemma 4.6 as well) we can write

Dspn
λ(σ+2π)

= ∑
πQξQµ

Dξπ

(
ωξ : ⟨⟨λ⟩⟩

)
. (‡)

In the particular case π = µ, this gives

Dspn
λ(σ+2µ)

= (ωµ : ⟨⟨λ⟩⟩) ,

and this is positive by Lemma 5.9.
In the case π = ν, the fact that ν covers µ in the dominance order gives

Dspn
λ(σ+2ν)

= (ων : ⟨⟨λ⟩⟩) + Dµν (ω
µ : ⟨⟨λ⟩⟩) .

By Lemma 5.9 the first term is strictly positive, and the second is non-negative, so Dspn
λ(σ+2ν)

> 0.
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5.3 Separated partitions

In this subsection we extend the results of Section 5.1 beyond Rouquier blocks, to a family of
2-regular partitions we call separated. These were addressed in [Fa5], but here we introduce a more
general definition of separated partition, where we allow arbitrarily many even parts.

Suppose λ ∈ D and i ∈ {1, 3}. Say that λ is i-separated if

⋄ all the odd parts of λ are congruent to i modulo 4, and

⋄ if any λr is even, then λ includes all positive integers less than λr which are congruent to i
modulo 4.

Say that λ is separated if it either 1- or 3-separated. Separated partitions can alternatively be char-
acterised as follows.

Lemma 5.10. Suppose λ ∈ D. Then λ is separated if and only if it can be written in the form τ + 4α⊔
2β, where τ is a 4-bar-core, α ∈ P and β ∈ D with τ1 ⩾ 4l(α) + 2β1 − 3.

Proof. Suppose λ is i-separated. Write λ = κ ⊔ 2β, where all the non-zero parts of κ are odd. By
assumption the non-zero parts of κ are all congruent to i modulo 4, so we can write κ = τ+ 4α, where
τ is a 4-bar-core and l(α) ⩽ l(τ).

If τ = ∅, then λ has no odd parts, so the separated condition means that 2β1 ⩽ 2, as required. On
the other hand, if τ ̸=∅, then the first positive integer congruent to i modulo 4 which is not contained
in λ is τ1 +4−4l(α), so the separated condition implies that 2β1 < τ1 +4−4l(α), which is the desired
inequality.

Conversely, suppose λ can be written as in the lemma. Let i be the common residue modulo 4
of the odd parts of τ, setting i = 3 if τ = ∅. Then all the odd parts of λ are congruent to i modulo
4. To check the second condition in the definition of an i-separated partition, we need to show that
λ contains all positive integers congruent to i modulo 4 which are less than 2β1. The first positive
integer congruent to i modulo 4 which is not contained in τ + 4α is τ1 + 4 − 4l(α) if τ ̸= ∅, or 3 if
τ = ∅. The inequality τ1 ⩾ 4l(α)+ 2β1 − 3 implies that 2β1 is less than this, so that λ does contain all
positive integers congruent to i modulo 4 and less than 2β1.

It is clear that for a separated 2-regular partition the expression τ + 4α ⊔ 2β in Lemma 5.10 is
unique. Now we can state our main result for separated partitions, which extends Theorem 5.7.

Theorem 5.11. Suppose λ is a separated 2-regular partition, and write λ = τ + 4α⊔ 2β with τ a 4-bar-
core. Then ⟨⟨λ⟩⟩ is homogeneous if and only if β is a 2-core and α is 2-Carter.

The proof of Theorem 5.11 is a downwards induction, using Theorem 5.7 as an initial case. The
set-up for the inductive step generalises the results of [Fa5, Section 5.7] in a straightforward way.

Lemma 5.12. Suppose λ is a separated 2-regular partition, and write λ = τ + 4α ⊔ 2β, where τ is a 4-
bar-core. Let i be the common spin residue of the spin-addable nodes of τ and let υ be the 4-bar-core
obtained by adding all the i-spin-addable nodes to τ. Let µ = υ+ 4α⊔ 2β. Then µ is separated, and

f(max)
i ⟨⟨λ⟩⟩ = ⟨⟨µ⟩⟩, e(max)

i ⟨⟨µ⟩⟩ = ⟨⟨λ⟩⟩,

so ⟨⟨λ⟩⟩ is homogeneous if and only if ⟨⟨µ⟩⟩ is.
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Proof. The fact that µ is separated is immediate from Lemma 5.10. For the statements about induc-
tion and restriction, we assume for ease of notation that i = 0, though the other case is very similar.
Let l = l(τ). Observe that λ has 0-spin-addable nodes in column 1 and in columns τr + 4αr + 1 and
τr + 4αr + 2 for each r = 1, . . . , l. Adding all these nodes yields µ, so by Proposition 4.11

f(max)
i ⟨⟨λ⟩⟩ = f(2l+1)

i ⟨⟨λ⟩⟩ = ⟨⟨µ⟩⟩.

In a similar way we get e(max)
i ⟨⟨µ⟩⟩ = ⟨⟨λ⟩⟩.

For the final statement, suppose ⟨⟨µ⟩⟩ is homogeneous. Then by Theorem 4.1 ⟨⟨µ⟩⟩ is a scalar
multiple of φ(µdblreg). Hence ϵi φ(µ

dblreg) = ϵi⟨⟨µ⟩⟩, so that ⟨⟨λ⟩⟩ = e(max)
i ⟨⟨µ⟩⟩ is a scalar multiple of

e(max)
i φ(µdblreg). By Theorem 4.12, e(max)

i φ(µdblreg) is an irreducible Brauer character, so ⟨⟨λ⟩⟩ is homo-
geneous. The opposite implication is proved in the same way.

