
This is the author’s version of a work that was accepted for publica-
tion in the European Journal of Combinatorics. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural for-
matting, and other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was submit-
ted for publication. A definitive version was subsequently published in
European J. Combin. 76 (2019) 138–158.
http://dx.doi.org/10.1112/plms.12087.

0



Simultaneous core multipartitions

Matthew Fayers
Queen Mary University of London, Mile End Road, London E1 4NS, U.K.

m.fayers@qmul.ac.uk

2020 Mathematics subject classification: 05A17, 05E10

Abstract

We initiate the study of simultaneous core multipartitions, generalising simultaneous core parti-
tions, which have been studied extensively in the recent literature. Given a multipartition datum
(s | c), which consists of a non-negative integer s and an l-tuple c of integers, we introduce the
notion of an (s | c)-core multipartition. Given an arbitrary set of multipartition data, we give nec-
essary and sufficient conditions for the corresponding set of simultaneous core multipartitions to
be finite. We then study the special case of simultaneous core bipartitions, giving exact enumera-
tive results in some special subcases.
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1 Introduction

The study of integer partitions has a long history, with applications in a variety of areas. In the last
few years there has been considerable interest in core partitions, i.e. partitions with no hook lengths
divisible by a certain prescribed integer. Of particular interest are simultaneous core partitions, i.e.
partitions which are both s- and t-cores, for given (typically coprime) integers s, t. Various enumera-
tive results have been proved for these “(s, t)-cores”; foremost among these are Anderson’s theorem
[An] giving the number of (s, t)-cores, and Armstrong’s Conjecture (stated in [AHJ], and proved by
Johnson in [J]) giving the average size of an (s, t)-core.

In this paper we introduce the subject of core multipartitions. For a fixed l ∈ N, an l-multipartition
is just an l-tuple of partitions. We generalise the notion of core partition to multipartitions by using
a characterisation of core partitions in terms of residues of nodes which goes back to a result of
Littlewood [Li]. Our definition of core multipartitions has representation-theoretic significance in
terms of modules for cyclotomic Hecke algebras. The extension to multipartitions requires not just an
integer s but also an l-tuple c ∈ Zl ; so we actually introduce the notion of an (s | c)-core multipartition
(or simply an (s | c)-core). We can then consider the question of simultaneous core multipartitions,
i.e. multipartitions which are (s | c)-cores for all pairs (s | c) in a given set T . Our main result is a
determination of exactly when there are only finitely such multipartitions.

Having established this finiteness result, we consider enumerative results, restricting to the first
non-trivial case (where l = 2 and |T | = 2) and enumerating simultaneous core bipartitions in two
special subcases.

2 Definitions and basic results

2.1 Standard notation

If X ⊆ Zl , n ∈ Zl and s ∈ N, then we write n + sX = {n + sx | x ∈ X}. We define Z/sZ to be the
set {n + sZ | n ∈ Z}. (We do not employ the popular abuse of notation in which Z/sZ = {0 . . . , s−
1}.) A Z/sZ-tuple of integers just means a function u from Z/sZ to Z, which we write in the form
(ui | i ∈ Z/sZ).

2.2 Partitions

A partition is a weakly decreasing sequence λ = (λ1, λ2, . . . ) of non-negative integers with finite
sum. When writing partitions, we typically group together equal parts with a superscript and omit
the trailing zeroes, and we write the partition (0, 0, . . . ) as ∅. We let P denote the set of all partitions.

The size of a partition λ is the sum |λ| = ∑a>1 λa. The Young diagram of λ is the set

[λ] =
{
(a, b) ∈ N2 ∣∣ b 6 λa

}
whose elements we call the nodes of λ. We draw [λ] as an array of boxes in the plane using the English
convention, in which the Young diagram of (6, 4, 2, 12) is drawn as follows.
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A node of λ is removable if it can be removed to leave a Young diagram (i.e. if it has the form (a, λa),
with λa > λa+1), while a pair (a, b) /∈ [λ] is an addable node of [λ] if it can be added to [λ] to yield a
Young diagram. If (a, b) is a node of λ, the (a, b)-hook of λ is the set of nodes of λ directly to the right
of (a, b) or directly below (a, b), including (a, b) itself. The (a, b)-hook length is the number of nodes
in this hook. If the (a, b)-hook has length s, we call it an s-hook. λ is an s-core partition (or simply an
s-core) if it has no s-hooks.

