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Representations of symmetric and alternating groups and
their double covers that remain irreducible modulo every
prime

Matthew Fayers and Lucia Morotti

Abstract. We classify globally irreducible representations of alternating groups and double covers of
symmetric and alternating groups. In order to achieve this classification we also completely characterise
irreducible representations of such groups which reduce almost homogeneously in every characteristic.
This also allows us to classify irreducible representations that remain irreducible in every characteristic
as well as irreducible representations of these groups that can appear as composition factors of globally
irreducible representations of groups containing 2l or 9, as normal subgroups. In particular we show
that, apart from finitely many exceptions, for any of these questions such representations are either 1-
dimensional or basic spin representations.
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1. Introduction

Globally irreducible representations of finite groups were introduced by Gross in [G], generalising
notations defined by Thompson in [Th], and were studied further by Tiep in [T2]. They are defined
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as representations over the field Q which remain irreducible when scalars are extended to R, and
for which certain reductions to positive characteristic p remain irreducible for every prime p, see
Section 2.1 for more details.

It is a natural and important question to classify the globally irreducible representations of a given
finite group, but this has been accomplished for very few families of groups. For the symmetric
groups S, this was done by Kleshchev and Premet, who proved the following.

Theorem 1.1. [KP, Theorem A] Let M be a representation of S, over Q. Then M is globally irreducible
if and only if M is 1-dimensional.

In fact, since (by [J2, Theorem 11.5]) any field is a splitting field for &,, it is easy to see from the
definition of globally irreducible representations that any ordinary irreducible representation of &,
is globally irreducible if and only if it remains irreducible in characteristic p for every prime p. But
for other groups this is not the case. In this paper we address globally irreducible representations
of the proper double covers of the symmetric groups and the alternating groups 2. In [T1] Tiep
considered basic spin representations of symmetric and alternating groups and classified the basic
spin representations which are composition factors of globally irreducible representations.

One interesting fact about basic spin representations (shown in [Wa]) is that they reduce almost
homogeneously in every characteristic. We say that a representation reduces homogeneously in charac-
teristic p if all the composition factors of the p-modular reduction are isomorphic. Reducing almost
homogeneously is a natural extension of this: a representation reduces almost homogeneously if all
the composition factors of its p-modular reduction are labelled by the same partition in the standard
labelling. For the double cover of &, this means that any two composition factors are either isomor-
phic or obtained from each other by tensoring with the sign representation; for the double cover of
2(,,, it means that any two factors are either isomorphic or obtained from each other under the action
of the double cover of &,. It can be checked using Proposition 2.3 below that if M is a composi-
tion factor of a globally irreducible representation of either an alternating group or a double cover
of a symmetric or alternating group, then M reduces almost homogeneously in every characteristic.
Therefore in order to classify representations appearing in globally irreducible representations we
first classify representations that reduce almost homogeneously in every characteristic. This gives a
second reason for studying almost homogeneous reductions. As a by-product, this will also allow
us to characterise representations that remain irreducible in every characteristic (this was already
known for &,, and 2, but is a new result for the double covers).

Our main result on globally irreducible representations is that, with finitely many exceptions, glob-
ally irreducible representations of symmetric and alternating groups and their double covers are ei-
ther 1-dimensional or basic spin representations.

For alternating groups we obtain the following result.

Theorem 1.2. Suppose A is a partition of n, and let M be an irreducible C2,,-module labelled by A.
The following are equivalent:

(1) M appears in a globally irreducible representation;

(2) the p-modular reduction of M is almost homogeneous for every prime p;

(3) the p-modular reduction of M is irreducible for every prime p;

(4) A or A equals (n), (2,1) or (2,2).
In particular if A, < G and N is a globally irreducible representation of G, then any composition
factor of N Lgn satisfies the above conditions.

For any partition A, let T or T)j‘[ be the irreducible C2,-representations indexed by A. Note that the
partitions appearing in (4) are exactly the partitions for which M = T* or M = T7 is 1-dimensional,
so this result is almost directly analogous to Theorem 1.1. However for A = (2,1) or (2,2) the module
M is not itself a globally irreducible representation (as it is not defined over Q), but the representation
T2 @ T is globally irreducible.

For spin representations of double covers we have the following results. We write & and 2, for
the proper double covers of &, and %, (our sign convention for the double covers of &, is explained
in Section 4.1).
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Theorem 1.3. Suppose A is a strict partition of n, and let M be an irreducible spin C&- or C2l,,-
module labelled by A. Then the p-modular reduction of M is almost homogeneous for every prime p
if and only if one of the following occurs:

(1) A= (n);
@) A=(2,1),(3,2),(3,21),(43,2),(43,2,1),(54,3,2) or (5,4,3,2,1).

In particular if %, < G and N is a globally irreducible representation of G, then any composition
factor of N Lgn is labeled by one of the above partitions.

Theorem 1.4. Suppose A is a strict partition of n, and let M be an irreducible spin C&;:-module
labelled by A. Then the p-modular reduction of M is irreducible for every prime p if and only if one
of the following occurs:

(1) A = (n), wheren =1 or n is even;
@) A =(2,1),(3,2) or(3,2,1).

Theorem 1.5. Suppose A is a strict partition of n, and let M be an irreducible spin C2l,,-module Ia-
belled by A. Then the p-modular reduction of M is irreducible for every prime p if and only if one of
the following occurs:

(1) A = (n), wheren =0, n = 2 orn is odd;
@) A=(2,1),(4,3,2),(43,21),(54,3,2) or (54,3,2,1).

Theorem 1.6. Suppose A is a strict partition of n, and let M be an irreducible spin C&;/-module
labelled by A. Then M appears in a globally irreducible representation if and only if one of the
following occurs.

(1) A = (n) and one of the following holds:
(a) n = 8m? withm € Z,
(b) n =2 (mod 4),
(c) n = 3 (mod 8) and every prime divisor of n is congruent to 3 or 5 modulo 8,
(d) n =5 (mod 8) and every prime divisor of n is congruent to 5 or 7 modulo 8,
(e) n=1.

2 A=(21),(54,3,2) or(54,3,21).

Theorem 1.7. Suppose A is a strict partition of n, and let M be an irreducible spin C&;; -module
labelled by A. Then M appears in a globally irreducible representation if and only if one of the
following occurs.

(1) A = (n) and one of the following holds:
(@) n=202m+1)> withm € Z,
(b) n =0 (mod 4),
(c) n =5 (mod 8) and every prime divisor of n is congruent to 3 or 5 modulo 8,
(d) n =7 (mod 8) and every prime divisor of n is congruent to 5 or 7 modulo 8,
(e) n=1.

(2) A=1(2,1),(3,2) or (3,2,1).

Theorem 1.8. Suppose A is a strict partition of n, and let M be an irreducible spin C91,-module la-
belled by A. Then M appears in a globally irreducible representation if and only if one of the follow-
ing occurs.

(1) A = (n) and one of the following holds:
(@) n = (2m+1)? withm € Z,
(b) n =3 (mod 4),
(c) n = 2m? with m € Z~¢ and every prime divisor of m is congruent to 3 modulo 4,
(d) n = 6 (mod 8) and every odd prime divisor of n is congruent to 3 modulo 4,
(e) n =0 or4.
2) A=(2,1),(3,2),(3,21),(43,2), (4,3,2,1),(5,4,3,2) or (5,4,3,2,1).
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2. Background

2.1. Globally irreducible representations. Throughout this section let G be a finite group. Let V be
an irreducible QG-representation. Let K := Endgg(V) and R C K be a maximal order. Further let
A be an RG-lattice in V, that is A is the Z-span of a Q-basis of V and A is stable under both R and
G. Following [G, T2] we say that V is a globally irreducible representation (or GIR) of G if V ®¢g R is
irreducible and A/IA is irreducible as (R/I)G-module for every maximal two-sided ideal I C R.

We will use the following results on globally irreducible representations. In the following, for any
character x, X means the complex conjugate character and ind () is the Frobenius-Schur indicator of
X. Further, given a prime p, we will view complex characters also as Brauer characters (restricting
them implicitly to the set of p’-elements of G).

We will use the following essential results on GIRs.

Proposition 2.1. [T2, Lemma 2.3] Let x be the character of a GIR of a finite group G. Then one of the
following holds:

(1) x is absolutely irreducible, ind(x) = 1 and K = Q;

(2) x = ¥ + ¢ for ¢ an absolutely irreducible character and K = Q(¢) is an imaginary quadratic
field;

(3) x = 2y for some absolutely irreducible character withind(y) = —1 and K is a definite quater-
nion algebra.

Proposition 2.2. [G, Proposition 4.2] Let ¢ be an irreducible complex character of a finite group G.

(1) If Q(¢) = Q and ¢ is an irreducible Brauer character for all primes p, then ¢ is the character
of a GIR of G.

(2) If Q(v) is an imaginary quaderatic field and ¢ is an irreducible Brauer character for all primes
p, then i + 1 is the character of a GIR of G.

(3) If Q(y) = Q, ind(x) = —1 and for any prime p either ¢ is an absolutely irreducible Brauer
character or ¢ = p + p? (mod p) for some absolutely irreducible Brauer character p with
Fp(p) = F 2, then 2 is the character of a GIR of G.

Proposition 2.3. [T2, Proposition 2.7] Let x be the character of a GIR of a finite group G, let i be
an absolutely irreducible constituent of x and let p be a prime. Then there exists an absolutely ir-
reducible Brauer character p such that ¢ = e(p1 + -+ ps) (mod p) withe = 1 or2 and ps,...,ps
distinct conjugates of p over F,. Moreover if e = 2 then K is a quaternion algebra and p is ramified
inR.