Now Theorem 5.11 follows by downwards induction starting from Theorem 5.7 in exactly the
same way as [Fa5, Proposition 5.27] is proved.

6 Proof of the main theorem

In this section we complete the proof of Theorem 4.4. We begin with the “if” part, which is
essentially done.

Proof of Theorem 4.4 (“if” part). If λ has the form τ + 4α ⊔ (4, 2) with l(τ) > l(α) and α a 2-Carter
partition, then by Lemma 5.10 λ is separated, so the result follows from Theorem 5.11. On the other
hand, if λ is one of the partitions (4, 3, 2, 1), (5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1), then we can check
directly using the Modular Atlas Homepage [Atlas] that ⟨⟨λ⟩⟩ is homogeneous. For n ⩽ 17, this page
gives decomposition numbers for the symmetric group Sn, and also the degrees of the irreducible
Brauer characters. One can then check using the bar-length formula that ddeg⟨⟨λ⟩⟩ = deg φ(λdblreg),
so that by Theorem 4.1 ⟨⟨λ⟩⟩ = 2ev(λ)/2φ(λdblreg). For these partitions, we get the following values.

λ λdblreg ddeg⟨⟨λ⟩⟩ = deg φ(λdblreg)

(4, 3, 2, 1) (7, 3) 48
(5, 4, 3, 2) (8, 5, 1) 4576
(5, 4, 3, 2, 1) (9, 5, 1) 4576
(7, 4, 3, 2, 1) (9, 5, 2, 1) 339456

It remains to check the “only if” part of Theorem 4.4, by showing that if λ is a 2-regular partition
that has two non-zero even parts but is not one of the partitions in Theorem 4.4 then ⟨⟨λ⟩⟩ is inhomo-
geneous. We start by singling out seven partitions which cannot be dealt with by any of our main
inductive arguments. Let

R = {(8, 4), (8, 3, 2, 1), (12, 3, 2, 1), (13, 4, 3, 2, 1), (11, 5, 4, 3, 2), (15, 5, 4, 3, 2), (19, 11, 5, 4, 3, 2)}.

Proposition 6.1. Suppose λ ∈ R. Then ⟨⟨λ⟩⟩ is inhomogeneous.

Proof. In each case we can find a composition factor of ⟨⟨λ⟩⟩ other than φ(λdblreg) using a Fock space
calculation.

As explained in Section 4.2, we can equate ⟨⟨λ⟩⟩ with the 2-modular reduction of a linear combi-
nation of ordinary irreducible characters. That is, we can write ⟨⟨λ⟩⟩ = ∑ξ aξJξK for some coefficients
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aξ ∈ C. Hence for any µ we have Dspn
λµ = ∑ξ aξ Dξµ. The values Dξµ are not known in all the cases

required for the present proposition, but we can exploit the theory of adjustment matrices. Recall
from Proposition 4.5 that Dξµ = ∑ν D̊ξν Aνµ, where A is the adjustment matrix for the Schur algebra.
Hence if we let Cλµ = ∑ν Dspn

λν A−1
νµ , then Cλµ = ∑ξ aξ D̊ξµ. The values D̊ξµ can be computed using the

LLT algorithm [A, LLT], and hence we can compute Cλµ for any µ. (We do not give details of this
algorithm here, since we are only applying it in a few cases.)

Now suppose we can find µ ∈ D(n) with µ ̸= λdblreg such that Cλµ > 0 while Cλν ⩾ 0 for all ν P µ.
Since A has non-negative entries, with Aµµ = 1 and Aνµ > 0 only for ν P µ, we obtain

Dspn
λµ = ∑

ν∈D(n)
Cλν Aνµ > 0,

so that ⟨⟨λ⟩⟩ is inhomogeneous.
For each λ ∈ R we carry out this calculation using the LLT algorithm in GAP [GAP], and it turns

out that in each case we can find a partition µ as above. We give the value of µ in each case.

λ λdblreg µ

(8, 4) (5, 4, 2, 1) (7, 5)
(8, 3, 2, 1) (7, 4, 2, 1) (9, 5)
(12, 3, 2, 1) (7, 6, 4, 1) (9, 5, 3, 1)
(13, 4, 3, 2, 1) (9, 6, 5, 3) (9, 7, 5, 2)
(11, 5, 4, 3, 2) (10, 7, 4, 3, 1) (10, 7, 5, 3)
(15, 5, 4, 3, 2) (10, 7, 6, 5, 1) (10, 9, 7, 3)

(19, 11, 5, 4, 3, 2) (12, 9, 8, 7, 4, 3, 1) (12, 9, 8, 7, 5, 3)

Now we come to the inductive part of the proof of Theorem 4.4. This relies heavily on the next
lemma.

Lemma 6.2. Suppose λ ∈ D and ⟨⟨λ⟩⟩ is homogeneous, and take i ∈ {0, 1}. Then:

1. ⟨⟨λ↓i⟩⟩ is homogeneous;

2. ev(λ↓i) ⩽ ev(λ);

3. ϵi φ(λ
dblreg) = ϵi⟨⟨λ⟩⟩;

4. e(max)
i (φ(λdblreg)) = φ((λ↓i)

dblreg).

