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1 Introduction

Most of our notation is taken from James’s book [7], where further details of the representation
theory of the symmetric groups may be found; note, however, that we write functions on the left.

Let n be a non-negative integer, and λ a partition of n. Say that two λ-tableaux are row equivalent
if one can be obtained from the other by permuting the entries within each row, and define column
equivalence similarly. Let ∼row and ∼col denote these relations.

Given a tableau s, define the tabloid {s} to be the ∼row-equivalence class containing s, and define
the subgroups Rs and Cs of Sn to be the row and column stabilisers of s. For any ring R, we define
Mλ

R to be the R-span of the λ-tabloids, and we define an inner product 〈, 〉 on Mλ
R by

〈{s}, {t}〉 =

1 if {s} = {t}

0 if {s} , {t}.

For a λ-tableau s, we also define the elements

ρs =
∑
σ∈Rs

σ, κs =
∑
σ∈Cs

(−1)σσ

of the group algebra RSn, and we define the polytabloid es to be κs{s}. We define the Specht module
SλR ⊆Mλ

R to be the R-span of the λ-polytabloids.

*The author is financially supported by the EPSRC.
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For any tableaux s,u, we define πsu to be the element of Sn taking s to u.
Let p be a prime. Schaper’s formula (best described in English in [1]) gives information about the

filtration
SλFp

= Sλ(0) > Sλ(1) > Sλ(2) > . . . ,

where Sλ(i) is the mod p reduction of the submodule

Sλ(i) = {x ∈ Sλ | pi
|〈x, y〉 ∀ y ∈ Sλ}

of the integral Specht module Sλ
Z

, with the usual inner product 〈, 〉. We define Li to be the ith layer of
this filtration:

Li = Sλ(i)/S
λ
(i+1).

In this paper, we discover some properties of these ‘Schaper Layers’. We begin in Section 2
by examining two examples, namely the Specht modules corresponding to hook partitions and to
two-part partitions. In Section 3, we address the question of which is the first non-zero layer Li; it is
well known that L0 is zero if and only if λ is p-singular. We prove some general results, and find a
necessary and sufficient condition for L1 to be the first non-zero layer.

In Section 4, we examine how the Schaper layers behave under the isomorphism

Sλ
′

� (Sλ ⊗ sgn)∗,

where λ′ is the partition conjugate to λ. It turns out that there is a nice description of the behaviour
in terms of the product of the hook lengths for λ.

It is hoped that these results could be extended further (for example, to determining completely
which is the first non-zero layer Li), and that they could be applied in conjunction with Schaper’s
formula to the decomposition number problem.

The topic of this paper is also relevant to the structure of Weyl modules for general linear groups;
these have layers defined in an entirely analogous way, and these layers are preserved under the
Schur functor. However, we reserve further discussion for a later paper.

Acknowledgements. My thanks go to my research supervisor Stuart Martin for helpful suggestions
and advice. My gratitude is also due to Edward Crane for bringing Smith’s Normal Form to my
attention, thus enabling me to prove Lemma 4.12.

2 Two examples

2.1 Hook partitions

Suppose that λ = (n− y, 1y). Suppose also that 1 6 y < n−1 (the corresponding results are slightly
different, but trivial, if λ = (n) or λ = (1n)). The following result is due to Peel [9].

Lemma 2.1. Suppose p is odd. Then the Specht module Sλ
Fp

has two composition factors if p divides n, and is
irreducible otherwise.
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The implications for the Schaper layers are clear. Specht modules are indecomposable when p
is odd, so Sλ

Fp
has exactly two non-zero layers Li if p divides n, and one otherwise. We proceed to

determine which layers these are, as well as showing that this is also true for p = 2.
Given 2 6 a1 < . . . < ay 6 n, let t be the standard λ-tableau whose column entries are 1, a1, . . . , ay,

and let e(a1,...,ay) be the corresponding standard polytabloid. For x ∈ Sλ
Z

, let N(a1, . . . , ay) be the
coefficient of this polytabloid in x. For ease of notation, we extend the definition of N(a1, . . . , ay) to
any a1, . . . , ay ∈ {2, . . . ,n} by setting N(aσ(1), . . . , aσ(y)) = (−1)σN(a1, . . . , ay) for σ ∈ Sy, and defining
N(a1, . . . , ay) to be zero if some two ai are equal. For brevity, we write N(a) for N(a1, . . . , ay), and
N(a|ai → e) for N(a1, . . . , ai−1, e, ai+1, . . . , ay).

For 2 6 a1 < . . . < ay 6 n and 2 6 b1 < . . . < by 6 n, we observe that

〈e(a1,...,ay), e(b1,...,by)〉 =
(y + 1)! if ai = bi for all i

(−1)i− jy! if {a1, . . . , âi, . . . , ay} = {b1, . . . , b̂ j, . . . , by} and ai , b j

0 if |{a1, . . . , ay} ∩ {b1, . . . , by}| 6 y − 2.

Hence we have

〈e(a1,...,ay), x〉 = (y + 1)!N(a) + l!
y∑

i=1

∑
e,ai

N(a|ai → e),

so x lies in Sλ(r) if and only if this is divisible by pr for all a1, . . . , ay.