2.2. p-modular reductions. Our aim is to study p-modular reduction. Given a finite group G and a
CG-module M, the p-modular reduction of M is not well-defined up to isomorphism, but its com-
position factors are, and for each irreducible module D in characteristic p we write [M : D] for the
multiplicity of D as a composition factor of a p-modular reduction of M.

3. The alternating groups

In this section we prove our main theorem for the alternating group ;. We begin by summarising
the classification of irreducible modules for &,, and 2l,,.

3.1. Representations in characteristic 0. It is well known that irreducible representations of G, over
C are given by the Specht modules S* labelled by partitions of n (see for example [J2, JK]). Moreover,

~

it is also well-known that $* @ sgn = SV see for example [JK, 2.1.8]. This allows us to describe the
irreducible representations of 2, over C (see for example [JK, §2.5]).

Theorem 3.1.
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(1) The Specht modules S* give a complete irredundant list of irreducible C&,-modules as A
ranges over the partitions of n.
or eacn partition A of n wit. there 1s a self-associate irreaucible n-module 1, suc
(2) F h partition A of n with A # A’ there i If- jate irreducible C2 dule T h
that
S?\ ig: ~ T/\, T)L Tg:lz oy S)\ D S)\/ )

(3) For each partition A of n with A = A’ there is an associate pair of irreducible C2(,,-modules
Tf;, Tf, such that

Sy =TieT:,  Tify =sh.

(4) The modules T* (for A # A’) and Ti (for A = A') together give a complete list of irreducible
CU,-modules. The only non-trivial isomorphisms between these modules are those of the

formT" = TV for A # ).

For simplicity reasons, we will write T} for either T} if A # A/, or one of the modules T} if A = A’

3.2. Representations in positive characteristic. Now let p be a prime. The irreducible represen-
tations of &, in characteristic p are labelled by the set #,(n) of p-regular partitions of n, that is
partitions where no part is repeated p or more times. For each A € #,(n), James [J2, Section 11]

constructs a module D* such that the following holds.

Theorem 3.2 [J2, Theorem 11.5]. The modules D* for A € P,(n) give a complete irredundant list of
irreducible EG 1-modules.

If A is a p-regular partition then D* ® sgn is also irreducible, so there is a p-regular partition A"

such that D* ® sgn = D", The function A — A" is called the Mullineux map, and admits several
combinatorial descriptions (which we shall not need here). If p = 2 then by definition A" = A for
every A € P (n).

We can now describe the classification of irreducible representations of 2, in characteristic p. For
odd p this was given by Ford [Fo], while for p = 2 the classification was obtained by Benson [B].
Their results can be combined in the following theorem. (Part 1 of the theorem uses the fact that

(writing triv for the trivial module for any group) [triv "] = [triv] + [sgn] in the Grothendieck
group of &, over any field.)

Theorem 3.3. For each prime p, there is a subset 2 (1) of 2(n) such that the following hold.

(1) Foreach A € &,(n) \ 9’%‘(71) there is a self-associate irreducible F,2l,-module E", such that
D" ign” >~ g7, [E* Tl = [D"] + [D"] (in the Grothendieck group of F,&,,).
(2) Foreach A € @%(n) there is an associate pair of irreducible F,2,,-modules E%, E* such that
DM g = EL @B,  EBityr =D,

(3) The modulesE* (for A € A € 2,(n) \ 2}(n)) and EL. (for A € 2} (n)) give a complete list of
irreducible spin F,2,-modules. The only non-trivial isomorphisms between these modules
are exactly those of the form E* = EM for p#2and A € Py(n)\ ,@3(71).

In fact when p is odd, 22} (n) is just the set { A € 2, (n) | A" = A} of fixed points of the Mullineux
map. The set Z5'(n) also admits a simple combinatorial description, but we will not need this.

In view of the above result, when p is understood we say that a p-regular partition A splits if
S 3”?(71), as this is exactly the situation where D igl’: is reducible.

We define E} similarly to T
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3.3. Proof of the main result for alternating groups. In this subsection we prove Theorem 1.2. Recall
from the introduction that a module M for F,2, is homogeneous if its composition factors are all
isomorphic, or almost homogeneous if its composition factors can all be labelled by the same partition;
that is, either M is homogeneous or there is A € 333(11) such that each composition factor of M is
isomorphic to E} or E*.

If M is a C2(,,-module and p is a prime, then we say that M is (almost) homogeneous in character-
istic p if a p-modular reduction of M is (almost) homogeneous.

To prove Theorem 1.2 we need to recall James’s regularisation theorem. For this, recall the domi-
nance order &> on partitions of n: y > Aif py +-- -+ pp > Ay +--- + A, for every r.

Theorem 3.4 [J1, Theorem A]. Suppose A is a partition and p a prime. Then there is a p-regular
partition A* such that [S" D)‘R] = 1 while u = A} for any composition factor D" of S”.

We start by proving a fixed characteristic version of the equivalence of conditions (2) and (3) in
Theorem 1.2. We prove only one direction, since the other holds by definition.

Theorem 3.5. Let A be a partition and p a prime. If T} is almost homogeneous in characteristic p then
it is irreducible in characteristic p.

Proof. Assume that T} is almost homogeneous. Then there is a p-regular partition u such that (in
the Grothendieck group of F,2L,) either [T}] = a[E"] with u ¢ P23 (n) or [T}] = a[E"] + b[E" ] with
p € 2 (). Now Theorem 3.3 gives [T} 4] = a[D*] 4 a[D*"] or (a + b)[D*].

In characteristic 0, Theorem 3.1 shows that S* appears as a composition factor of T} 197, and there-
fore in characteristic p every composition factor of S* is a composition factor of T} 1°". So every
composition factor of S* in characteristic p is either D* or D" Since DM is a composition factor of S
with multiplicity 1 by Theorem 3.4, it follows that [$}] = [D"'] + ¢[D?)"], with ¢ = 0 if AR = (AR)™,

If c = 0, then S" is irreducible in characteristic p, and hence so is Ti‘, by [Fal, Proposition 2.11].
So suppose ¢ > 1. Then A* # (A®)", and in particular p # 2. In addition, Theorem 3.4 gives
(AR > AR, Now consider S* ® sgn. As noted above, S* @ sgn = SV in characteristic 0, and therefore
[6* ® sgn] = [§"] in characteristic p. Hence

[$*] = c[D*] + D).
Since (AM)" > A* we deduce (again using Theorem 3.4) that (A')* = A* and ¢ = 1. In particular

[5'] = [S"], so that A = A/ by [Wi, Theorem 1.1.1(i)]. Now again [Fal, Proposition 2.11] shows that
T7 is irreducible in characteristic p. U

We next consider the action of the Galois group on the set of irreducible representations of 2.

Lemma 3.6. Let A € &,(n). Then the set {E*} or {E. } is closed under the Galois action of F,.

Proof. By [J2, Theorem 11.5] D" can be defined over [F,, so the set of composition factors of p* 1y, is
closed under F,-conjugation. The lemma then follows by Theorem 3.3. O

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. (1)=(2): Let p be a prime, and suppose D¥ is a composition factor of S* in
characteristic p. By definition D" | is isomorphic to E* or E/. ®E", and so E* or E/} is a
composition factor of T/ in characteristic p. By Lemma 3.6 the set of composition factors of
D¥ |y, is closed under F,-conjugation. Since T} appears in a GIR, it then follows by Propo-
sition 2.3 that the only possible composition factors of T} are of the form EX, so T is almost
homogeneous.

(2)=(3): This holds by Theorem 3.5.

(3)=(4): By [Fa2, Theorem 8.1] if T? is irreducible in every characteristic, then T is 1-dimensional.
It is then an easy exercise with the hook-length formula to see that A or A’ is one of (1), (2,1)
or (22).
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(4)=(1): If A = (n) then T" is the trivial representation. In particular its character is defined over
Q. So by Proposition 2.2(1) T* is a GIR. If A = (2,1) or (2,2) then the character field of
T4 is Q(v/—3). Furthermore, T} remains irreducible in every characteristic because it is 1-
dimensional. So Ti appears in a GIR by Proposition 2.2(2).

Assume now that G is a group containing 2(,, as normal subgroup, that N is a GIR of G and that M
appears in N ign. Then by [T2, Proposition 2.8], for any prime p, composition factors of the reduction
modulo p of M are conjugate to each other under F,, and G. Since Aut(2,) < &, for n # 6, the last
statement follows by Theorem 3.3 and Lemma 3.6 unless n = 6. In this last case it follows by analysis
of decomposition matrices. O

4. Double covers of the alternating and symmetric groups

4.1. Definition of double covers. Let &,, denote the symmetric group of degree 1, and 2, the alter-
nating group. Double covers of these groups were discovered by Schur [Sc] in the study of projective
representations. Let &, denote the group with generators sy, . ..,s,_1,z, subject to the relations

=z z2=1, siz=zs, sisjsi = sjsisj ifj=1i+1, sisj =s;siz ifj>i+1.

The group &, is defined in the same way, but with the relation s> = 1 in place of s> = z. The
groups & are double covers of &, and are Schur covers of &, provided n > 4. (&} is the group
denoted S, in [HH, St], while @; is denoted S, in [HH] and S!,in [St]. Tiep [T1] uses the opposite
sign convention to ours: the group 2*S, in [T1] is our &}}.)