For example, the shaded nodes in the diagram below comprise a 5-hook of (6, 4, 2, 12), so this
partition is not a 5-core. On the other hand, one can easily check that this partition has no 3-hooks,
so is a 3-core.

We write Cs for the set of all s-core partitions. These partitions can also be characterised in terms of
residues of nodes. Given a node (a, b) ∈ [λ], define its s-residue to be b − a + sZ. For example, the
3-residues of the nodes of (6, 4, 2, 12) are illustrated in the following diagram (in which we label a
node of residue i + 3Z with i, for i = 0, 1, 2).

0 1 2 0 1 2
2 0 1 2
1 2
0
2

The s-content of a partition λ is defined to be the multiset of s-residues of the nodes of λ. From the
diagram above, we see that the 3-content of (6, 4, 2, 12) is {(0 + 3Z)4, (1 + 3Z)4, (2 + 3Z)6} (where we
adopt what we hope is an obvious notation for a multiset of elements of Z/sZ).

The s-content of a partition is significant because of the following result.

Theorem 2.1 [Li]. Suppose λ ∈ P and s > 1. Then λ is an s-core if and only if there is no other
partition with the same s-content as λ.

Now suppose s1, . . . , sr ∈ N. An (s1, . . . , sr)-core means a partition which is an si-core for each i. It
is fairly easy to show that the set of (s1, . . . , sr)-cores is finite if and only if s1, . . . , sr are coprime; this
appears to have been written down for the first time by Xiong [X, Theorem 1.1]. Our main aim in this
paper is to prove an analogue of this statement for multipartitions, which we introduce next.

2.3 Multipartitions

Fix l ∈ N. An l-multipartition is an l-tuple λ = (λ(1), . . . , λ(l)) of partitions, which we call the
components of λ. We write P l for the set of all l-multipartitions, and we write ∅l for the multipartition
(∅, . . . ,∅).

The size of an l-multipartition λ is the sum of the sizes of its components. The Young diagram of
λ is the set

[λ] =
{
(a, b, k) ∈ N2 × {1, . . . , l}

∣∣ b 6 λ
(k)
a
}

,

whose elements we call the nodes of λ. We draw the Young diagram of λ by drawing the Young
diagrams of λ(1), . . . , λ(l) in order from left to right. We define addable and removable nodes of
multipartitions analogously to those for partitions.
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Now take an l-tuple c = (c1, . . . , cl) ∈ Zl , and define the (s | c)-residue of a node (a, b, k) to be
b− a + ck + sZ. We refer to a node of (s | c)-residue i ∈ Z/sZ as an i-node. Define the (s | c)-content of
λ to be the multiset of (s | c)-residues of the nodes of λ.

For example, suppose l = 3, s = 4 and c = (0, 2, 1). For λ =
(
(2), (4, 12), (12)

)
, the residues are

indicated by the following diagram.

0 1 2 3 0 1
1
0

1
0

We see that the (4 | (0, 2, 1))-content of λ is
{
(0 + 4Z)4, (1 + 4Z)4, (2 + 4Z)1, (3 + 4Z)1}.

Now, inspired by Theorem 2.1, we make the following definition: say that λ ∈ P l is an (s | c)-core
multipartition (or simply an (s | c)-core) if there is no other l-multipartition µ with the same (s | c)-
content. We write C(s | c) for the set of all (s | c)-cores.

In the rest of the paper we will refer to the pair (s | c) as an l-multipartition datum. If we wish to
refer to the individual integers c1, . . . , cl , we may write (s | c1, . . . , cl) instead of (s | c) in any of the
notation introduced above. For example, we can easily check that the multipartition λ above lies in
C(4 | 0,2,1).