We begin by providing a bound for the bottom layer. Let x ∈ Sλ
Fp

denote the modular reduction of
x.

Lemma 2.2. If r > νp(y!n) and x ∈ Sλ(r), then x = 0.

Proof. We have

pr
| (y + 1)!N(a) + y!

y∑
i=1

∑
e,ai

N(a|ai → e)

for all a1 < . . . < ay, and in fact it is easily seen that this holds for all a1, . . . , ay. We re-write this as

pry! | N(a) +

y∑
i=1

n∑
e=2

N(a|ai → e);

writing this with (a|ai → e) in place of a gives

pry! | N(a|ai → e) +

y∑
j,i

n∑
f=2

N(a|ai → e, a j → f ) +
∑

f

N(a|ai → f ).

We substitute this last expression into the preceding one to give

pry! | N(a) −
y∑

i=1

∑
j,i

n∑
e=2

n∑
f=2

N(a|ai → e, a j → f ) −
n∑

e=2

n∑
f=2

y∑
i=1

N(a|ai → f ).
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Now for i , j, N(a|ai → e, a j → f ) = −N(a|a j → e, ai → f ), so the i , j part of the sum vanishes to give

pry!) | N(a) − (n − 1)
n∑

f=2

y∑
i=1

N(a|ai → f )

≡ n.N(a).

Since r > νp(y!n), we must have p | N(a) for all a1, . . . , ay, so that x = 0. �

Next we show that there are no non-empty layers Li for i between νp(y!) and νp(y!n).

Lemma 2.3. If there exists a set of integers

{m(b1, . . . , by−1) | 2 6 b1 < . . . < by−1 6 n}

such that

N(a) ≡
y∑

i=1

(−1)im(a1, . . . , âi, . . . , ay) (mod p)

for all 2 6 a1 < . . . < ay 6 n, then x ∈ Sλ(νp(y!n)).

Conversely, if x ∈ Sλ(νp y!+1), then such a set of integers m(b1, . . . , by−1) exists.

Proof. Suppose that the integers m(b1, . . . , by−1) exist as stated. For ease of notation, we define
m(b1, . . . , by−1) for arbitrary b1, . . . , by−1 ∈ {2, . . . ,n} exactly as for the N(a). Since we are only concerned
with the reduction modulo p of x, we may assume that

N(a) =

y∑
i=1

(−1)im(a1, . . . , âi, . . . , ay)

for a1 < . . . < ay. We then have

〈e(a1,...,ay), x〉 = y!(N(a) +

y∑
i=1

n∑
e=2

N(a|ai → e))

= y!(N(a) +

y∑
i=1

∑
j,i

n∑
e=2

(−1) jm(a1, . . . , â j, . . . , ay|ai → e)

+

y∑
i=1

n∑
e=2

(−1)im(a1, . . . , âi, . . . , ay)).

But for i , j we have

(−1) jm(a1, . . . , â j, . . . , ay|ai → e) + (−1)im(a1, . . . , âi, . . . , ay|a j → e) = 0,

so the j , i part of the above sum vanishes to give

〈e(a1,...,ay), x〉 = y!(N(a) + (n − 1)
∑

i

(−1)im(a1, . . . , âi, . . . , ay)),

which equals
y!(n.N(a));
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this is clearly divisible by pνp(y!n), which is what we want.
For the second part of the lemma, we have

p | N(a) +

y∑
i=1

n∑
e=2

N(a|ai → e);

putting

m(b1, . . . , by−1) = −

n∑
e=2

N(e, b1, . . . , by−1)

is then sufficient, since N(a|ai → e) = (−1)i−1N(e, a1, . . . , âi, . . . , ay). �

From Lemma 2.3, we see that the only layers Li which can possibly be non-zero are those corre-
sponding to i = νp(y!) and (if p | n) i = νp(y!n), since obviously Sλ

Z
= Sλ(νp(y!)). It only remains to show

that these two layers are in fact non-zero. But this is trivial: for i = νp(y!), we let N(2, 3, . . . , y + 1)
equal one and all other N(a) equal zero. And for i = νp(y!n), we choose integers m(b1, . . . , by−1) as in
Lemma 2.3, say by letting m(2, 3, . . . , y) equal one and all other m(b1, . . . , by−1) equal zero. That this
gives a non-zero element of Sλ

Fp
follows, since we shall have N(2, 3, . . . , y + 1) = (−1)y.

Hence we have proved the following theorem.

Theorem 2.4. Let λ = (n − y, 1y), with 1 6 y < n − 1. For a prime p, the Schaper layer

Li = Sλ(i)/S
λ
(i+1)

is non-zero if and only if i = νp(y!) or i = νp(y!n).

2.2 Two-part partitions

The decomposition numbers [Sλ
Fp

: Dµ
Fp

], where λ and µ are both two-part partitions, are well
known; furthermore, each decomposition number is either zero or one, and so we may apply Schaper’s
formula directly in order to find the Schaper layers. We begin with a statement of the decomposition
numbers; for ease of notation, we refer to the Specht module S(n−a,a) as S(n− 2a + 1), and similarly for
the simple module D(n−a,a). The following result is due to James [4, 5].