To prove Theorems 1.3 and 1.4 we will not need to distinguish between &;f and &;;, so we will
use the notation &,, to mean either of these groups, until the end of Section 5. To prove Theorems 1.6
and 1.7 in Section 6 we will have to distinguish between the two double covers. If we need to distin-
guish between generators of &, and &;;, we will write s; + instead of s;.

We write 2, for the pre-image of 2, under the covering map &,, — &,,. Then 2, is a double cover
of 2, and is a Schur cover of 2, provided n > 4and n # 6,7.

We will also need to consider lifts of Young subgroups: if a is a composition of 1 then we define &5

to be the subgroup of & generated by z and all s; with i # Y, _, a for any j > 1. When considering
explicit « we will omit the parentheses. For example, ("\5552,3 = (z,51,52,53,55,57,53). We also define
2, = &F N9, to be the corresponding subgroup of 2A,,.

4.2. Combinatorics of strict and p-strict partitions. Now we describe the combinatorics of partitions
that underpins the representations of &, and 2L,,.

Suppose A is a partition. We write h(A) for the length of A, i.e. the largest r for which A, > 0.
We say that A is strict if A, > A, forall 1 < r < h(A) (so “strict” is just a synonym for the term
“2-regular” used in Section 3.2). A partition A is even if it has an even number of positive even parts,
and odd otherwise. Given two partitions A and y and a natural number 1, we may write A 4+ nyu for
the partition (A1 + npy, Ay + npy, ... ). We also define A Ll i to be the partition whose parts are the
combined parts of A and y, written in decreasing order.

The Young diagram of a partition A is the set

Al ={(r,c) eN*| c <A}

whose elements are called the nodes of A. We draw Young diagrams as arrays of boxes using the
English convention, in which r increases down the page and c increases from left to right.

If A is a strict partition, then anode (r, ¢) € [A] is removable if [A] \ {(r,¢)} is also the Young diagram
of a strict partition. A pair (r,¢) ¢ [A] is an addable node of A if [A] U {(r,¢)} is the Young diagram of
a strict partition.

Warning. The definition of addable and removable nodes we have used here is not universal: some-
times for dealing with representations in characteristic p, a more liberal definition of addable and
removable nodes is used which depends on p. But because we allow p to vary, we stick with the
more restrictive definition above.
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We now define residues and ladders for a given prime p. For p = 2 the 2-residue of a node (7, c) is
0ifc =0or1 (mod 4), and 1 otherwise. So the 2-residue of a node depends only on its column, and
the residues follow the repeating pattern

0,1,1,0,0,1,1,0,...

from left to right.
Ladders for p = 2 were introduced by Bessenrodt and Olsson [BO], and are defined as follows. For
each k > 0, we define the kth ladder to be the set of nodes

Li={(r) eV ‘ 5] +20—1) =k}

For example the first ladders can be illustrated in the following diagram, where we label all the nodes
in £ with k.

0/1]1]2]2]3]|3]4]4]|5][5]
2|13|3 5l e
41515

Now let p = 2 + 1 be an odd prime. The p-residue of a node (7, c) is the smaller of the residues
of c —1 and —c modulo p. So again the p-residue of a node depends only on its column, and the
residues follow the repeating pattern

o1...,1-1,,1-1,...,1,00,1,...,1—-1,I,1 -1,...,1,0,...

from left to right. We say that a partition A is p-even if it has an even number of nodes of non-zero
residue, and p-odd otherwise.

Ladders for p odd were introduced by Brundan and Kleshchev [BK], and are defined as follows.
For each k > 0, we define the kth ladder to be the set of nodes

Ly = {(r,c) e N? V’ﬂpl)CJ +(p—1)(r—1) :k}.

For example, when p = 5, the ladders can be illustrated in the following diagram, where we label all
the nodes in £; with k.

S
N
o

0/1(2(3[4[4|5]6[7[8]8[9]
415/6]78|8[9] -
819 -

The ladder £; depends on the prime p as well as on k, but p will always be clear from the context.
For any p, if k1 < ky, then we say that the ladder Ly, is longer than Ly, .

For any prime and any residue i, an i-node means a node of residue i.

When p is odd, we need to recall some more definitions. We say that a partition A is p-strict if for
every r either A, > A,1 or p | A,. A p-strict partition A is p-restricted if for each r either A, < A1+ p
orA, = Ay +pand p i A,

4.3. Representations in characteristic 0. Now we describe the classification of irreducible represen-
tations of &, and 9,,. On an irreducible module for &,, or %, over any field, the central element z
must act as either 1 or —1. Modules on which z acts as 1 reduce to modules for &, or 2,,, while
modules on which z acts as —1 are called spin modules. By [St, p. 93] absolutely irreducible spin
representations of &;} and &, are essentially the same, though their characters are not (one only has
to adjust the action of the generators by a scalar).

If M is a module for &, (over any field), the associate module is obtained by tensoring with the
one-dimensional sign module sgn (on which each s; acts as —1, and z acts as 1). If M is a module
for 21,,, the associate module is obtained by conjugating the action of each element of %I, by an odd
element of &,,.

The irreducible spin representations of S, and 9, over C were classified by Schur. (In fact Schur
only found the irreducible characters; the modules themselves were constructed — at least for S, -
by Nazarov [N].) Schur’s classification can be stated as follows.
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Theorem 4.1.

(1) For each even strict partition A of n, there is a self-associate irreducible C&,-module S()). For
each odd strict partition of n there is an associate pair of irreducible spin C&,,-modules S(\) ,
S(A)—. The modules constructed in this way give a complete irredundant list of irreducible
spin C&,,-modules.

(2) For each odd strict partition A of n, there is a self-associate irreducible C2,-module T(A). For
each even strict partition of n there is an associate pair of irreducible spin C2l,-modules T(\) ;,
T(A)—. The modules constructed in this way give a complete irredundant list of irreducible
spin C\,,-modules.

(3) If A is an even strict partition of n then S(A)ig” =T(A);+ ®T(A)- and T(A)iTg” =S(A). IfA
is an odd strict partition of n then S(A)iig;’ =~ T(A) and T(A)Tgn" =S(A)y ®S(A)-—.

If A is a strict partition, we will write S(A), to mean S(A) if A is even, or either of the modules
S(A)+ if A is odd. We use the notation T(A), similarly.

We also need notation for irreducible spin representations of &, for a compositiona = (a1, ..., a;).
In [St, §4], Stembridge introduces the reduced Clifford product (S(A') @ - - - @ S(A"))., where A is a strict
partition of &; for each j. See in particular [St, (4.3)] for the construction and [St, Proposition 4.2] for
the characters of these modules. In [St, Theorem 4.3] it is shown that these representations are exactly
the irreducible representations of &,. In this paper we will need them only in the case where the A/
are all even partitions.

4.4. Representations of S, and 21, in positive characteristic. In characteristic 2, the central element
z acts as 1 on every irreducible module for S, or 2, which means that the irreducible modules for &,
reduce to modules for &, (and similarly for 9, and 2(,,). This means that when a spin representation
of C&,, or C4, is reduced modulo 2, the composition factors of the resulting module are all modules
of the form D" or E* or E} introduced in Section 3.2.

When p is odd, however, the composition factors of the reductions modulo p of spin represen-
tations are still spin representations. The representation theory of &, and 9, over a field of odd
characteristic has been developed over a long period. Labelling sets for irreducible spin modules in
odd characteristic were found by Brundan and Kleshchev. We summarise the results we need (with
minor changes to notation) as explained in Kleshchev’s book [KI1, §22.3].

A typical modern approach in this subject is to regard the group algebra of &, as a superalgebra
(i.e. a Z/2Z-graded algebra), with the generators sy, . . .,s,_1 in odd degree and z in even degree, and
to work with irreducible supermodules. Then to derive results on irreducible modules, one can use
the well-understood relationship between modules and supermodules. In particular, Theorem 4.1(1)
can be expressed by saying that there is an irreducible spin C&,-supermodule S(A) for each strict
partition A of n. As modules (i.e. forgetting the Z/2Z-grading) S(A) coincides with S(A) if A is even,
or with S(A); @ S(A)_ if A is odd. We also similarly define T(A) to be either of T(A) or T(A); &
T(A)-—.

Now we fix an odd prime p, and suppose [ is a splitting field for &,, of characteristic p. For each
p-restricted p-strict partition A of 1, Kleshchev defines the following:

o asupermodule D(A) for F&,,;
o amodule D(A) for F&,, and modules E(A) .+ for F9l,,, if A is p-even;
o modules D(A)4 for F&, and a module E(A) for F2L,,, if A is p-odd.

These modules provide a classification of irreducible spin (super)modules, as in the following theo-
rem, which is a combination of Theorem 22.3.1 and p.267 in [KI].

Theorem 4.2.
(1) The modules D(A) for A a p-even p-restricted p-strict partition of n and D(A)+ for A a p-odd
p-restricted p-strict partition of n give a complete irredundant list of irreducible spin F&,,-
modules.
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(2) The modules E(A)+ for A a p-even p-restricted p-strict partition of n and E(A) for A a p-odd
p-restricted p-strict partition of n give a complete irredundant list of irreducible spin F2L,,-
modules.

(3) The modules D(A) for A a p-strict p-restricted partition give a complete irredundant list of
irreducible spin F&, -supermodules.