Proof. Let µ = λ↓i, and let a denote the number of i-spin-removable nodes of λ. Since ⟨⟨λ⟩⟩ is ho-
mogeneous, ⟨⟨λ⟩⟩ equals 2ev(λ)/2φ(λdblreg) by Theorem 4.1. Hence ϵi⟨⟨λ⟩⟩ = ϵi φ(λ

dblreg) = a, and
e(max)

i ⟨⟨λ⟩⟩ = 2ev(λ)/2e(max)
i φ(λdblreg), with e(max)

i φ(λdblreg) being an irreducible Brauer character by
Theorem 4.12.

On the other hand, by Proposition 4.11,

e(max)
i ⟨⟨λ⟩⟩ = e(a)

i ⟨⟨λ⟩⟩ = 2(a−l(λ)+l(µ))/2−c⟨⟨µ⟩⟩, (*)

where c is the number of pairs of nodes of λ \ µ lying in consecutive columns. So

⟨⟨µ⟩⟩ = 2(ev(λ)−a+l(λ)−l(µ))/2+ce(max)
i φ(λdblreg)
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is homogeneous. Now applying Theorem 4.1 to µ we deduce that e(max)
i φ(λdblreg) = φ(µdblreg), and

that
ev(λ)− a+ l(λ)− l(µ)

2
+ c =

ev(µ)
2

,

so
ev(λ)− ev(µ) = a− l(λ) + l(µ)− 2c,

which is clearly non-negative, giving (2).

An alternative version of Lemma 6.2 holds for induction, replacing ↓i, ϵi, ei with ↑i, ϕi, fi. We will
refer to this version also as Lemma 6.2.

With this lemma in mind, we introduce some notation. For i = 0, 1 we let Ii denote the set of
all 2-regular partitions λ for which ev(λ) = i and ⟨⟨λ⟩⟩ is homogeneous; these are given by [Fa5,
Theorem 3.3], and are simply the partitions in Theorem 4.3 together with the partitions (4b) for b ⩾ 1.
We also let I2 denote the set of 2-regular partitions with exactly two even parts which we claim
label homogeneous spin characters; these are precisely the partitions appearing in Theorem 4.4. Let
I = I0 ∪I1 ∪I2.

Given a 2-regular partition λ and i ∈ {0, 1}, recall that we write λ i to mean that ϵi φ(λ
dblreg) <

ϵi⟨⟨λ⟩⟩; by Lemma 6.2, if λ i then ⟨⟨λ⟩⟩ is inhomogeneous.
In order to prove the “only if” part of Theorem 4.4 by induction, we take a 2-regular partition λ,

and we can assume (in view of Lemma 6.2) that for i = 0, 1 either λ↓i = λ or λ↓i ∈ I . We set out our
assumptions for easy reference.

Assumptions in force for the rest of Section 6:
λ is a 2-regular partition with ev(λ) = 2. λ is not separated and does not lie in I2 or R. For i = 0, 1,
either λ↓i ∈ I or λ↓i = λ.

We need one more item of notation: for any r ⩾ 1, we write δr for the composition which has a 1
in position r and 0s everywhere else.

First we extract more specific information about λ↓0 and λ↓1 by examining the spin residues of
the spin-removable and spin-addable nodes of partitions in I . Suppose that i ∈ {0, 1} with λ↓i ∈ I .
We consider the three possibilities for ev(λ↓i).

λ↓i ∈ I0
In this case λ↓i has the form τ + 4α, where τ is a 4-bar-core with τ1 ≡ 2i − 1 (mod 4), and α is a
2-Carter partition with l(α) ⩽ l(τ).

λ↓i ∈ I1
In this case λ↓i cannot be of the form (2b), since there is no way to add nodes of spin residue i
to (2b) to obtain a partition with two even positive parts. λ↓i cannot have the form (4b − 2, 1),
since this partition has spin-removable nodes with both residues. Finally, one can check that
λ↓i cannot equal (3, 2, 1).

So λ↓i has the form τ + 4α ⊔ (2), where τ is a 4-bar-core with τ1 ≡ 2i − 1 (mod 4), and α is a
2-Carter partition with l(α) ⩽ l(τ)− i.

λ↓i ∈ I2
In this case one can check that (given our other assumptions) λ↓i cannot be any of (4, 3, 2, 1),
(5, 4, 3, 2), (5, 4, 3, 2, 1), (7, 4, 3, 2, 1). So λ↓i has the form τ + 4α ⊔ (4, 2), where τ is a 4-bar-core
with τ1 ≡ 2i − 1 (mod 4) and α is a 2-Carter partition with l(α) < l(τ).

Now we consider the various possible cases for λ↓0 and λ↓1.
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Case 1: λ↓0 = λ, λ↓1 ∈ I0

In this case we write
λ↓1 = (4m− 3 4. . . 1) + 4α

where α is a 2-Carter partition with l(α) ⩽ m. We reconstruct λ from this partition by adding nodes
of spin residue 1, and since λ↓0 = λ we need to add enough of these nodes to ensure that λ has no
0-spin-removable nodes. Together with the fact that ev(λ) = 2, this means that we add two nodes in
each row from 1 to m except for two rows where we only add one. So

λ = (4m− 1 4. . . 3) + 4α− δi − δj

for some 1 ⩽ i < j ⩽ m.
First suppose i ⩽ l(α). Observe that λ has a 1-spin-addable node in row i, and a 1-spin-removable

node in row m. Since a 2-Carter partition is necessary 2-regular, αi > αm, so the 1-spin-addable
node lies in a longer slope than the 1-spin-removable node. So λ 1 by Proposition 4.17, so ⟨⟨λ⟩⟩ is
inhomogeneous by Lemma 6.2.