Theorem 2.5. The decomposition number [S(t) : D(r)] is one if there exist integers

1 − p 6 ti 6 p − 1

for i = 0, 1, 2, . . . such that
t =

∑
tipi

and
r =

∑
|ti|pi,

and zero otherwise.

In order to find the layer in which each composition factor lies, we need to find the bound provided
by Schaper’s formula for its composition multiplicity. By applying Schaper’s formula, we find the
following.
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Lemma 2.6. Take t > s > 0 of the same parity. The coefficient of the Specht module S(t) in the expression for
rad(S(s)) provided by Schaper’s formula is

νp

( t + s
2

)
− νp

( t − s
2

)
.

To find the layers in which the composition factors lie, then, we simply need to multiply the
‘Schaper matrix’ (defined by Lemma 2.6) by the decomposition matrix. So, for r > s, the layer in
which the composition factor D(r) of S(s) lies is the sum, over all t > s with [S(t) : D(r)] = 1, of
νp

(
t+s
2

)
− νp

(
t−s
2

)
.

Let T be the set of such t, and for each t ∈ T define t0, t1, . . . as in Theorem 2.5; these are clearly
unique. Since we are assuming [S(s) : D(r)] = 1, we can define s0, s1, . . . similarly. The condition t > s
then simply means that the largest i for which ti , si has ti > si. We also have

νp

( t + s
2

)
= min{i | ti = si , 0}

and

νp

( t − s
2

)
= min{i | ti = −si , 0}.

We begin by showing that we may disregard most of the values of t ∈ T. Given t, let ı̂(t) =

min{i | ti = si , 0} and ı̌(t) = min{i | ti = −si , 0}, and put i(t) = max(ı̂, ı̌). Now we define a new number
f (t) =

∑
f (t) jp j, where

f (t) j =

−t j ( j 6 i(t))

t j ( j > i(t)).

Let i1 < . . . < il be the values of i for which si , 0. We find that f (t) ∈ T unless f (t) 6 s, which happens
only in the following specific cases:

1. si j > 0, si j−1 < 0, tik = sik for k > j and tik = −sik for k < j;

2. si j < 0, si j−1 > 0, tik = sik for k , j and ti j = −si j .

Let the set of t so described be denoted T0; then f is an involution (with no fixed points) on T \ T0,
and furthermore, for t ∈ T \ T0,

νp

(
f (t) ± s

2

)
= νp

( t ∓ s
2

)
;

so the sum over T \ T0 of

νp

( t + s
2

)
− νp

( t − s
2

)
is zero, and we need only sum over T0.

In case (1) above, we have

νp

( t + s
2

)
− νp

( t − s
2

)
= i j − i1,

while in case (2) we have

νp

( t + s
2

)
− νp

( t − s
2

)
= i1 − i j.

Summing this over all j > 2 for which si j and si j−1 have different signs, and noting that sil must be
positive, we find that we get the sum, over all j such that si j < 0, of i j − i j+1. We summarise this in the
following theorem.
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Theorem 2.7. Suppose that i1 < . . . < il, and that r =
∑

j ri jp
i j , with 0 < ri j < p. Suppose that s =

∑
j si jp

i j ,
with si j = ±ri j for each j. Then D(r) is a composition factor of S(s), and lies in the Schaper layer Li, where

i =
∑

j | si j<0

(i j − i j+1).

3 The ‘top’ layer of Sλ

In this section we turn to the problem of finding the highest non-zero layer Li; we define νp(λ) to

be min{i | Sλ(i) , Sλ(i+1)}. The following result tells us that we can work over the integral Specht module.

Lemma 3.1. For any partition λ and any i > 0,

Sλ(0) = Sλ(i)

if and only if
Sλ(0) = Sλ(i).

This requires a preliminary observation.

Lemma 3.2. Let x be an integral combination of λ-tabloids, with all coefficients divisible by p, and suppose that
x ∈ Sλ

Z
. Then x

p ∈ Sλ
Z

.

Proof. By [7, Corollary 8.12], there is a Z-basis {e1, . . . , er} of Sλ such that each basis element involves
a unique standard tabloid, and involves this tabloid with coefficient 1. Putting x =

∑r
1 µiei and

examining the coefficient of each standard tabloid in x, we find that each µi is divisible by p. Hence

x
p

=

r∑
1

µi

p
ei ∈ SλZ. �

Proof of Lemma 3.1. The ‘if’ part is trivial. Let i be maximal such that Sλ(0) = Sλ(i), let j be maximal

such that Sλ(0) = Sλ( j) and suppose for a contradiction that i < j.

Take x ∈ Sλ(i) \ Sλ(i+1). By assumption x ∈ Sλ( j), i.e. there exist z ∈ Sλ and y ∈ Sλ( j) with x = y + z and
z = 0.

By Lemma 3.2, z equals pw for some w ∈ Sλ. Since Sλ = Sλ(i), we have pi
|〈w, v〉 for all v ∈ Sλ, whence

z ∈ Sλ(i+1). But y ∈ Sλ(i+1), so x = y + z ∈ Sλ(i+1) as well; contradiction. �

So in fact νp(λ) is the maximum value i such that Sλ(0) = Sλ(i), i.e. the maximum value of i such that

pi divides 〈es, et〉 for all polytabloids es, et. In [7], James finds those λ for which νp(λ) = 0.