(4) If A is a p-even p-restricted p-strict partition A of n then D(/\)Lg” >~ E(A); @ E(A)- and

E(/\)iTé" = D(A). If A is a p-odd p-restricted p-strict partition A of n then D(A )i¢6” =~ E(A)

and E(\)1S" 2 D(A); & D(A)
(5) If A is a p-even p-restricted p-strict partition A of n then, as modules, D(A) = D(A). If A is a
p-odd p-restricted p-strict partition A of n then, as modules, D(A) = D(A)y @ D(A)-_.

For any p-restricted p-strict partition of n we also define a module E(A) of 91, by E(A) := E(A) if
A is p-even, or E(A) := E(A)4 @ E(A)_ if A is p-odd. Further we define D(A), to be either D(A) or
either of D(A)4, and define E(A), similarly.

5. Homogeneous reductions for double covers

In this section we study (almost) homogeneous reductions and prove Theorems 1.3 to 1.5. As
with modules for 2, we say that a (super)module M for &, or 2, is homogeneous if its composition
factors are all isomorphic, or almost homogeneous if its composition factors are all labelled by the same
partition. If M is defined over C and p is a prime, then we say that M is (almost) homogeneous in
characteristic p if a p-modular reduction of M is (almost) homogeneous.

If M is a supermodule, then we say that M is homogeneous in characteristic p if the composition
factors of a p-modular reduction of M (as a supermodule) are isomorphic. (For p = 2, there is a
one-to-one correspondence between simple modules and simple supermodules, so this condition is
equivalent to saying that M is homogeneous as a module.)

Lemma 5.1. Suppose A is a strict partition of n and p is a prime. Then the following are equivalent:

o S(A) is homogeneous in characteristic p;
o S(A)« is almost homogeneous in characteristic p;
o T(A)4 is almost homogeneous in characteristic p.

Proof. Consider first the case p = 2, and recall from Section 3.2 that we write 225 (n) for the set of
partitions p of n such that the restriction of D* to 2, is reducible. The relationship between irreducible
modules and supermodules for &,,, and between irreducible modules for &,, and 9, means that
(writing [S(A) : D¥] for the composition multiplicity of D* in S(A) as a module)

[S(A) : D¥] =2[T(A)+ : E¥] = [S(A) : D¥]  if Aisevenand u ¢ 937?[(71),

[S(A) : D] = [T(A)+ : L]+ [T(A)+ : EX] = [S(A) : D¥]  if Aisevenand u € P53 (n),
[S(A)+ : D] = [T(A) : E*] = 1[S(A) : D¥] ifAisoddand u & 25 (n

[S(A)x : D'} = [T(A) : E4] = 1[S(A) : D¥] if Aisodd and u € 25 (n

The proof in odd characteristic p is similar. Given a restricted p-strict partition y, we write [S(A) :
D(p)] for the multiplicity of D(u) as a (super)composition factor of a p-modular reduction of S(A).
Then

4

)
).

S(A) D)) = [T(A)x : E()+] + [T(A)=  E(u)_] = [S(A) : D(4)]  if A is even and s p-even,
[S(A) :D(u)+] = [T(A)+ : E(u)] = [S(A) : D(p)] if Aisevenand p is p-odd,
[S(A)x : D(u)] = [T(A) : E(u)+] = 2[S(A) : D(n)] if Ais odd and y is p-even,

[S(A)< : D() ]+ [S(V)=  D()-] = [T(A) : B(o)] = [S(A) : D()] i Ais odd and e is p-odd.

O

In order to exploit Lemma 5.1, we use the following proposition.
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Proposition 5.2. [FM, Proposition 4.10] Suppose p = 2] + 1 is an odd prime, and A is a strict partition
of n. Suppose that there is some residue i € {0,...,1} such that A has a removable i-node and an
addable i-node in a longer ladder. Then S(A) is inhomogeneous in characteristic p.

We deduce the following useful corollary.

Corollary 5.3. Suppose A is a strict partition and p is an odd prime, and there arer,s € N withr <s
such that:

o A has both addable and removable nodes in rows r and s; and

o Ay + Ag is divisible by p with A, — As # p(s — 7).
Then S(A) is inhomogeneous in characteristic p.

Proof. The fact that p | A, + A; means that the addable node in row r has the same residue as the
removable node in row s, and that the removable node in row r has the same residue as the addable
node in row s. If A, —A; > p(s —r), then the addable node in row r lies in a longer ladder than
the removable node in row s, and Proposition 5.2 gives the result. On the other hand, if A, — A5 <
p(s —r), then the addable node in row s lies in a longer ladder than the removable node in row r, and
again Proposition 5.2 applies. 0

For p = 2 we have the following similar statement, which holds with the same argument as the
previous result, using [Fa4, Proposition 4.17].

Corollary 5.4. Suppose A is a strict partition, and there arer,s € N with r < s such that:
& A has both addable and removable nodes in rows r and s; and
o Ay + Ag is divisible by 4 and A, — As # 4(s —1).

Then S(A) is inhomogeneous in characteristic 2.

The next lemma studies the action of the Galois group on the sets of irreducible representations of
&, or 2,
Lemma 5.5. Let p be odd and y be a p-restricted p-strict partition. Then the set {D(u)} or {D(p)+}
is closed under the Galois action of F,. The same holds for the set {E(p)+} or {E(u)}.

Proof. Notice that the characters of S(A) and T(A) are integer valued (this is most easily seen from
Morris’s analogue of the Murnaghan-Nakayama formula, as given by Hoffman and Humphreys
[HH, Theorems 8.7 and 10.1]). Recall from Section 4.3 that S(A) = S(A) @ sgnand S(A)+ =2 S(A)- ®
sgn, where sgn is the sign representation of &,, and similarly that T(A) = T(A)” and T(A); =
T(M)? for any o € &, \ 2A,. From Section 4.4 similar formulas holds for D(y). and E(u). in odd
characteristic. It follows from these properties that (in the Grothendieck group) [D(u)] can be written
as a Q-linear combination of the modules [S(A)], and similarly for [E(y)]. So the Brauer characters
of D(u) and E(u) are rational (and then also integer) valued. The lemma follows. O

We are now ready to prove our main results on homogeneous and irreducible reductions for dou-
ble covers.

Proof of Theorem 1.3. In view of Lemma 5.1, to prove the first part we just need to show that S(A)
is homogeneous in every characteristic if and only if A = (1) or

Are{(2,1),(32),(321),(432),(43,21),(54,3,2),(543,2,1)}.
By [FM, Theorem 1.1] S(A) is homogeneous in characteristic 3 only if one of the following holds:
(1) A = (n);
(2) M=+ =My =a (mod 3) witha € {1,2} and h()) > 2;
B) A=Bk+a,3k+a—3,...,a) U(3)witha € {1,2} and k > 0;
(4) A is one of the partitions (2,1), (3,2,1), (4,3,2), (4,3,2,1), (5,3,2,1), (5,4,3,1), (5,4,3,2),
(5,4,3,2,1),(7,4,3,2,1), (8,5,3,2,1).
So we just need to show that the theorem holds in each of these four cases.
(1) If A = (n), then S(A) is homogeneous in every characteristic by [Wa, Table III].
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(2) Suppose Ay = -+ = Ay = a (mod 3) with a € {1,2} and h(A) > 2. Then in particular
Ai —Aipq = 3forevery 1 <i < h(A), so there are addable and removable nodes in every row
of A.

If there exists 1 < i < h(A) with A; # A;1 (mod 2), then A; + A1 > 1is odd and not
divisible by 3. Further A; — A;1; is divisible by 3. So we can apply Corollary 5.3 with r = i,
s = i+ 1and p any prime dividing A; + A; 1.

If Ajisevenforall1 <i < h(A)and Ay = Ay (mod 4), then we can apply Corollary 5.4 with
r = 1 and s = 2 (note that A; — A, is divisible by 3, so cannot equal 4).

If \jisevenforall 1 < i < h(A)and Ay # Ay (mod 4) then A + Ay = 2¢ with ¢ > 1 odd. As
A1 — Ay is also even, we can apply Corollary 5.3 with r = 1, s = 2 and p any prime dividing c.

We are left with the case where A; is odd for all 1 < i < h(A). In this case, [BO, Theorem
5.1] shows that the 2-modular reduction of S(A) has a composition factor appearing with
multiplicity 1. So S(A) is homogeneous in characteristic 2 if and only if S(A) is irreducible in
characteristic 2. By [Fa3, Theorem 3.3] it then in particular follows that A1 = A, (mod 4). So
again A1 + Ay = 2c with ¢ > 1 odd and we can conclude as in the previous case.

(3) Suppose A = (3k+a,3k+a—3,...,a) U(3) withk > 0and a € {1,2}. If a + k < 3 then we
can just check the known decomposition numbers [MY, GAP, M], together with the fact that
S(A) is automatically homogeneous in characteristic p when p > |A|. If 2 = 1 and k > 3, then
we can apply Corollary 5.3 withr =k —2,s =k —1and p = 17. If a = 2 and k > 2 then we
can apply Corollary 5.3 withr =k —1,s = kand p = 13.

(4) Suppose Aisoneof (2,1),(3,2,1),(4,3,2),(4,3,2,1), (5,3,2,1),(5,4,3,1), (5,4,3,2), (5,4,3,2,1),
(7,4,3,2,1), (8,5,3,2,1). In all but the last case we can just check the known decomposition
numbers [MY, GAP, M]. In the last case we can apply Corollary 5.3 withr =1 and s = 2.

We will now prove the last statement of the theorem. Assume that G is a group containing %I, as
normal subgroup, that N is a GIR of G and that M appears in N ign. Then by [T2, Proposition 2.8], for
any prime p, composition factors of the reduction modulo p of M are conjugate to each other under
F, and G.