Now assume that i > l(α). In this case we apply a dimension argument. We need to treat the
cases j = m and j < m separately.

If j < m, then define µ = λ + δj − δm. Then by Lemmas 4.19 and 4.22 λdblreg = µdblreg and
ddeg⟨⟨λ⟩⟩ > ddeg⟨⟨µ⟩⟩, so ⟨⟨λ⟩⟩ is inhomogeneous by Lemma 4.18.

If j = m, define µ = λ + δi − δj. Then Lemmas 4.19 and 4.23 imply that λdblreg = µdblreg and
ddeg⟨⟨λ⟩⟩ > ddeg⟨⟨µ⟩⟩, so ⟨⟨λ⟩⟩ is inhomogeneous.

Case 2: λ↓0 = λ, λ↓1 ∈ I1

In this case we write
λ↓1 = (4m− 3 4. . . 5, 2, 1) + 4α

where α is a 2-Carter partition with l(α) ⩽ m− 1. We can reconstruct λ from this partition by adding
nodes of spin residue 1; because λ↓0 = λ, we need to add at least one node in every row from 1 to
m + 1. In each of rows m, m + 1 we can only add a single 1-node (so λ ends in (. . . , 3, 2)). So in order
to have ev(λ) = 2 we add two nodes in each of rows 1, . . . , m− 1 except one, where we only add one.

In other words,
λ = (4m− 1 4. . . 7, 3, 2) + 4α− δi

for some 1 ⩽ i ⩽ m − 1. If i > l(α) then λ is separated, contrary to assumption, so we must have
i ⩽ l(α). Now λ has a 1-spin-addable node in row i, and a 1-spin-removable node in row m in a
shorter slope, and so λ 1 by Proposition 4.17, and so ⟨⟨λ⟩⟩ is inhomogeneous by Lemma 6.2.

Case 3: λ↓0 = λ, λ↓1 ∈ I2

Here
λ↓1 = (4m− 3 4. . . 5, 4, 2, 1) + 4α

where α is a 2-Carter partition of length at most m − 1. To reconstruct λ from this with λ↓0 = λ, we
add:

⋄ one or two nodes in each of rows 1, . . . , m− 2;

⋄ zero, one or two nodes in row m− 1 (but we must add at least one node if l(α) = m− 1);

⋄ one node in each of rows m+ 1, m+ 2.
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In particular, λ ends (. . . , 4, 3, 2). Since ev(λ) = 2, we must therefore add two nodes in each of rows
1, . . . , m− 2, and either zero or two nodes in row m− 1. If we add two nodes in row m− 1, then

λ = (4m− 1 4. . . 7, 4, 3, 2) + 4α

which is separated, contrary to assumption. So instead we must have l(α) ⩽ m− 2 and

λ = (4m− 1 4. . . 11, 5, 4, 3, 2) + 4α.

Now we consider two subcases. Suppose first that α1 ⩾ 2. Let κ = λ↑0↑1. Then we claim that κ 0. By
Lemma 6.2 this implies that ⟨⟨κ⟩⟩ is inhomogeneous, and hence that ⟨⟨λ⟩⟩ is inhomogeneous.

We calculate

λ↑0 = (4m+ 1 4. . . 13, 5, 4, 3, 2, 1) + 4α,

so that

κ = λ↑0↑1 = (4m+ 3 4. . . 15, 7, 4, 3, 2, 1) + 4α.

κ has a 0-spin-removable node (m + 3, 1), lying in slope 2m + 4. In addition, κ has a 0-spin-addable
node (1, 4m + 4α1 + 4), lying in slope 2m+ 2α1 + 2. The assumption that α1 ⩾ 2 means that there is a
0-spin-addable node in a longer slope than the 0-spin-removable node, so by Proposition 4.17 κ 0, as
claimed.

Now we consider the subcase where α1 ⩽ 1. Since a 2-Carter partition is automatically 2-regular,
this means that α =∅ or α = (1). Our assumptions then imply that l(α)⩽ m−4, since if l(α)⩾ m−3,
then λ is one of the partitions (5, 4, 3, 2), (11, 5, 4, 3, 2), (15, 5, 4, 3, 2) or (19, 11, 5, 4, 3, 2). The first of
these lies in I2, while the others lie in R; either way, this contradicts our standing assumptions.

In this situation we consider the partition

κ = λ↑0↑1↓0 = (4m+ 3 4. . . 15, 7, 4, 3, 2) + 4α,

which is separated. Writing

κ = (4m+ 3 4. . . 3) + 4(α+ (1m−2))⊔ (4, 2),

we see that ⟨⟨κ⟩⟩ is inhomogeneous by Theorem 5.11, since the partition α + (1m−2) is 2-singular, and
so certainly not 2-Carter. So by Lemma 6.2, ⟨⟨λ⟩⟩ is inhomogeneous.

Case 4: λ↓0 ∈ I0, λ↓1 = λ

Here we write
λ↓0 = (4m− 1 4. . . 3) + 4α,

with α a 2-Carter partition of length at most m. To construct λ, we add one or two nodes in each of
rows 1, . . . , m, and possibly one node in row m+ 1. So we have two cases.

1. λ = (4m+ 1 4. . . 1) + 4α− δi − δj, where 1 ⩽ i < j ⩽ m.