Remarks.
1. In the study of s-core partitions, s is typically assumed to be greater than 1. However, one can

meaningfully consider the cases s = 0 and s = 1. First take s = 1; according to the definition
using hooks, the only 1-core partition is ∅. However, the partition (1) is the unique partition
with its 1-content (which is why we need to assume s 6= 1 in Theorem 2.1). Nevertheless, most
of the theory of core partitions applies (in a trivial way) with s = 1, if we take C1 = {∅}. Simi-
larly for multipartitions, we take C(1 | c) = {∅l} (which is consistent with the definition of core
multipartitions given above provided l > 2), and the results we prove below will apply in this
case.

Now consider the case s = 0. In this case we should regard the residue of a node (a, b) as the
integer b− a, and correspondingly define the 0-content to be a multiset of integers. It is then
not hard to prove that any partition is determined by its 0-content, so every partition is a 0-core.

The situation with multipartitions is less straightforward when s = 0. Given c ∈ Zl we define
the (0 | c)-residue of the node (a, b, k) to be the integer b − a + ck, so that the (0 | c)-content is
again a multiset of integers. But now not every multipartition is a (0 | c)-core. In fact this is
easily seen: if cj = ck for some j 6= k, then a multipartition λ has the same (0 | c)-content as
the multipartition obtained by switching the components λ(j) and λ(k), so cannot be a (0 | c)-
core if these components are unequal. So the study of (0 | c)-core multipartitions is certainly
non-trivial, and we will include the case s = 0 in our considerations in this paper. Given two
integers a, b, the condition a ≡ b (mod s) should be read as a = b in the case s = 0.

The case s = 0 can be regarded as the limiting case as s gets very large (in fact, this situation is
often described as s = ∞ rather than s = 0): given a multipartition λ and c ∈ Zl , it is easily seen
that we have λ ∈ C(0 | c) if and only if λ ∈ C(s | c) for all sufficiently large s.

2. Our definition of core multipartitions is not completely arbitrary, but has representation-theoretic
significance. Associated to a pair (s | c) as above and a positive integer n is an Ariki–Koike al-
gebra (a Hecke algebra of the complex reflection group of type G(l, 1, n)). This algebra has an
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important family of modules (the Specht modules) labelled by l-multipartitions of size n. Lyle &
Mathas [LM] showed that two multipartitions having the same (s | c)-content is equivalent to
the corresponding Specht modules lying in the same block of the Ariki–Koike algebra, and the
author [F1] showed that a multipartition being an (s | c)-core is equivalent to the correspond-
ing Specht module being contained in a simple block. This is analogous to the significance of
s-cores in the s-modular representation theory of the symmetric group (or more generally the
Iwahori–Hecke algebra of type A). In fact, this analogy goes further: in [F1] the author defines
a “weight” function on multipartitions (depending on s, c) which is an analogue of the s-weight
of a partition λ (i.e. the number of rim s-hooks that need to be removed to reach the s-core of λ).
(s | c)-cores are then simply multipartitions of weight 0. We will use some of the results from
[F1] below.

2.4 Basic results

In this section we will give some basic results on core multipartitions; in particular, we will give
a simple condition in terms of beta-numbers for a multipartition to be an (s | c)-core.

We start with two very simple results.

Lemma 2.2. Suppose (s | c) and (s | d) are two l-multipartition data, with di − ci ≡ dj − cj (mod s) for
all i, j. Then C(s | c) = C(s | d).

Proof. First note that the set C(s | c) is unchanged if we add a fixed integer a to each ci, since the
effect is just to shift the residues of all nodes by a. Doing this with a = d1 − c1, we may assume
that ci ≡ di (mod s) for each i. But then the (s | c)-residue of each node is the same as the (s | d)-
residue, so that the (s | c)-content of any multipartition is the same as the (s | d)-content, and the
result follows.

Lemma 2.3. Suppose (s | c) is a multipartition datum, and λ ∈ C(s | c). Then each component of λ is an
s-core.