Consider first the case n # 6. Then Aut(2,) < &, and so automorphisms of 3, are given by
conjugation with elements of &,,. To see this let ¢ € Aut(2(,) and ¢ € Aut(2,) be the corresponding
automorphism. Then § corresponds to conjugating by some element g of &,,. Let § € &, be a lift of
g. Then for every h € 2, there exists ¢;, € {0,1} with ¢(h) = z%§hg~!. Comparing order of elements
we have that ¢, = 0 if & is the lift of an element with odd order (in this case one of the two lifts has
odd order while the other even order). Since elements of odd order generate 91,,, we obtain ¢, = 0 for
every h.

It }]ollows that the reduction modulo p of M is almost homogeneous by Theorem 4.2 and Lemma 5.5
for p > 2 and by Theorem 3.3 and Lemma 3.6 for p = 2. In particular M reduces almost homoge-
neously in every characteristic. If n = 6 this last statement can be obtained by analysis of decompo-
sition matrices. ]

Proof of Theorems 1.4 and 1.5. We may assume that A is one of the partitions appearing in Theo-
rem 1.3. For the seven sporadic partitions in Theorem 1.3(2), we can just check the known decompo-
sition numbers [MY, M] to verify the result.

This leaves the partition A = (n), for which S(A ), is the so-called basic spin module. The reducibil-
ity of a p-modular reduction of the basic spin module was determined completely by Wales [Wa,
Theorem 7.7]: S(A), is irreducible in characteristic p if and only if 7 is even or p { n. So if n is even or
n =1, then S(A), is irreducible in every characteristic. If n > 3 is odd, then S(A) is reducible modulo
any prime factor of 1. So we have the desired result for S(A)..

For T(A). we have a little more work to do. From [Fa4, Theorem 4.3] we see that T(A), is irre-
ducible in characteristic 2 if and only if n = 0 or n # 0 (mod 4). To examine T(A), in odd charac-
teristic, we note that in odd characteristic p, Wales’s results (together with an analysis of when the
partition (1) is p-even) can be stated as saying that S(A) is an irreducible supermodule (isomorphic
to D(u), say) in characteristic p. As a consequence, if p is odd, then T(A), is reducible in characteris-
tic p if and only if A is odd and y is p-even. Obviously A is odd if and only if # is even. On the other
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hand, the block classification for the double covers of symmetric and alternating groups in terms of
residues [KI, Theorem 22.3.1(iii)] shows that y is p-even if and only if A is, and it is easy to check that
if n is even, then A is p-even if and only if p | n. We conclude that if p is odd, then T(A )+ is irreducible
in characteristic p if and only if 1 is odd or p { n.

So if nis odd or if n < 2, then T(A) is irreducible in every characteristic. If # is divisible by 4 and
n > 0, then T(A) is reducible in characteristic 2. If n = 2 (mod 4) and n > 2, then T(A) is reducible
modulo p, where p is any odd prime factor of n. O

6. GIRs for double covers

Now we study GIRs for the double covers of &, and ;. Here it will be important to distinguish the
two double covers &, and &;,. Given a strict partition A of 1, we write S°(\) for the representation
S(A) considered as a &¢-representation.

We will be concerned with the representations S(A), and T(A), that are almost homogeneous in
every characteristic; that is, those appearing in Theorem 1.3. The case A = (n) for n > 7 is addressed
in [T1], so we just need to look at the partition (1) for n < 6, together with the seven partitions
in Theorem 1.3(2). In Table I we list some essential information on the characters labelled by these
partitions, including their Frobenius-Schur indicators, character fields and reductions modulo p.
For a strict partition A, we write (A) or (A)+ for the ordinary character of S(A) or S(A)+. In prime
characteristic p, we write ¢(u) or ¢(u)+ for the Brauer characters of the appropriate simple modules
labelled by  (that is, the modules D¥, or Ef if p = 2, or the modules D(u). or E(u). if p is odd).

In fact, most of this section will be devoted to studying the modules S(4,3,2),5(4,3,2,1),5(5,4,3,2)
and S(5,4,3,2,1), which are difficult to deal with. In particular we need to determine whether they
are defined over Q or Q, as & -representations for specific p and e.

6.1. Quaternion algebras. We will need several results on quaternion algebras. We use the standard
notation (a,b | F) for the quaternion algebra over a field I with parameters 4,b € [F; that is, the
[F-algebra generated by two elements i and j with defining relations i> = 4, j> = b, ji = —ij.

We begin with the following result, which studies the structure of certain quaternion algebras over
Q. We give a proof of it, as we are unaware of any previous proof. For d € Q with v/d ¢ Q we write

m s 7 for the non-trivial automorphism of the field Q(+/d). As usual, Mat,,(A) denotes the algebra
of m X m matrices over a commutative algebra A.

Lemma 6.1. Suppose D is a Q-subalgebra of Mat,(Q(+/d)) and is a quaternion division Q-algebra.

(1) There exist f € Q(v/d), m € Q(/d)* and h € Q* such that <\€H {/H)’ <h(1)w 73) e D.
(2) If f =0, then there isk € Q™ such that

o= (o 1) (v V) o) (s ¥),
so that D = (d, k | Q).

Proof. Throughout this proof we write (a3, ..., a,) for the Q-span of ay,...,a, € MatZ(Q(\/ﬁ)). By
assumption we can write D = (I, A, B, AB), where A2 = al, B> = bl,and AB = —BA,and 4,b € Q.
Then (AB )2 = —abl, and the matrices A, B, AB pairwise anti-commute.
Claim 1: If C € (A, B, AB), then C? € (I).
To see this, write C = rA 4+ sB + tAB with r,5,t € Q. Then the assumptions on A and B give
C? = (r?a + s%b — t2ab)I, with r?a + s?b — t?ab € Q.
Claim 2: If C € (A, B, AB), then C has trace 0.

To see this, write C = (gl 22> Claim 1 implies in particular that (¢ + c4)co = (¢1 +¢ca)c3 =0,

3 (4
so that either c; + ¢4 = 0 or c; = c3 = 0. But in the latter case the diagonal entries of C? are C‘;‘ and
cﬁ, so we get c; = *cy4. So either c; = —cy (as required) or C = ;I for some ¢; € Q(\/E)X. Now

c1 cannot be rational, because I, A, B, AB are linearly independent over Q. But if c; is irrational,
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then D contains Q(v/d)I, so is a Q(v/d)-subalgebra of Mat,(Q(+/d)). Then dimg 5 D = 2, which
forces D to be commutative, a contradiction.

Claim 3: There exist m € Q(v/d)* and h € Q* such that <h(:n 13) €D.

To see this, note that the upper-left entries of the matrices A, B and AB are linearly dependent

over Q (because they lie in (Q)(\/H)). So we can find a non-trivial Q-linear combination C of A,
B and AB such that the upper-left entry of C (and hence the lower-right entry, by Claim 2) is
zero. The off-diagonal entries of C are non-zero because C is invertible, so we can certainly write

C= (h(r)n r(;z) with h,m € @(\/E)X. Now C2? = hmml, and mm € Q, so h € Q by Claim 1.

Claim 4: There exists f € Q(+/d) such that (\éﬁ —{/ﬁ) € D.

Using the fact that the lower-left entries of A, B and AB are linearly dependent over Q we can
find a non-zero upper-triangular matrix E € (A, B, AB). By Claim 2 we can write E = <S f e>

fore, f € Q(+v/d), and e # 0 because E is invertible. Now E?> = €I, so €? is rational by Claim 1,
which means that either ¢ € Q or e € v/dQ. Butif e € Q then D contains the non-invertible matrix

E+el = <20€ g) , a contradiction. So e € v/dQ, and by rescaling we may assume e = /d.

This completes the proof of part 1 of the lemma. Now suppose f = 0. Then

o= (3 -4 295 3) (s ")

: 0 m 0 mvd : :
Because the two matrices (km 0 ) and (_ i ) are linearly independent over Q, the upper-

right entries m and m+/d of these matrices are linearly independent over Q (otherwise we would be

able to find a non-zero matrix of the form <2 8) in D, contradicting the assumption that D is a

s : : - 0 m 0 mVd
division algebra). Hence there is a Q-linear combination of (km 0 ) , < Va0 ) of the form

(O 1> ,and k € Q™ because of Claim 1 and the assumption that D is a division algebra. So

k 0
D:(1o>\/ﬁo<o1> 0 Vd 0
0 1)\ o —vd)'\k 0))\—kv/a o)/
Now we collect a few lemmas on ramification of quaternion algebras. Recall that the quaternion
algebra (a,b | Q) is ramified at a prime p if the algebra (a,b | Q,) is a division algebra.

As with Lemma 6.1, we give a proof of the following lemma, although we do not know whether it
is new.

Lemma 6.2.
(1) Suppose a,b € Z, witha = 2 (mod 8) and b odd. Then the algebra (a,b | Q) is ramified at
p =2ifand only if b = £3 (mod 8).
(2) The algebra (—2,—15 | Q) is ramified at p = 5.

Proof. By [GS, Lemma 1.1.3] the algebra (a,b | Q) fails to be a division algebra if and only if we can
find a non-zero element x + yi 4 zj + wk € (a,b | Q,) with norm zero, i.e. a solution to the equation
x? —ay? — bz* + abw?® = 0

for x,y,z,w € Qp not all zero.