In this case if i ⩽ l(α), then we can use Proposition 4.17 to show that λ 0; this is similar to
previous cases. So by Lemma 6.2 ⟨⟨λ⟩⟩ is inhomogeneous.

So assume instead that i > l(α). Now we apply a dimension argument. If we set µ = λ + δj −
δm+1, then by Lemmas 4.19 and 4.21 λdblreg = µdblreg and ddeg⟨⟨λ⟩⟩ > ddeg⟨⟨µ⟩⟩, so that ⟨⟨λ⟩⟩ is
inhomogeneous.
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2. λ = (4m+ 1 4. . . 5) + 4α− δi − δj, where 1 ⩽ i < j ⩽ m.

First we observe that if i ⩽ l(α), then λ 0. This is proved similarly to the case above, and by
Lemma 6.2 implies that ⟨⟨λ⟩⟩ is inhomogeneous.

So assume i > l(α). We claim that if j = m, then the partition κ = λ↑1 satisfies κ 0, so that ⟨⟨κ⟩⟩,
and hence ⟨⟨λ⟩⟩, are inhomogeneous.

The assumption j = m means that

λ = (4m+ 1 4. . . 4m+ 9− 4i, 4m+ 4− 4i, 4m+ 1− 4i 4. . . 9, 4) + 4α

and hence

κ = λ↑1 = (4m+ 3 4. . . 4m+ 11− 4i, 4m+ 4− 4i, 4m+ 3− 4i 4. . . 11, 4) + 4α.

κ has a 0-spin-removable node (m, 4) in slope 2m. Now observe that m ⩾ 3, since if m = 2 then
λ = (8, 4), contrary to the assumption that λ /∈ R. So either i ⩽ m − 2 or i ⩾ 2. In the first
case, κ has a 0-spin-addable node (m − 1, 12); in the other case κ has a 0-spin-addable node
(1, 4m+ 4α1 + 4). Either way, Proposition 4.17 gives κ 0, as claimed.

We are left with the case where i > l(α) and j < m. Here we apply a dimension argument. Let
µ = λ + δj − δm. Then by Lemmas 4.19 and 4.20 λdblreg = µdblreg and ddeg⟨⟨λ⟩⟩ > ddeg⟨⟨µ⟩⟩, so
⟨⟨λ⟩⟩ is inhomogeneous.

Case 5: λ↓0 ∈ I1, λ↓1 = λ

We write
λ↓0 = (4m− 1 4. . . 3, 2) + 4α,

where α is 2-Carter with length at most m. To reconstruct λ from λ↓0, we add:

⋄ one or two nodes in each of rows 1, . . . , m− 1;

⋄ zero, one or two nodes in row m (but we must add at least one node if l(α) = m);

⋄ one node in row m+ 2.

Now we consider two cases.

1. Suppose we add at least one node in row m when constructing λ from λ↓0. Then

λ = (4m+ 1 4. . . 5, 2, 1) + 4α− δi

for some i ⩽ m. Furthermore, we have i ⩽ l(α), since if i > l(α) then λ is separated, contrary to
assumption. Now we claim that in most cases λ 0, so that λ is inhomogeneous by Lemma 6.2.

If i < m then λ has a 0-spin-removable node (m, 5 + 4αm) and a 0-spin-addable node (i, 4m +
5− 4i + 4αi). The fact that αi > αm then gives λ 0, by Proposition 4.17.

If i = m and αm ⩾ 2, then λ has a 0-spin-removable node (m + 2, 1) and a 0-spin-addable node
(m, 5+ 4αm), and again Proposition 4.17 gives λ 0.

So we are done unless i = m and αm = 1. In this case, we let κ = λ↑1, and we claim that κ 0, so
that ⟨⟨κ⟩⟩ (and hence ⟨⟨λ⟩⟩) are inhomogeneous.

We calculate
κ = (4m+ 3 4. . . 11, 4, 3, 2) + 4α.

This has a 0-spin-removable node (m, 8) and a 0-spin-addable node (m+ 3, 1), and by Proposi-
tion 4.17 we have κ 0, as claimed.
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2. Now suppose that in reconstructing λ from λ↓0 we do not add a node in row m. Then

λ = (4m+ 1 4. . . 9, 3, 2, 1) + 4α− δi,

with l(α) ⩽ m− 1 and i ⩽ m− 1. Again, we claim that in most cases λ 0.

If αi ⩾ 2, then λ has a 0-spin-removable node (m+ 2, 1) and a 0-spin-addable node (i, 4m+ 5−
4i+ 4αi), and Proposition 4.17 gives λ 0. If αi = 1 and i ⩽ m− 2, then i = l(α), so λ has a 0-spin-
removable node (m−1, 9) and a 0-spin-addable node (i, 4m+9−4i), and again Proposition 4.17
applies.

We split the remaining possibilities into two cases.

(a) Suppose i = m− 1 and αi ⩽ 1. Then

λ = (4m+ 1 4. . . 13, 8, 3, 2, 1) + 4α.

Now set κ = λ↑1; then we claim that κ 0. We have

κ = (4m+ 3 4. . . 15, 8, 3, 2, 1) + 4α.

m must be greater than or equal to 3 here, since if m = 2 then λ = (8, 3, 2, 1) or (12, 3, 2, 1),
contrary to our standing assumption that λ /∈ R. But this means that κ has a 0-spin-
addable node (1, 4m+4α1 +4) and a 0-spin-removable node (m−1, 8), so Proposition 4.17
gives κ 0.