Lemma 3.3. [7, Lemma 10.4]
Suppose λ has z j parts equal to j. Then

νp(
∞∏
1

z j!) 6 νp(λ) 6 νp(
∞∏
1

(z j!) j).
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Corollary 3.4. [7, Theorem 10.5]
νp(λ) = 0 if and only if λ is p-regular.

We shall prove some general results concerning νp(λ), and then use these to give necessary and
sufficient conditions for νp(λ) to equal 1. It is hoped that these techniques could be developed to find
νp(λ) for all λ.

We begin by proving a result similar to Donkin’s generalisation [3] of James’s Principle of Row
Removal [8].

Theorem 3.5. Let λ, µ be any partitions of positive integers n1, n2 respectively with n1 + n2 = n, and let λ ∗ µ
be the partition obtained by arranging all the parts of λ and µ in descending order. Then

νp(λ ∗ µ) > νp(λ) + νp(µ).

Proof. We partition the set of rows of the Young diagram for λ ∗µ into a λ part and a µ part, i.e. so that
the rows in the λ part have lengths equal to the parts of λ. Then, for any λ ∗ µ-tableau u, we define
C1(u) ⊆ {1, . . . ,n} to be the set of values which appear in the λ part of the tableau, and C2(u) similarly.
Then u defines a λ-tableau u1 with entries in C1(u) and a µ-tableau u2 with entries in C2(u).

We have
〈es, et〉 =

∑
x,w

(−1)πsx(−1)πwt ,

summing over w and x with s ∼col w ∼row x ∼col t. If we take a tableau u with s ∼col u and sum only
over those w and x for which Ci(w) = Ci(x) = Ci(u), then we get

(−1)πsuπtv〈eu1 , ev1〉〈eu2 , ev2〉

(with the usual inner products on Sλ, Sµ) if there exists v with u ∼row v ∼col t, and zero otherwise. In
either case this is divisible by pνp(λ).pνp(µ). Summing over all possible sets C1(u) gives 〈es, et〉 divisible
by pνp(λ).pνp(µ) as well. �

In order to prove further results, we adopt a graph-theoretic approach. Given λ-tableaux s and
t with s ∼row t, we define the multi-graph G(s, t) as follows. Take labelled vertices s1, s2, s3, . . . and
t1, t2, t3, . . .. Then draw n labelled edges e1, . . . , en, with ei joining s j and tk, where i appears in the jth
column of s and the kth column of t.

Now, for any tableaux u and v with s ∼col u ∼row v ∼col t, we colour the edges of G(s, t) with
colours c1, c2, . . .: colour edge ei with colour cl, where the number i appears in the lth row of u (and
of v). Note that for each l, colour cl appears exactly once at each of the vertices s1, . . . , sλ′l , t1, . . . , tλ′l ;
call such a colouring admissible, and let A(G) denote the set of admissible colourings of G. An
admissible colouring induces a permutation of the numbers {1, . . . , λ′l }; this permutation is exactly
the permutation of row l which is needed to get from u to v. So if we take the signatures of these
permutations for all l and multiply them, we get (−1)πuv = (−1)πst(−1)πsu(−1)πtu . We define the
signature (−1)C of any admissible colouring C to be this product of signatures. Every admissible
colouring of G(s, t) defines a pair of tableaux (u, v) as above, and so we have the following.

Proposition 3.6. ∑
C∈A(G)

(−1)C = (−1)πst〈es, et〉.
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We use this interpretation to prove the following theorem, reminiscent of James’s Principle of
Column Removal [8].

Theorem 3.7. Let λ̂ be the partition whose Young diagram is obtained by removing the first column of the
Young diagram for λ. Then νp(λ) > νp(λ̂).

Proof. Given λ-tableaux s and t, construct the graph G = G(s, t) as above. Let ei1 , . . . , eim be the edges
of G which meet s1 but not t1; suppose that eik also meets vertex t f (k). Similarly, let e j1 , . . . , e jm be the
edges which meet t1 but not s1, and suppose that e jk also meets sg(k).

Now, given any σ ∈ Sm, we form a new graph Gσ. We delete vertices s1 and t1 and all edges
meeting them, and add new edges e′1, . . . , e

′
m, where e′k joins vertices t f (k) and sg(σk).

After a re-numbering of vertices and edges, we may regard Gσ as the graph G(sσ, tσ) for some
λ̂-tableaux sσ, tσ; choose such a pair (sσ, tσ) for each σ arbitrarily.

Now we look at the relationship between colourings of G and of Gσ. We say that an admissible
colouring of Gσ is respectable if it colours edges e′1, . . . , e

′
m with different colours, and we let R(Gσ)

denote the set of respectable colourings of Gσ. We then have the following.

1. A respectable colouring C′ of Gσ gives rise to (λ′1 − m)! different admissible colourings of G.
Begin by colouring all edges not meeting s1 or t1 as in C′; then colour edges eik and e jσk the same
colour as e′k. Finally colour the (λ′1−m) edges from s1 to t1 with the colours not used for e′1, . . . , e

′
m,

in any order. This gives an admissible colouring C of G; an examination of the permutations
induced by the colourings shows that

(−1)C = (−1)m(−1)C′ .