(1) First suppose b = 1 (mod 8), and let (y,z, w) = (0,1,0). Then the above equation becomes
x? = b. Clearly this equation has a solution for x modulo 8, and therefore (by [Ko, Exercise 6
on p.19]) has a solution for x € Z,.
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When b = —1 (mod 8), let (y,z,w) = (1,1,0). Then the above equation becomes x* =

a + b. Again, this has a solution modulo 8, and therefore has a solution in Z;.

Now suppose b = £3 (mod 8), and suppose x,y,z, w € Q, are not all zero. By rescaling,
we can assume x,Y,z,w € Zp, and that x,y,z, w are not all divisible by 2. We want to show
that x> — ay? — bz? + abw? # 0. By definition of Z,, it is enough to show that x> — ay? — bz +
abw? # 0 (mod 2h) for some h > 1. As x,y,z,w € Z, we may also reduce each of them
modulo 2" before computing x> — ay? — bz? + abw? (mod 2").

Now we can just check all possibilities for x, y, z, w modulo 16 to show that x> — ay? — bz? +
abw? # 0 (mod 16), and hence x? — ay? — bz? + abw? # 0.

(2) We have to show that the equation

X% + 212 + 1522 + 30w? = 0
has no non-trivial solution in Q5. Assume x,y,z,w € Qs are not all zero. By rescaling, we
can assume x,Y,z,w € Zs and at least one of them is not divisible by 5. Similar to case (1), by

checking all possibilities for x, y, z, w modulo 25, we can check that xZ 4 2y2 + 1522 + 30w?* #
0 (mod 25), and therefore x* + 2y + 15z + 30w? # 0. O

The final result of this section compares ramifications of K and R under specific conditions.

Lemma 6.3. Assume that G is a finite group, V a QG-representation and let p be a prime. If V ®g R is
irreducible, K = Endgg (V) is a quaternion algebra and R is a maximal order in K, then K is ramified
at p if and only if R is ramified at p.

Proof. Note that by [V, Lemma 10.4.3], R, := R ®z Z, is a maximal order of K, := K ®g Q. Since
R is a Z-lattice, we have R/pR = R, /pR, as algebras (through the standard isomorphism Z/pZ =
Z,/pZy). Further |[R/pR| = p*.

Assume first that K is ramified at p, that is K, is a division algebra. By the proof of [G, Proposition
3.2], Ry has a unique maximal two-sided ideal I,. Since I, consists of all non-invertible elements of
Ry, Ry / Ipisa (skew) field. In particular |Rp / Ip\ < p2 in view of the first paragraph of [G, §3].

Because pR;, C I,, the uniqueness of I, as maximal ideal and the isomorphism R/pR = R,/ pR,,
there exists a unique maximal ideal I of R with pR C I. As |R/I| < |R/pR|, we have by uniqueness
of I and the first paragraph of [G, §3] that R is ramified at p.

Assume now that K is unramified at p, that is K, = Matz(Qj). Then R/pR = R,/ pR, = Maty(FF,)
by the proof of [G, Proposition 3.2]. So pR is a maximal two-sided ideal of R and then R is unramified
at p. U

6.2. The cases (4,3,2) and (4,3,2,1). Now we look at our first two difficult cases.
Lemma 6.4. Suppose that A = (4,3,2) or (4,3,2,1). Then S*(A) is defined over Q.

Proof. Table I shows that the character of S+(A) is real-valued, so by [Fe, Corollary 2.4] the Schur
index of S*(A) over Q is either 1 or 2. So there certainly exists an irreducible Q&;f -representation
V with V ®g C = S"(A)#2. Now consider the algebra Endgg: (V). Since Endggi (V) ® C =
Endg+ (V ®g C) = Maty(C), the algebra Endgg: (V) is a 4-dimensional central Q-algebra. So by
[GS, Proposition 1.2.1], End g+ (S*(A)) is a quaternion algebra.

In view of [Fe, Theorem 2.14], in order to show that ST (A) is defined over Q it is enough to show
that it is defined over R and over QQ, for every prime p. For R this holds by [Fe, Theorem 2.7].
Furthermore, if p is a prime for which S™(A) is absolutely irreducible modulo p, then S™(A) is defined
over Q, by [Fe, Theorem 2.10]. From Table I, this only leaves us to consider the primes p = 2 and 3.

In fact for p = 3 we can still use [Fe, Theorem 2.10], since for p = 3 the character field of D(A)+ is
[F5. To see this note that, looking at known decomposition matrices, we see that, in the Grothendieck
group, [D(A)+] = [V4] — [W4] with Vi and W spin representations in characteristic 0 of dimension
160 and 112 if A = (4,3,2), or 448 and 400 if A = (4,3,2,1). Using [GAP] to compute the character
table of & T, we see that any entry in the character values of such modules V5. or W4 is either integer,

++/10 or ++/7.
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So for A = (4,3,2) or (4,3,2,1) the algebra Endg: (V) is unramified at 0 and at any odd prime.
But by [V, Corollary 14.2.3] any quaternion Q-algebra is ramified at an even number of places, and
therefore is unramified at 2 as well. So for F = R or Q) with p any prime, the algebra Endyg: (V) is

not a division algebra, so is isomorphic to Mat,(F), and therefore ST (A) is defined over F. 0

Lemma 6.5. Suppose that A = (4,3,2) or (4,3,2,1) and letn = |A|. ThenS™ (A) does not appear in a
GIR of &;,.

Proof. By Lemma 6.4 ST (A) can be defined over Q. Let p be such a matrix representation. Then
(following [St, p. 93]) we obtain a matrix representation for S (A) over Q(i) via s; _ + ip(sj ).

Mapping A +iB € Mat,,(Q(7)) with A, B € Mat,,(Q) to A ® <(1) (1)) +B® (_01 é), we obtain a

representation p of &;; over Q, such that extending scalars to C gives S(A)? (though p is irreducible

over Q).

We can view I, as a subgroup of &; and of &,,. We will use the isomorphism between these two
copies of 2, given by
— . , hg. I
8+ = Sji+ " Sjy+ F 2 0Sjy,— 7 Sy, — = &

Under this isomorphism, we obtain p(g_) = (P (%” 0 (g )> for g_ € Ay
+

By Proposition 2.2 and Table I, T(A) & T(A)— = S(A)ly isa GIR for 21,,. Since the modules T(A)+
both have character field Q(1/—6), Proposition 2.1 gives Endgg (0) = Q(v'—6). Since p(g-) =

0
Assume for a contradiction that S (A) appears in a GIR V, and let K = Endgg. (V) as in Sec-
tion 2.1. Then K is a definite quaternion algebra by Proposition 2.1. If we fix an isomorphism
Endgg (0) = Q(v/ —6), then under the resulting isomorphism Mat (End g (p)) = Mat(Q(v/ —6)),
K corresponds to a Q-subalgebra D C Mat,(Q(v/—6)), with D being a quaternion division algebra.

By Lemma 6.1(1) D contains matrices of the form ( V=6 f >, ( 0 m), where f € Q(v/—6),

(P (8+) ) (§+)) for ¢ € 9, it follows that Endgg (0) = Matz(Endgg, (0))-

0 —v—6 hm 0
m € Q(v/—6)* and h € Q*. Now the matrix in K corresponding to ( ’ 0_6 B \J/(f6> commutes with
p(g) for every ¢ € &;,. In particular, it commutes with p(s;,_) = < 0 (21 ) P (5(1)’+)>, which forces
—p(s1,+

f = 0. Now we can apply Lemma 6.1(2) to get

o= {((5 (5" ) () (s o).

for some k € Q*. Because the matrix in K corresponding to (2 (1)) commutes with p(s;,—) =

( p((; ) p(sé,+)>’ we deduce that k = —1. So K is the quaternion algebra (—6,—1 | Q). By
—p(51,+

Lemma 6.2(1), K is unramified at p = 2. Then R is unramified at p = 2 in view of Lemma 6.3 and
Table I. So S(A) does not appear in a GIR of &,,, by Proposition 2.3 and Table L. O

6.3. The cases (5,4,3,2) and (5,4,3,2,1). Now we come to the modules S* (A) for A = (5,4,3,2) or
(5,4,3,2,1). In the following lemma, which is a fixed-characteristic version of Proposition 2.2(3), we
use the same notation as in Section 2.1. In particular K = Endgg(V), R C K is a maximal order and
I C Ris an arbitrary maximal ideal.

Lemma 6.6. Let G be a finite group and V be an irreducible QG-representation with Endgg (V) a
quaternion division algebra. Let W be an irreducible composition factor of V ®g C and x be the
character of W. Assume that for some prime p one of the following holds:

o x = p (mod p) for some absolutely irreducible p-Brauer character p;
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o X =p+pf (mod p) for some absolutely irreducible p-Brauer character p with F,(p) = F .
Then A/IA is an irreducible (R/I)G-representation.

Proof. Note that in either case x is irreducible as an FF,G-character. Let K := Endg¢ (V). By Proposi-
tion 2.1 we have V ®g C = W%2,

Assume first that R is ramified at p. Then R/I = F,», by the proof of [T2, Proposition 2.7]. Further
if ¢ is the character of A/IA as an (R/I)G-representation, then the character ¢ of A/pA as an [F,G-
representation satisfies ¢ = 2(¢ + ¢*) (mod p). Since p = 2x this gives x = ¢ + ¢* (mod p). This
means that we are in the second case in the lemma and ¢ = p or p? (mod p) is absolutely irreducible.
In particular A/IA is irreducible as as (R/I)G-representation.