(b) Now suppose l(α) < i < m− 1. Consider the partition

κ = λ↑1↓0↓1↓0 = (4m− 1 4. . . 7, 2) + 4α.

Observe that κ is separated, and write

κ = (4m− 5 4. . . 3) + 4(α+ (1m−1))⊔ 2.

Because l(α) ⩽ m − 3, the partition α + (1m−1) is 2-singular and so certainly not 2-Carter,
and so by Theorem 5.11 ⟨⟨κ⟩⟩ is inhomogeneous. So by four applications of Lemma 6.2, ⟨⟨λ⟩⟩
is inhomogeneous.

Case 6: λ↓0 ∈ I2, λ↓1 = λ

We write
λ↓0 = (4m− 1 4. . . 7, 4, 3, 2) + 4α

where α is a 2-Carter partition of length at most m− 1. To reconstruct λ we add nodes of spin residue
0. To ensure that λ has no 1-spin-removable nodes, we need to add

⋄ either one or two nodes in each of rows 1, . . . , m− 1,

⋄ at most one node in row m, and

⋄ one node in row m+ 3.
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(Note that we cannot add a node in row m + 1 because the condition that ev(λ) = 2 would force
λ = (4m+ 1 4. . . 9, 5, 4, 2, 1) + 4α, which is separated, contrary to assumption.)

The assumption that ev(λ) = 2 gives

λ = (4m+ 1 4. . . 5, 3, 2, 1) + 4α− δi

for some 1 ⩽ i ⩽ m. We must have m ⩾ 2, since if m = 1 then λ = (4, 3, 2, 1), contrary to assumption.
We claim that in most cases λ 0. First observe that λ has a 0-spin-addable node (m + 1, 4). If

either l(α) ⩽ m− 2 or i ⩽ m− 1, then λ also has either (m− 1, 9) or (m, 5) as a 0-spin-removable node,
in which case Proposition 4.17 gives λ 0.

We are left with the case where l(α) = m−1 and i = m. Now we must have α1 ⩾ 2, since otherwise
the fact that α is 2-regular would give λ = (13, 4, 3, 2, 1), contrary to our standing assumption that
λ /∈ R. We define

κ = λ↑1 = (4m+ 3, . . . , 11, 4, 3, 2, 1) + 4α.

Observe that κ has a 0-spin-removable node (m + 3, 1) and a 0-spin-addable node (1, 4m + 4+ 4α1).
So κ 0 by Proposition 4.17, and hence ⟨⟨κ⟩⟩ and ⟨⟨λ⟩⟩ are inhomogeneous.

Case 7: λ↓0 ∈ I , λ↓1 ∈ I

In this case λr = max{(λ↓0)r, (λ↓1)r} for every r, because if i denotes the spin residue of the node
at the end of row r of λ, then (λ↓1−i)r = λr ⩾ (λ↓i)r. The only positive even parts that λ↓0 or λ↓1 can
have are 2 and 4, so the positive even parts of λ are 2 and 4. So either λ↓0 or λ↓1 contains 4 as a part,
and hence lies in I2. We consider the possibilities.

λ↓0 ∈ I2, λ↓1 ∈ I0 ∪I1: Here

λ↓0 = (4m+ 3 4. . . 7, 4, 3, 2) + 4α, λ↓1 = (4n+ 1 4. . . 5, [2, ]1) + 4β

for some 2-Carter partitions α, β with l(α) ⩽ m and l(β) ⩽ n+ 1; the notation [2, ] indicates that
the part 2 may or may not be present in (λ↓1). In order for λ to contain 4 as a part, we need
(λ↓1)m+1 ⩽ 4, so that m ⩾ n. But then λm+3 = 2 while (λ↓1)m+3 = 0, which is impossible.

λ↓0 ∈ I0, λ↓1 ∈ I2: Here

λ↓0 = (4m+ 3 4. . . 7, 3) + 4α, λ↓1 = (4n+ 1 4. . . 5, 4, 2, 1) + 4β.

Now in order to have 4 as a part of λ we need (λ↓0)n+1 ⩽ 4, giving m ⩽ n. But now λn+2 = 2
while (λ↓0)n+2 = 0, which is impossible.

λ↓0 ∈ I1, λ↓1 ∈ I2: Now

λ↓0 = (4m+ 3 4. . . 7, 3, 2) + 4α, λ↓1 = (4n+ 1 4. . . 5, 4, 2, 1) + 4β.

Now the only way to have 4 as a part of λ is if m = n, in which case the last three parts of λ are
(λm+1, λm+2, λm+3) = (4, 2, 1). Since λ ̸= λ↓1, there must be some r ⩽ m such that λr = (λ↓0)r =
4m + 7− 4r + 4αr. If αr = 0 this means that λ has a 1-spin-removable node (r, λr) and a 1-spin-
addable node (m + 3, 2) in a longer slope, so that λ 1. If αr > 0, then λ has a 0-spin-addable
node (r, λr + 1) and a 0-spin-removable node (m + 1, 4) in a shorter slope, so λ 0. Either way,
⟨⟨λ⟩⟩ is inhomogeneous by Lemma 6.2.
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λ↓0, λ↓1 ∈ I2: Now

λ↓0 = (4m+ 3 4. . . 7, 4, 3, 2) + 4α, λ↓1 = (4n+ 1 4. . . 5, 4, 2, 1) + 4β.