2. An admissible colouring C of G gives a respectable colouring of Gσ for some σ ∈ Sm. The edges
ei1 , . . . , eim have the same colours as e j1 , . . . , e jm in some order; let σ be such that eik and e jσk have
the same colour. Now colour Gσ by giving e′k the same colour as eik for each k, and letting each
other edge have the same colour as in C. This gives a respectable colouring C′ of Gσ, and the
relationship between (−1)C and (−1)C′ is as in (1).

The procedures described in (1) and (2) above are mutually inverse, and so we get

(−1)πst〈es, et〉 = (−1)m(λ′1 −m)!
∑
σ∈Sm

∑
C∈R(Gσ)

(−1)C.

We now show that considering only respectable colourings of Gσ is sufficient. Given any admissible
colouring C of Gσ, define, for each l,

Cl = |{k | e′k has colour cl}|,

so that C is respectable if and only if each Cl is at most one. Now, for any d1, d2, . . ., define C(d1, d2, . . .)
to be the set of pairs (σ,C), where σ ∈ Sm and C is an admissible colouring of Gσ with Cl = dl for all l.
The groupSd1 ×Sd2 × . . . acts on C(d1, d2, . . .) as follows: a permutation inSdl permutes the endpoints
(that is, the t f (k)s) of those edges coloured with colour cl. Moreover, this action is with signature in
the sense that

(−1)D = (−1)ρ(−1)C
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where ρ(σ,C) = (τ,D) for ρ ∈ Sd1 × Sd2 × . . .. Now, provided some dl > 2, we can find ρ with
(−1)ρ = −1; summing over C(d1, d2, . . .), we obtain∑

(σ,C)∈C(d1,...)

δ(σ)(−1)C = −
∑

(σ,C)∈C(d1,...)

δ(σ)(−1)C,

which therefore equals zero.
Hence we have ∑

σ∈Sm

∑
C∈A(Gσ)

(−1)C =
∑
σ∈Sm

∑
C∈R(Gσ)

(−1)C,

whence
(−1)πst〈es, et〉 = (−1)m(λ′1 −m)!

∑
σ∈Sm

(−1)πsσtσ 〈esσ , etσ〉,

which is divisible by pνp(λ̂). �

Using these general results, we proceed to determine exactly those λ for which νp(λ) = 1. Our
main result is as follows.

Theorem 3.8. Let λ be a partition of n. νp(λ) is greater than 1 if and only if one of the following holds:

1. λ is doubly p-singular, i.e. there exist i, j with j > i + p and λi = λi+p−1 and λ j = λ j+p−1 > 0;

2. there exists i such that λi 6 λi+2p−2 + 1 and λi+p−1 > 2.

We begin with the ‘only if’ part. Suppose that λ does not satisfy either of the criteria in Theorem
3.8. By Corollary 3.4, we may assume that λ is p-singular; suppose λi−1 > λi = λ j > λ j+1 with
j − i > p − 1 (the first inequality is to be ignored if i = 1).

The case where λi = 1 is dealt with by Lemma 3.3, since by assumption z1 = j − i + 1 < 2p. So
assume λi > 2. Our assumption that condition (2) does not hold then guarantees that λ j−2p+2 > λi + 2
(or that j < 2p − 2) and also that λi+2p−2 6 λi − 2. We define the partition µ by

µk =


λk + 1 (i 6 k 6 j − p + 1)

λk − 1 (i + p − 1 6 k 6 j)

λk otherwise.

The construction of µ guarantees the following.

Lemma 3.9. µ is p-regular, and the simple module Dµ
Fp

occurs as a composition factor of Sλ(1)/S
λ
(2). In particular,

νp(λ) 6 1.

Proof. The coefficient of Sµ in the Schaper expression for Sλ
Fp

is +1, and no other Specht module Sν

with µ Q ν Q λ occurs. Hence Dµ occurs as a composition factor of rad(Sλ
Fp

), with the bound for its
composition multiplicity being 1. �

We proceed with the ‘if’ part.

Lemma 3.10. Take 0 6 r < p, and put λ = (22p−1−r, 1r). Then νp(λ) > 2.
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Proof. Take two λ-tableaux s and t with s ∼row t, and draw the graph G(s, t) as described above. Since
there are 2p− 1 edges meeting the vertex s1, there must either be p edges from s1 to t1, or p edges from
s1 to t2; call these edges ei1 , . . . , eip .

Now the groupSp acts faithfully on the set of admissible colourings of G(s, t) in two different ways:
by permuting the colours c1, . . . , cp, and by permuting the colours assigned to the edges ei1 , . . . , eip .
These actions commute, and both preserve the signatures of colourings. Hence we have a faithful
signature-preserving action of Sp ×Sp on the set of admissible colourings, and∑

C∈A(G(s,t))

(−1)C

is divisible by p2. �

Remark. For an alternative proof of Lemma 3.10, we may combine the results of Sections 2.2 and 4,
which do not depend on the present section.

Lemma 3.11. Take 0 6 r < p, and put λ = (3r, 22p−1−r). Then νp(λ) > 2.