Assume now that R is unramified at p. By the proof of [T2, Proposition 2.7] R/I = Maty(IF,)
in this case. Further yx is irreducible as an F,G-character, and in the Grothendieck group of F,G-
representations [A/pA] = 2[D] with D irreducible. Let W C A/pA with W irreducible asan (R/I)G-
representation. By [T2, Lemma 2.5], [W] = 2[E] with E irreducible as F,G-module. So W = A/pA is
an irreducible (R/I)G-representation. So the lemma follows, as (p) C I and then A/IA is a quotient
of A/(p)A. O

Lemma 6.7. Suppose that A = (5,4,3,2) or (5,4,3,2,1) and let n = |A|. Let V be a representation
of Q&;; with V ®g C 2 (S (1))2. Then Endgg- (V) is a quaternion algebra, which is ramified at
p = 2 and 5 and unramified at all other places.

Proof. Let K := Endgg. (V). Then K is a quaternion algebra, as in the first paragraph of the proof
of Lemma 6.4. By definition K is unramified at a prime p if and only if K ®g Q, is not a division
algebra. This is then equivalent to V ®g Q, being reducible, which in turn is equivalent to S~ (A)
being defined over Q,&;, . The same applies for p = 0, with R in place of Q,,.

From [Fe, Theorems 2.7, 2.10] and Table I it then follows that K can only be ramified at p = 2 or 5.
Since K is ramified at an even number of places, it is thus enough to show that it is ramified at p = 5.

By definition 6653 < &}, Since &;; < &5 we can also view 6653 as a subgroup of &,
Recall the reduced Clifford products introduced in Section 4.3. Stembridge’s spin version of the
Littlewood-Richardson rule [St, Theorem 8.1] shows that S (A) appears exactly once in S~ (4,2) ®

ST(5)®S” (S)ng So by [Fe, Theorem 2.1] to show that S™(A) is not defined over Qs it suffices to

show thatS™(4,2) ® S (5) ® S~ (3) is not defined over Q5 (both representations have integer-valued
characters by [HH, Theorems 8.8 and 10.1] and [St, Proposition 4.2]).

Let W be a Q(i) &, 5 5-representation with W ®g ;) C = (S7(4,2) ® S7(5) ®S™(3))*? and let H :=
EndQ(l)%i3 (W). Then H is a quaternion algebra over Q(i) (with the same proof as K over Q).

Note that —1 is a square modulo 5 and thus also in Qs by [Ko, Theorem 3], so that Q(i) C Qs. Let
W :=W ®gq(;) Qs and H := EndQ5ég5 (W). As H = H ®q; Qs, it is also a quaternion algebra.

We can give a direct construction 6f the module W. For 1 < j < 5letp(s; ) be the matrices defined
in Appendix A. Similarly for j € {1,2,3,4,6,7} let 1(s; ) be the matrices defined in Appendix B. It
can be checked through direct computation that 77(z) = —I and

P(Sj,—)®l®<(1) _01> je{1,2,3,4,5},

1®¢(sj_6,_)®<(1) (1)) j € {7,89,10,12,13}

m(sj, —) =
satisfy the braid relations for 66 53 and thus define a representation of Q(i )& 653 Comparing char-

acters it follows that 7 ®q(;) C = (S7(4,2) ®S™(5) ® S~ (3))¥2. Thus we may take W = 7.
If A and B are the matrices in Appendices A and B then it can be checked again by direct compu-
tation that the matrices

10 01 1 0 0 1
oro(10), aste (8 1), 1ems(t O, asss (S 1)
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commute with the images of all standard generators of 66_, 53 under 7 (which coincide with their
images under 77) and are thus in Endg, &, ( ). As this endomorphism ring is 4-dimensional and the
four matrices above are linearly mdependent it follows that

_ 10 01 10 0 1
=g, M= (1910 (5 ) aere ({ g)1epe(y 5)aene (5 )

Using the fact that A2 = —2I and B? = —15I it follows that H is isomorphic to the quaternion algebra
(—=2,—15 | Qs). By Lemma 6.2(2), H is ramified at p = 5. O

Now we can prove our main result about the cases A = (5,4, 3,2) and (5,4,3,2,1).
Lemma 6.8. Suppose that A = (5,4,3,2) or (5,4,3,2,1) and letn = |A|. ThenS™ (A) appears in a GIR
of &;.
Proof. By Proposition 2.2 and Table I, T(A), @ T(A)_ is a GIR for 2,,, and in particular can be defined
over Q. So let M be a Q2,-module such that M ®g C = T(A) & T(A)_, and let p : an — GL(M)
be the corresponding representation. We want to construct the induced module MT . Note that

sitg = i-¢ for any ¢ € 9l,; this can be seen using the identification SjF = = isj+ € (CGi from [St,
p-92]. This means that we can unambiguously write *"* ¢ as “1g for ¢ € 2,,.

&+
Using the coset representatives {1,s; + } we obtain matrix representations = = pTg” defined over
Q, with

viie) = <p(0g) p(gg)> forg €4 ¥7(12) = (ngl é)

Viewed as a representation over C, * is isomorphic to the underlying representation of

Migh @ C = (Mo Ogh = (T(A)r & T(A))157 =S*(1)

Since "M = M, there exists a matrix C, defined over Q, such that C(p(*'g))C~! = p(g) for every
¢ € 9l,,. Now define another representation 77+ by

TH(g) = <(I) 2) P=(3) (é c01>'

Then (as a representation over C) 7r* is also isomorphic to the underlying representation of S*(1)#2.

Furthermore,
tioy— (P& O 5 n (0 C!
(g) = ( 0 p(g)) for g € Ay, T (s1,4) = <:FC 0 )

Now let K* := Endges: (7t%). Then K¥ is a quaternion algebra (as at the beginning of the proof of
Lemma 6.7), and

K* C Endgyg, (niigf) = Mat,(Endgg, (0))-
By Proposition 2.1 and Table I, Endgg (p) = Q(v/—30). Let D¥ be the image of K* under the
corresponding isomorphism Mat; (Endgg (0)) = Maty(Q(+/—30)). Then D is a quaternion algebra,

/=30 +
with D* C Mat;(Q(v/—30)). By Lemma 6.1(1) D* contains a matrix of the form ( 030 _\J;_i?,o)

Since the corresponding matrix in K* commutes with 7+ (s; +), it follows that f* = 0. Then by
Lemma 6.1(2),

Di=<<(1) (f),(\/? _\/O_m)(koi é)’(—ki?/—TO \/?>>Q

for some k* € Q*. Note that (k(i (1)) corresponds to (kfﬂ I é) in K*. As this matrix commutes

with 7t% (s 4+ ), it follows that k*C~! = FC. In particular k- = —k*, so we will write k := k¥, with
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k= = —k. Then

K+ = D* = (=30, %k | Q).
Furthermore, by repeatedly applying the isomorphism (—30, £k | Q) = (—30, %2k | Q), we can
assume k is odd. Now Lemma 6.2(1) shows that (—30,k | Q) is ramified at p = 2 if and only if
(=30, —k | Q) is. We know from Lemma 6.7 that K~ is ramified at p = 2, and therefore K" is as well.

Since ST (A) has Frobenius-Schur indicator —1 by Table I, it is not defined over R by [Fe, Theorem
2.7]. So mtt remains irreducible on extension of scalars to R. Now fix a prime p and let A and
I € R C K* be as in Section 2.1 for 77+ and p. If p is odd then A/IA is irreducible as (R/1)&; -
representation by Lemma 6.6 and Table L.

So we may assume that p = 2. By the above, K is ramified at p = 2 and S*(A) is not de-
fined over R. So R* is also ramified at p = 2 by Lemma 6.3. Table I shows that [A/2A] = 4[D¥]
in the Grothendieck group of F,&;, with u = (8,5,1) or (9,5,1). By the arguments in the proof
of [T2, Proposition 2.7] we then have R/I = F, and A/IA = D! is irreducible as an (R/I )éf{ -
representation. U

6.4. Proof of the main result for GIRs. Finally we can complete the classification of GIRs for &, and
2l,,, and prove Theorems 1.6 to 1.8.

Proof of Theorems 1.6 to 1.8. Assume thatS(A). or T(A). is a composition factor of a GIR with char-
acter x. Then by Proposition 2.3 all constituents of x, viewed as a p-Brauer character for any prime p,
are conjugate under the Galois action of F,. By Lemmas 3.6 and 5.5 and [J2, Theorem 11.5], it follows
that S(A). or T(A). is almost homogeneous in characteristic p. This applies for every p, so A is one of
the partitions appearing in Theorem 1.3.

If A = (n) with n > 7, then we can simply use [T1, Theorems 1.1, 1.1, 1.2]. (Recall that [T1] uses
the opposite sign convention to ours.)

So we are left with the cases where A = (1) for 0 < n < 6 or one A is of the partitions in case (2) of
Theorem 1.3, which are exactly the cases considered in Table I. Assume M = S(A), or T(A), is one of
these modules, and let i be the character of M. If Q # Q(¢) C R then M does not appear in a GIR
by Proposition 2.1. If Q(¢) is an imaginary quadratic field then Table I shows that ¢ is absolutely
irreducible when reduced modulo any prime, so M appears in a GIR by Proposition 2.2.