To get 4 as a part of λ, we must have either m = n − 1 or m = n. If m = n − 1, then the last
three non-zero parts of λ are (4, 2, 1), and we can proceed as in the previous case. If m = n,
then the last three parts of λ are (λm+1, λm+2, λm+3) = (4, 3, 2). Since λ ̸= λ↓0, there must be
some r ⩽ m such that λr = (λ↓1)r = 4m+ 5− 4r + 4βr. If βr ⩽ 1, then λ has a 0-spin-removable
node (r, λr) and a 0-spin-addable node (m+ 4, 1) in a longer slope, so λ 0. If βr ⩾ 2, then λ has
a 1-spin-addable node (r, λr + 1) and a 1-spin-removable node (m + 2, 3) is a shorter slope, so
λ 1. Either way, ⟨⟨λ⟩⟩ is inhomogeneous.

Proof of Theorem 4.4 (“only if” part). We proceed by induction on |λ|. Suppose λ ∈ D with ev(λ) =
2 and λ /∈ I2, and that the theorem is known to be true for all 2-regular partitions smaller than
λ. If λ is separated, then Theorem 5.11 gives the result. If λ is one of the seven partitions in R,
then Proposition 6.1 gives the result. If for i = 0 or 1 the partition λ↓i does not lie in I ∪ {λ},
then Lemma 6.2 together with the inductive hypothesis gives the result. Otherwise, λ satisfies the
assumptions set out following Lemma 6.2, and so is dealt with by Cases 1–7 above.

7 Index of notation

For the reader’s convenience we conclude with an index of the notation we use in this paper. We
provide references to the relevant subsections.

Partitions

P the set of all partitions 2.1
P(n) the set of all partitions of n 2.1
D the set of all 2-regular partitions 2.1
D(n) the set of all 2-regular partitions of n 2.1
∅ the partition of 0 2.1
l(λ) the length of a partition λ 2.1
ev(λ) the number of positive even parts of a partition λ 4.1
λ′ the partition conjugate to λ 2.1
Q the dominance order on P(n) 2.1
aλ the partition (aλ1, aλ2, . . . ) 2.1
λ+ µ the partition (λ1 + µ1, λ2 + µ2, . . . ) 2.1
λ⊔ µ the partition obtained by arranging all the parts of λ and µ together in de-

creasing order
2.1

a 4. . . b the arithmetic progression a, a− 4, . . . , b 2.1
ϵ∗(µ) the 2-sign of µ′ if µ has 2-core ∅ 2.2
λreg the regularisation of λ ∈ P(n) 2.3
λdbl the double of λ ∈ D(n) 2.3
λdblreg (λdbl)reg 2.3
aγ

αβ the Littlewood–Richardson coefficient corresponding to α, β, γ ∈ P 2.5
aγ

α(1•) ∑a⩾0 aγ
α(1a)

2.5
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Symmetric functions

Λ the algebra of symmetric functions 3.1
∆ coproduct on Λ 3.1
mλ the monomial symmetric function corresponding to λ ∈ P 3.1
SstdX(λ) the set of semistandard λ-tableaux with entries in X 3.1
sλ the Schur function corresponding to λ ∈ P 3.1
ShtdX(λ) the set of semistandard shifted λ-tableaux 3.1
Pλ the Schur P-function corresponding to λ ∈ D 3.1
⟨ , ⟩ standard inner product on Sym 3.1
ω involution on Λ defined by sλ 7→ sλ′ 3.1
∂ν reduction operator on Λ 3.2
Hsλ\µ integer depending on two 2-regular partitions λ, µ 3.2

Groups, algebras and representations

Sn the symmetric group of degree n 4.1
An the alternating group of degree n 4.4
S̃n a double cover of Sn 4.1
Ãn a double cover of An 4.4
S(n) the Schur algebra of degree n over F 4.5
S◦(n) the q-Schur algebra of degree n over C, with q = −1 4.5
Sλ the Specht module for Sn corresponding to λ ∈ P(n) 4.1
Dλ the James module for Sn corresponding to λ ∈ D(n) 4.1
∆λ the Weyl module for S(n) or S◦(n) corresponding to λ ∈ P(n) 4.5
Lλ the irreducible module for S(n) or S◦(n) corresponding to λ ∈ P(n) 4.5
Dλµ the decomposition number [∆λ : Lµ] for S(n) (equals the decomposition num-

ber [Sλ : Dµ] for FSn if µ ∈ D(n))
4.2

D̊λµ the decomposition number [∆λ : Lµ] for S◦(n) 4.5
Aλµ the (λ, µ) entry of the adjustment matrix for S(n) 4.5
JλK the character of Sλ over C 4.1
φ(λ) the Brauer character of Dλ 4.1
⟨⟨λ⟩⟩ a class function labelled by λ ∈ D(n) 4.1
( : ) the standard inner product on characters 4.1
Dspn

λµ the modified decomposition number [⟨⟨λ⟩⟩ : φ(µ)] 4.2
prj(µ) the character of the projective cover of Dµ 5.1
ωµ a virtual projective character in a Rouquier block 5.1
deg⟨⟨λ⟩⟩ the degree of the character ⟨⟨λ⟩⟩ 4.9
ddeg⟨⟨λ⟩⟩ the divided degree of ⟨⟨λ⟩⟩ 4.9
R a set of seven exceptional partitions 6
I the set of 2-regular partitions with at most two even parts labelling homoge-

neous spin characters
6

Ik the set of partitions in I with k even parts 6
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Branching rules