Proof. We prove the contrapositive. Suppose λ(k) is not an s-core. Then by Theorem 2.1 there is
another partition µ with the same s-content as λ(k). The multipartition obtained from λ by replacing
λ(k) with µ then has the same (s | c)-content as λ, so λ is not an (s | c)-core.

Our remaining background results are mostly taken from [F1], but we need to explain how to
translate the results into our notation.

The combinatorics in [F1] are based on data consisting of a field F and non-zero elements q, Q1, . . . , Ql
of F. (In fact the integer r is used instead of l in [F1], but this makes no practical difference.) The
residue of a node (a, b, k) is defined in [F1] to be the element qb−aQk of F. For the purposes of the
present paper, it suffices to assume that each Qi is a power of q, say Qi = qci , for ci ∈ Z. If we let s
denote the multiplicative order of q ∈ F (this order is called e in [F1]), then two nodes have the same
residue (in the sense of [F1]) if and only if they have the same (s | c1, . . . , cl)-residue. (The (s | c1, . . . , cl)-
residue is essentially the base q logarithm of the residue in [F1]). Given a multipartition λ and f ∈ F,
[F1] defines c f (λ) to be the number of nodes of λ of residue f , and defines the weight of λ to be

w(λ) =
l

∑
i=1

cQi(λ)−
1
2 ∑

f∈F

(
c f (λ)− cq f (λ)

)2 .
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Multipartitions λ, µ are defined to lie in the same combinatorial block if and only if c f (λ) = c f (µ)
for every f . Clearly, this is equivalent to λ and µ having the same (s | c1, . . . , cl)-content. Thus a
multipartition λ is an (s | c1, . . . , cl)-core if and only if it lies in a combinatorial block by itself. [F1,
Theorem 4.1] then says that this happens if and only if w(λ) = 0.

The results in [F1, Section 3] yield a simple algorithm for computing the weight of a multiparti-
tion, and in particular for determining whether a multipartition has weight 0. The first result that we
cite shows that in order to check whether a multipartition is an (s | c)-core we can reduce to the case
l = 2.

Proposition 2.4. Suppose (s | c) is an l-multipartition datum, and that λ(k) ∈ Cs for every k. Then λ is
an (s | c)-core if and only if (λ(j), λ(k)) is an (s | cj, ck)-core bipartition for all 1 6 j < k 6 l.

Proof. Define the weight function w as above using the data q, Q1, . . . , Ql , where q is a primitive sth
root of unity (or a non-zero non-root of unity, if s = 0) in a field F, and Qi = qci for each i. [F1,
Proposition 3.5] says (given the assumption that each λ(k) lies in Cs) that w(λ) is the sum of the
values w((λ(j), λ(k))) over all pairs j < k, where w((λ(j), λ(k))) is defined using the data q, Qj, Qk.
Since weight is non-negative by [F1, Corollary 3.9], this means that w(λ) = 0 (i.e. λ is an (s | c)-core)
if and only if w((λ(j), λ(k))) = 0 for every j, k (i.e. each (λ(j), λ(k)) is an (s | cj, ck)-core).

To go further, we recall the definition of beta-numbers, which goes back to Nakayama [N]. Define
the beta-set of a partition λ to be the set

Bλ = {λa − a | a ∈ N} .

For any c ∈ Z, we write Bλ
c for the set Bλ + c, which we refer to as the c-shifted beta-set of λ.

The following result is due to Robinson [R, (2.8)].

Proposition 2.5. Suppose s > 0 and λ ∈ P . Then the number of s-hooks of λ equals the number of
b ∈ Bλ such that b− s /∈ Bλ. In particular, λ is an s-core if and only if Bλ ⊇ Bλ

−s.

This result is key in the study of core partitions; it yields James’s abacus model [JK, Section 2.7]
for partitions, which in turn leads to a geometric interpretation for the set of s-cores.

We make an observation about beta-sets which will be useful later. Suppose λ, µ ∈ P and c, d ∈ Z.
Note that Bλ

c is a set of integers which is bounded above and whose complement in Z is bounded
below. Moreover, the number of non-negative integers in Bλ

c minus the number of negative integers
not in Bλ

c equals c. As a consequence, we have the following result.