This leaves the cases where Q(¢) = Q. Consider first the cases where ind (¢) = 1. If ¢ is absolutely
irreducible modulo every prime then M appears in a GIR by Proposition 2.2. On the other hand if the
2-modular reduction of ¥ has two isomorphic composition factors then M does not appear in a GIR
by Proposition 2.3. The only remaining case is the module S~ (3). In this case the 3-modular reduction
of Y is ¢(2,1)1 + ¢(2,1)_, and the Brauer characters ¢(2,1) ;. are integer valued (since &; is just the
direct product of &3 and the group of order 2). So the Brauer characters ¢(2,1) and ¢(2,1)_ cannot
be conjugate under the action of F3, so M does not appear in a GIR by Proposition 2.3.

Now consider cases where Q() = Q and ind(y) = —1. Unless A is one of (4,3,2), (4,3,2,1),
(5,4,3,2) or (5,4,3,2,1), Table I shows that for any prime p the p-modular reduction of ¢ is either
irreducible or is a sum p; + p of two distinct irreducible Brauer characters. In the latter case, it
is easily checked (since p; and p, have degree at most 2) that (01)” = p2 (mod p) and F,(p1) =
Fp(p2) = Fj2. So M is a constituent of a GIR, by Proposition 2.2. The remaining four cases, where
Misoneof S~ (4,3,2),5 (4,3,2,1),57(5,4,3,2) or S7(5,4,3,2,1), have been checked in Lemmas 6.5
and 6.8. ]

Appendix A. Matrices forS™ (4,2)

We give matrices for generators of &, for a matrix representation p of S™(4,2) defined over the
field Q(i), together with a matrix A which anticommutes with p(g) for ¢ € &, \ 26 and commutes
with p(g) for g € Ue. As this is a spin representation p(z) = —I.

To enable the reader to compute with these matrices, we present them as GAP code which can be
pasted into a GAP session. (The reader should invoke i:=E(4) ; in GAP to define i = Vv—1)

p(s1,-) =
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tf,i,-i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,o0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(i,0,0,-1i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,1,-1,0,0,0,0,0,0,0,-1+i,1-1,0,0,1,-1-1,0],
(o,o0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,1-1,0,0,0,-1-1],
(o,0,0,0,0,0,-1,1,0,0,0,0,1,0,0,1-i,-1+1,0,0,-1],
(o,o0,0,0,0,0,0,1,0,0,0,0,0,i,1,0,0,-1+1,0,0],
(o,o0,0,0,0,0,0,0,1,-1,0,0,0,-1/2+i/2,1/2-i/2,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,-1,0,0,-1/2,0,0,1/2-1/2,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,-1,1,i/2,0,0,1/2-1/2,0,0,0,01,
(o,o0,0,0,0,0,0,0,0,0,0,1,0,i/2,1/2,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,1,-1/2-i/2,-1/2+i/2,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,1/2,-1,0,-1/2+i/2,0,0,0,0],
[o,0,0,0,0,0,0,0,0,0,0,0,-i/2,0,-1,1/2+i/2,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,-i/2,-1/2,1,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,01,
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,11,
[o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11]

p(s2,-) =

(fo,i,-i,0,0,0,0,0,0,1-i,-1+i,0,0,0,0,0,0,0,0,0],
o,0,0,-i,0,0,0,0,1,0,0,-1+i,0,0,0,0,0,0,0,0],
(i,0,0,-1,0,0,0,0,-i,0,0,-1+i,0,0,0,0,0,0,0,0],
(o,i,0,0,0,0,0,0,0,-i,-1,0,0,0,0,0,0,0,0,0],
(o,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0],
(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]1,
(o,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,i,-1,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,i,0,0,-1,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0],
(o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1],
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0]1]

p(s3—) =

21
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(ft,-t,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
fo,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],
(1,-1-i,i,0,0,1/2-i/2,-1/2+i/2,0,0,i,-1,0,0,0,0,0,0,0,0,0],
fo,-1,0,i,1/2,0,0,-1/2+i/2,0,0,0,-1,0,0,0,0,0,0,0,0],
(-i,0,-1,1+i,-i/2,0,0,-1/2+i/2,1,0,0,-1,0,0,0,0,0,0,0,0],
fo,-i,0,1,0,-i/2,-1/2,0,0,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,-1/2+i/2,1/2-i/2,0,0,0,0,0,0,i,-i,0,0,i,-1-1,0],
(o0,0,0,0,-1/2,0,0,1/2-i1/2,0,0,0,0,0,0,0,-1,0,0,0,-1-i],
0,0,0,0,i/2,0,0,1/2-i/2,0,0,0,0,1,0,0,-1i,-1+i,0,0,-i],
(o0,0,0,0,0,i/2,1/2,0,0,0,0,0,0,1,0,0,0,-1+i,0,0],
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]1]

p(ss,-) =
(fo,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(t+,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
o,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,01,
(o,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01,
(o,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]1,
(o,0,0,0,0,0,0,0,0,i,-1,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0],
fo,0,0,0,0,0,0,0,i,0,0,-1,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,-1+i,1-i,0,0,i,-i,0],
(o,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1-i,0,0,0,-i],
(o,0,0,0,0,0,0,0,0,0,0,0,i,0,0,1-i,i,0,0,-1i],
(o,0,0,0,0,0,0,0,0,0,0,0,0,i,1,0,0,i,0,0]]

p(ss—) =
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(tfo,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-1,1+i,-i,0,0,0,1,0,0,1-i,-1+i,0,0,0,0,0,0,0,0,0],
(o,,0,-i,0,0,0,1,1,0,0,-1+i,0,0,0,0,0,0,0,0],
(i,0,1,-1-1,1,0,0,0,-1,0,0,-1+i,0,0,0,0,0,0,0,0],
(o,i,0,-1,0,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0],
[o,0,0,0,0,0,0,0,0,1/2-1/2,1/2+i/2,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,1/2,0,0,1/2+i1/2,0,0,0,0,0,0,0,0],
[o,0,0,0,0,0,0,0,1-i/2,0,0,-1/2+1/2,0,0,0,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,1-1/2,-1/2,0,0,0,0,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,-1/2+i/2,1/2-1/2,0,0,0,1,0,0,0,0,0],
[o,o0,0,0,0,0,0,0,-1/2,0,0,1/2-1/2,0,0,0,1,0,0,0,0],
[o,o0,0,0,0,0,0,0,i/2,0,0,1/2-i/2,1,0,0,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,i/2,1/2,0,0,1,0,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1],
[o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,01]

A=
tft,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(+,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
(o,o0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[o,0,0,0,2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],
(o,o0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0],
(o,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0],
(o,o0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0],
[o,0,0,0,0,0,0,0,2,-1,0,-1,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0],
[o,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,-1,0,0,0,0],
(o,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1,0,0,0,0],
[o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0],
(o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,-1],
(o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,17,
(o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1]]
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Appendix B. Matrices for S~ (5) ® S™(3)

We give matrices for generators of @g 5 for a matrix representation ¢ of S (5) ® S~ (3) defined over
Q(i), together with a matrix B which anticommutes with ¢(g) for ¢ € & 53\ 2153 and commutes with
o0(g) for ¢ € Us3. As this is a spin representation, ¢(z) = —1.

P(s1,-) =

[[1,-1,0,0,0,0,0,01,[0,-1,0,0,0,0,0,0],
[0,0,-1,1,0,0,0,01,[0,0,0,1,0,0,0,01,
[0,0,0,0,-1,1,0,01,[0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,1,-1],[0,0,0,0,0,0,0,-111

P(s2,-) =
[f0,1,-1,0,0,0,0,01,[1,0,0,-1,0,0,0,01,
[0,0,0,-1,0,0,0,01,[0,0,-1,0,0,0,0,01,
(o,o0,0,0,0,-1,1,01, [0,0,0,0,-1,0,0,1],
(o,0,0,0,0,0,0,131,[0,0,0,0,0,0,1,0]1]

P(s3-) =

[[0,0,1,0,-1,0,0,0],[0,0,0,1,0,-1,0,0],
(1,0,0,0,0,0,-1,01,[0,1,0,0,0,0,0,-11,
[0,0,0,0,0,0,-1,01,[0,0,0,0,0,0,0,-1],
(o,o0,0,0,-1,0,0,0]1, (0,0,0,0,0,-1,0,0]]

P(se-) =

(fo,o,0,0,1,0,0,01,[0,0,0,0,0,1,0,0],
fo,0,0,0,0,0,1,01,[0,0,0,0,0,0,0,1],
(t1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],
0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,01]

P(se—) =
[[0,0,i,0,-i,0,0,01,[0,0,0,i,0,-i,0,0],
(o,o0,0,0,0,0,-i,01,[0,0,0,0,0,0,0,-1],
(i1,0,0,0,0,0,-i,0],[0,1,0,0,0,0,0,-1],
(o,0,i,0,0,0,0,01,[0,0,0,i,0,0,0,01]

P(s7,-) =

[[0,1,-1,0,0,0,0,0],[0,0,0,-i,0,0,0,01,
[i,0,0,-1,0,0,0,01,[0,i,0,0,0,0,0,0],
[0,0,0,0,0,-1,1,0],[0,0,0,0,0,0,0,i],
[0,0,0,0,-1,0,0,1],[0,0,0,0,0,-1,0,01]

B =
(r-s,2,2,0,2,0,0,01,[-6,3,0,2,0,2,0,0],
(-4,0,3,-2,0,0,2,01,[0,-4,6,-3,0,0,0,2],
(-2,0,0,0,3,-2,-2,0],[0,-2,0,0,6,-3,0,-2],
0,0,-2,0,4,0,-3,21,[0,0,0,-2,0,4,-6,3]1]
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