Proof. We proceed by induction on r, with the case r = 0 being the case r = 0 of Lemma 3.10. For
r > 1, take λ-tableaux s and t with s ∼row t, and draw the graph G = G(s, t).

Suppose first of all that there is at least one edge e from s3 to t3 in G. There is a faithful signature-
preserving action of Sr on the set of admissible colourings of G, given by permuting the colours
c1, . . . , cr. So if we sum the signatures of all admissible colourings of G in which e has colour cr, we
will get 〈es,et〉

r! ; since r < p, this is divisible by p2 if and only if 〈es, et〉 is.
Deleting e gives the graph G(s′, t′) for some (3r−1, 22p−2−r)-tableaux s′ and t′. Furthermore, there is

a one-to-one correspondence between admissible colourings of G(s′, t′) and admissible colourings of
G in which e has colour cr. This preserves the signature, and so we find that the sum of (−1)C over
all admissible colourings C of G in which e has colour cr equals 〈es′ , et′〉. This is divisible by p2, by
induction.

Now we assume that there are no edges from s3 to t3 in G(s, t). For this case we adopt a method
similar to that used in the proof of Theorem 3.7. Let ei1 , . . . , eir be the edges meeting s3 (and suppose
eik also meets t f (k)), and similarly define e j1 , . . . , e jr and sg(1), . . . , sg(r).

Given σ ∈ Sr, we form the graph Gσ by deleting s3 and t3 and the edges eik , e jk , and adding edges
e′k joining t f (k) and sg(σk), for k = 1, . . . , r. As in Theorem 3.7, we find that Gσ = G(sσ, tσ) for some
(22p−1)-tableaux sσ, tσ.

There is an obvious one-to-one correspondence between colourings C ∈ A(G) and pairs (σ,C′),
where σ ∈ Sr and C′ is an admissible colouring of Gσ in which edges e′1, . . . , e

′
r have colours c1, . . . , cr

in some order. An examination of the permutations induced by the colourings shows that

(−1)C = (−1)r(−1)C′ .

Thus we have
(−1)πst〈es, et〉 = (−1)r

∑
σ∈Sr

∑
C

(−1)C,

summing over all C ∈ A(Gσ) in which e′1, . . . , e
′
r have colours c1, . . . , cr.
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As before, we define R(Gσ) to be the set of colourings of Gσ in which e′1, . . . , e
′
r have different

colours. There is a faithful signature-preserving action of S2p−1 on R(Gσ) given by permuting the
colours, so we get

(−1)πst〈es, et〉 =
1(2p−1
r

) ∑
σ∈Sr

∑
C∈R(Gσ)

(−1)C.

Exactly as in the proof of Theorem 3.7, we may replace the sum over R(Gσ) with the sum over
A(Gσ) to get

(−1)πst〈es, et〉 =
1(2p−1
r

) ∑
σ∈Sr

(−1)πsσtσ 〈esσ , etσ〉;

since
(2p−1

r
)

is not divisible by p, the result follows. �

Proof of Theorem 3.8. The ‘only if’ part follows from Corollary 3.4 and Lemma 3.9. If λ is doubly
p-singular, the result follows from Lemma 3.3. Otherwise, we may use Theorems 3.5 and 3.7, and
assume that λ equals (22p−1−r, 1r) or (3r, 22p−1−r) for some r < p; these cases are dealt with in Lemmata
3.10 and 3.11. �

4 The Specht module corresponding to the conjugate partition

Fix a λ-tableau t. Let H be the product of the hook lengths in the Young diagram for λ. Fix a
prime p, and define h = νp(H) (for λ in a p-block of abelian defect, h is then equal to the defect). We
quote the following from [6, p. 13].

Lemma 4.1. In the Specht module Sλ over any ring,

κtρtκt{t} = H.κt{t}.

We deduce the following (where I(S) denotes the indicator function of statement S).

Corollary 4.2.
1. ∑

κ1,κ2∈Ct
ρ1,ρ2∈Rt

(−1)κ1κ2I(κ1ρ1κ2ρ2 = 1) = H.

2. ∑
κ1,κ2,κ3,κ4∈Ct
ρ1,ρ2,ρ3,ρ4∈Rt

(−1)κ1κ2κ3κ4I(κ1ρ1κ2ρ2κ3ρ3κ4ρ4 = 1) = H3.

Proof.
1. Compare coefficients of {t} in Lemma 4.1.

2. Apply Lemma 4.1 three times to get

κtρtκtρtκtρtκt{t} = H3κt{t},

and compare coefficients of {t}.



On the structure of Specht modules 13

�

Now let λ′ be the partition conjugate to λ, and for any λ-tableau s, let s′ be the corresponding
λ′-tableau. The main object of attention in this section is the following theorem.

Theorem 4.3. [7, Theorem 8.15]
Over any field k,

Sλk � (Sλ
′

k ⊗ sgn)∗.

We proceed to construct this isomorphism explicitly; our construction will work over any field.
We begin by constructing a form

[, ] : Mλ
Z ⊗Mλ′

Z −→ Z;

given a λ-tableau s and a λ′-tableau u′, define [{s}, {u′}] as follows. If there are two numbers in the
same row of s and the same row of u′, put [{s}, {u′}] = 0. Otherwise, there exists a unique λ-tableau v
such that s ∼row v and u′ ∼row v′. In this case, define [{s}, {u′}] = (−1)πtv . Extend [, ] bilinearly.