χ↓S̃n−1
the restriction of χ to S̃n−1 4.8

χ↑S̃n+1 the character obtained by inducing χ to S̃n+1 4.8
ei Robinson’s i-restriction functor 4.8
fi Robinson’s i-induction functor 4.8
e(r)i er

i /r! 4.8
f(r)i fr

i /r! 4.8
ϵiχ max{ r ⩾ 0 | er

i χ ̸= 0} 4.8
φiχ max{ r ⩾ 0 | fr

i χ ̸= 0} 4.8
e(max)

i χ e(ϵiχ)
i χ 4.8

f(max)
i χ f(φiχ)

i χ 4.8
λ↓i the partition obtained by removing all the i-spin-removable nodes of λ 2
λ↑i the partition obtained by adding all the i-spin-addable nodes of λ 2
λ i ϵi φ(λ

dblreg) < ϵi⟨⟨λ⟩⟩ 4.8
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248 (2002), 765–779. [14, 31]

[DW] L. Dehuai & B. Wybourne, ‘The symmetric group: branching rules, products and plethysms
for spin representations’, J. Phys. A 14 (1981), 327–348. [21]

[DJ] R. Dipper & G. James, ‘The q-Schur algebra’, Proc. London Math. Soc. (3) 59 (1989), 23–50. [18]

[Fa1] M. Fayers, ‘Reducible Specht modules’, J. Algebra 280 (2004), 500–504. [2]

[Fa2] M. Fayers, ‘Irreducible Specht modules for Hecke algebras of type A’, Adv. Math. 193 (2005),
438–452. [2]

[Fa3] M. Fayers, ‘On the irreducible representations of the alternating group which remain irre-
ducible in characteristic p’, Represent. Theory 14 (2010), 601–626. [2, 17]

[Fa4] M. Fayers, ‘The irreducible representations of the alternating group which remain irreducible
in characteristic p’, Trans. Amer. Math. Soc 368 (2016), 5807–5855. [2, 23, 25]

[Fa5] M. Fayers, ‘Irreducible projective representations of the symmetric group which re-
main irreducible in characteristic 2’, Proc. London Math. Soc. 116 (2018), 878–928.

[2, 3, 13, 16, 17, 19, 21, 22, 24, 26, 27, 28, 29, 30, 31, 38, 39, 41]



50 Matthew Fayers

[Fu] W. Fulton, Young tableaux, London Mathematical Society Student Texts 35, Cambridge, 1997. [7]

[HH] P. Hoffman & J. Humphreys, Projective representations of the symmetric groups, Oxford Mathe-
matical Monographs, Oxford University Press, Oxford, 1992. [14]

[GAP] The GAP Group, ‘GAP – Groups, Algorithms, and Programming’, Version 4.8.4; 2016.
(http://www.gap-system.org). [2, 16, 40]

[G] J. Green, Polynomial representations of GLn, Lecture Notes in Mathematics 830, Springer, New
York/Berlin, 1980. [18]

[J1] G. James, ‘On the decomposition matrices of the symmetric groups II’, J. Algebra 43 (1976), 45–54.
[7, 16]

[J2] G. James, ‘Some combinatorial results involving Young diagrams’, Math. Proc. Cambridge Philos.
Soc. 83 (1978), 1–10. [17]

[J3] G. James, The representation theory of the symmetric groups, Lecture notes in mathematics 682,
Springer, New York/Berlin, 1978. [14]

[J4] G. James, ‘The decomposition matrices of GLn(q) for n ⩽ 10’, Proc. London Math. Soc. (3) 60
(1990), 225–265. [5, 8, 18, 20]

[JK] G. James & A. Kerber, The representation theory of the symmetric group, Encyclopædia of Mathe-
matics and its Applications 16, Addison–Wesley, 1981. [5, 6]

[JM1] G. James & A. Mathas, ‘Hecke algebras of type A with q = −1’, J. Algebra 184 (1995), 102–158.
[29]

[JM2] G. James & A. Mathas, ‘A q-analogue of the Jantzen–Schaper theorem’, Proc. London Math. Soc.
(3) 74 (1997), 241–274. [2, 18, 19]

[JM3] G. James & A. Mathas, ‘The irreducible Specht modules in characteristic 2’, Bull. London Math.
Soc. 31 (1999), 457–462. [2]

[KL] M. Konvalinka & A. Lauve, ‘Skew Pieri rules for Hall–Littlewood functions’, J. Algebraic Combin.
38 (2013), 499–518. [12]

[LLT] A. Lascoux, B. Leclerc & J.-Y. Thibon, ‘Hecke algebras at roots of unity and crystal bases of
quantum affine algebras’, Comm. Math. Phys. 181 (1996), 205–263. [40]

[Li] D. Littlewood, ‘Modular representations of the symmetric group’, Proc. Roy. Soc. London (A) 209
(1951), 333–352. [4]

[Ly] S. Lyle, ‘Some reducible Specht modules’, J. Algebra 269 (2003), 536–543. [2]

[Mac] I. Macdonald, Symmetric functions and Hall polynomials, 2nd Edition, Oxford University Press,
1995. [9, 10, 12]

[Mat] A. Mathas, Iwahori–Hecke algebras and Schur algebras of the symmetric group, University Lecture
Series 15, American Mathematical Society, Providence, RI, 1999. [14, 18]

[N] M. Nazarov, ‘Young’s orthogonal form of projective representations of the symmetric group’,
J. London Math. Soc. 42 (1990), 437–451. [15]

[R] G. Robinson, ‘On a conjecture by Nakayama’, Trans. Roy. Soc. Canada Sect. III (3) 41 (1947), 20–25.
[19]
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