The following crucial property of [, ] follows from the construction.

Lemma 4.4. [, ] defines a module homomorphism from Mλ
Z
⊗Mλ′

Z
to the signature representation, i.e. for all

x ∈Mλ, y ∈Mλ′ , σ ∈ Sn,
[σx, σy] = (−1)σ[x, y].

Let us examine the restriction of [, ] to Sλ
Z
⊗ Sλ

′

Z
. Recall the dominance order Q on λ-tabloids.

Lemma 4.5. For any λ-tableaux s,u:

1. [es, eu′] = 0 or [es, eu′] = ±[et, et′];

2. [eσt, eσt′] = (−1)σ[et, et′];

3. if s and u are standard, [es, eu′] = 0 unless {s} Q {u}.

Proof. If there are two numbers, a and b say, in the same column of s and the same column of u′, then
we have

[es, eu′] = −[(ab)es, (ab)eu′]

= −[−es,−eu′]

= 0.

If not, then there exists a unique tableau v such that s ∼col v and u′ ∼col v′. This gives

[es, eu′] = ±[ev, ev′]

= ±(−1)πtv[et, et′],

so (1) holds. (2) is just a special case of Lemma 4.4. Now suppose that s and u are standard and that
v exists as above; we need to show that {s} Q {u}. But since s is standard and v is obtained from s by a
column permutation, we have {s} B {v}; of course, {v} = {u}, which gives (3). �

Lemma 4.5 shows that the homomorphic property defines [, ] uniquely on Sλ ⊗ Sλ
′

, up to a scalar.
We need to know that [et, et′] is non-zero; in fact, we can find it exactly.
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Lemma 4.6.
[et, et′] = H.

Proof. We have
[et, et′] = [κt{t}, κt′{t′}];

each term [(−1)κκ{t}, (−1)ρρ{t′}] for κ ∈ Ct, ρ ∈ Rt contributes a factor (−1)κ(−1)ρ(−1)ξρ if there exist
π ∈ Rκt, ξ ∈ Cρt with

πκt = ξρt,

and zero otherwise. But Rκt = κRtκ−1, and Cρt = ρCtρ−1, so we seek the sum over all κ, κ2 ∈ Ct,
ρ, ρ2 ∈ Rt with κρ2 = ρκ2 of (−1)κ2κ. By Corollary 4.2 (1), this is H. �

Given this, we can define θ.

Definition. Define the form
(, ) : SλZ ⊗ Sλ

′

Z −→ Z

by

(x, y) =
[x, y]

H
,

and let θ : Sλ
Z
→ (Sλ

′

Z
⊗ sgn)∗ be given by

θ(x)(y ⊗ 1) = [x, y].

Proposition 4.7. θ is an isomorphism of ZSn-modules.

Proof. That θ is a homomorphism follows from Lemma 4.4. Lemma 4.5 guarantees that the matrix of
(, ) with respect to the standard bases of Sλ

Z
, Sλ

′

Z
(the polytabloids corresponding to standard tableaux)

is upper triangular with integer entries and diagonal entries all ±1. So the matrix has determinant
±1, and is invertible. �

By extending scalars or by modular reduction, we can easily define θ over the fields Q and Fp.

Our aim is to see how the submodules Sλ(i), Sλ′( j) correspond under θ. Our main theorem is as
follows.

Theorem 4.8. For any prime p, and any i,

Sλ(i)/S
λ
(i+1) �

(
Sλ′(h−i)/S

λ′
(h−i+1)

)
⊗ sgn .

This follows from the following.

Theorem 4.9. If i + j > h and x ∈ Sλ(i), y ∈ Sλ
′

( j), then p divides [x, y]. On the other hand, if i + j 6 h and x ∈ Sλ
Z

is such that x + pz is never in Sλ(i+1) for z ∈ Sλ
Z

, then there exists y ∈ Sλ
′

( j) such that p does not divide [x, y].

Given Theorem 4.9, we see that over a field of characteristic p, the image under θ of Sλ(i) is precisely

the annihilator in (Sλ
′

⊗ sgn)∗ of Sλ′(h−i+1) ⊗ sgn. Hence we have

Sλ(i)/S
λ
(i+1) � (Sλ′(h−i+1) ⊗ sgn)◦/(Sλ′(h−i) ⊗ sgn)◦
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which is naturally isomorphic to (
Sλ′(h−i) ⊗ sgn /Sλ′(h−i+1) ⊗ sgn

)∗
;

since the layers Li are known to be self-dual, Theorem 4.8 follows.

Example. In characteristic two , the Specht module S(7,1) has composition factors D(7,1) and D(8), lying
in layers L0 and L3 respectively. The product of the hook lengths for the partition (7, 1) is 5760 = 27.45,
so the Specht module S(2,16) corresponding to the conjugate partition has these composition factors
lying in layers L7 and L4 respectively.

We proceed to prove Theorem 4.9. To avoid tensoring with the signature representation, we define

α : SλZ −→ Sλ
′
∗

Z

to be the map induced by (, ) (of course α isn’t a homomorphism, but that doesn’t matter). Also define

β : SλZ −→ Sλ∗Z

to be the map induced by 〈, 〉, and
γ : Sλ

′

Z −→ Sλ
′
∗

Z

that induced by the corresponding inner product on Mλ′

Z
. A crucial result is then the following.

Proposition 4.10. As maps from Sλ
′

to Sλ∗,

βα−1γ = Hα∗.

We start by proving this in a special case.

Lemma 4.11.
βα−1γ(et′)(et) = H.

Proof. For λ-tableaux s and u, define

Γ(s,u) =

(−1)πtv if there exists v such that s ∼row v ∼col u

0 otherwise.

Let T be the set of standard λ-tableaux. Then by the definition of α, we have, for f ∈ Sλ
′
∗

Z
,

α−1( f ) =
∑
s∈T

µses,

where
µs =

∑
u∈T

f (eu′)Γ(s,u).

Of course, a similar expression is valid for any other bases of Sλ
Z

, Sλ
′

Z
; in particular, we may replace

the above sums with
∑

s∈τT and
∑

u∈υT for any τ, υ ∈ Sn. If we do this and sum over all τ and υ, then
we sum over every pair (s,u) of tableaux dim Sλ × dim Sλ

′

times; by the Hook Length Formula,

dim Sλ = dim Sλ
′

=
n!
H
,
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so we obtain

(n!)2α−1( f ) =
(n!

H

)2 ∑
s
µses,

with
µs =

∑
u

f (eu′)Γ(s,u).

Now we look at β. For λ-tableaux s,u, β(es)(eu) is simply 〈es, eu〉. This is the sum over all pairs of
tableaux a,b with s ∼col a ∼row b ∼col u of (−1)πsa(−1)πbu . A similar expression holds for γ(es′)(eu′), and
we combine these expressions for γ, α−1 and β to find that

βα−1γ(et′)(et) =
1

H2

∑
c,d,u,x,s,a,b

(−1)πtc(−1)πdu(−1)πtx(−1)πsa(−1)πbt ,

the sum being over all tableaux c, d,u, x, s, a, b with

t ∼row c ∼col d ∼row u ∼col x ∼row s ∼col a ∼row b ∼col t.

The summand (−1)πtx(−1)πsa(−1)πbt is the same as (−1)πcdπuxπsaπbt , and the result now follows from (2)
in Lemma 4.2. �

Proof of Proposition 4.10. α is a homomorphism twisted by the signature representation; that is,

α(σx) = (−1)σσ(α(x));

in fact, it follows from Lemma 4.5 that this property defines α up to a scalar; of course, a similar
statement holds for α∗. Now β and γ are homomorphisms and α−1 is a twisted homomorphism, so
βα−1γ is a twisted homomorphism, and so equals a scalar multiple of α∗. Lemma 4.11 gives the scalar,
and the result follows. �

Now we let A, B and C be the matrices of α, β, γ respectively with respect to the standard bases of
Sλ and Sλ

′

and their dual bases. We then have

BA−1C = H.AT.

Lemma 4.12. Suppose that B, D are d by d matrices with integer entries such that BD = H.I. Suppose also
that x ∈ Zd has the property that, for any z ∈ Zd, some component of (x + pz)TB is not divisible by pi+1. Then
there exists w ∈ Zd such that

• ph−i divides every component of Dw, and

• p does not divide xTw.

Proof. Using Smith’s Normal Form [2, p. 322], we may find invertible matrices M,N over Z such
that MBN is diagonal, with diagonal entries b1, . . . , bd say. Of course, N−1DM−1 is then also diagonal,
with diagonal entries d j = H

b j
. If x ∈ Zd has the stated property, then, putting ξ = (M−1)Tx, we have

that, for every z ∈ Zd, some component of ξTMB is not divisible by pi+1. Since N is invertible, the
same holds for ξTMBN. But MBN is diagonal, so it is easily seen that this property is equivalent to:
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for some j, νp(b j) < i and p does not divide ξ j.

By letting ω be the vector with a one in the jth position and zeroes elsewhere, we then find that, since
b jd j = H, ph−i divides every component of N−1DM−1ω, but p does not divide ξTω. Putting w = M−1ω

completes the proof. �

Proof of Theorem 4.9. Using the standard bases, we may regard x and y as elements of Zdim(Sλ); the
condition x ∈ Sλ(i) then simply means that pi divides every component of xTB, and similarly for y ∈ Sλ

′

( j).

So if i + j > h and x ∈ Sλ(i), y ∈ Sλ
′

( j), we have

[x, y] = xTATy

=
xTBA−1Cy

H
,

which is divisible by p. Now suppose x is such that, for all z, some component of (x+pz)TB is not divisi-
ble by pi+1. Putting D = A−1C(A−1)T, we have BD = H.I, and so by Lemma 4.12 there exists w ∈ Zdim(Sλ)

such that ph−i divides every component of Dw but p does not divide xTw. Putting y = (A−1)Tw then
tell us that ph−i divides every component of Cy, but p does not divide xTATy, which is what we want. �
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