Lemma 2.6. Suppose c, d ∈ Z and λ, µ ∈ P . Then |Bλ
c \ B

µ
d | − |B

µ
d \ Bλ

c | = c − d. In particular, if
Bλ

c ⊇ B
µ
d , then c > d.

We now explain how core multipartitions can be characterised in terms of the beta-sets of their
components. In view of Proposition 2.4 we restrict to the case l = 2.

Proposition 2.7. Suppose c, d ∈ Z and (λ, µ) ∈ P2.

1. (a) If c 6 d, then (λ, µ) ∈ C(0 | c,d) if and only if Bλ
c ⊆ B

µ
d .

(b) If c > d, then (λ, µ) ∈ C(0 | c,d) if and only if Bλ
c ⊇ B

µ
d .

2. Suppose s ∈ N, and let e be the residue of c− d modulo s. Then (λ, µ) ∈ C(s | c,d) if and only if

Bλ
e ⊇ Bµ ⊇ Bλ

e−s.
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Proof. Following [F1] we define integers γi for i ∈ Z as follows.

� If s = 0, then we set

γi =


1 if Bλ

c 3 i /∈ Bµ
d

−1 if Bλ
c 63 i ∈ Bµ

d

0 otherwise.

� If s > 0, then we define γi to be the largest element of Bλ
c ∩ (i + sZ) minus the largest element

of Bµ
d ∩ (i + sZ), divided by s.

In either case, [F1, Lemma 3.7(3) & Proposition 3.8] show that (λ, µ) has weight 0 (i.e. is an (s | c, d)-
core) if and only if γi − γj 6 1 for every i, j.

If the case s = 0, the above condition says that (λ, µ) is an (s | c, d)-core if and only if the γi are all
non-negative or all non-positive. But note that

∑
i∈Z

γi = |Bλ
c \ B

µ
d | − |B

µ
d \ B

λ
c | = c− d

by Lemma 2.6. So if c > d then (λ, µ) is an (s | c, d)-core if and only if each γi is non-negative, which
is the same as saying Bλ

c ⊇ B
µ
d . A similar statement applies when c 6 d.

If instead s > 0, then
s−1

∑
i=0

γi = |Bλ
c \ B

µ
d | − |B

µ
d \ B

λ
c | = c− d,

which means we have γi − γj 6 1 for all i, j if and only if γi ∈ {(c− d− e)/s, 1 + (c− d− e)/s} for
all i. The condition that γi > (c− d− e)/s for all i is equivalent to the condition Bλ

e ⊇ Bµ, while the
condition that γi 6 1 + (c− d− e)/s for all i is equivalent to Bµ ⊇ Bλ

e−s.

2.5 Action of the affine symmetric group

One of the most interesting and useful features of the set of s-cores is that it admits a natural action
of the affine symmetric group. In this section, we show how this generalises to core multipartitions.
This provides a natural proof of the fact that (provided s 6= 1) the set C(s | c) is infinite.

Take s > 2. Recall that the affine symmetric group S̃s is the group of all permutations g of Z with
the properties that

� g(n + s) = g(n) + s for all n ∈ Z, and

� g(0) + g(1) + · · ·+ g(s− 1) = 0 + 1 + · · ·+ s− 1.

Then S̃s is a Coxeter group, with generating set { si | i ∈ Z/sZ} defined by

si(n) =


n + 1 (n ∈ i− 1)
n− 1 (n ∈ i)
n (n /∈ i− 1, i)

for i ∈ Z/sZ and n ∈ Z. The subgroup S̃0
s generated by { si | i 6= sZ} is naturally isomorphic to the

symmetric group Ss.
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Now suppose λ is a partition and i ∈ Z/sZ. Define si(λ) to be the partition obtained by simul-
taneously adding all the addable i-nodes to λ and removing all the removable i-nodes. This defines
an action of S̃s on the set of all partitions. Moreover, the set Cs is an orbit for this action, so we have
a transitive action of S̃s on Cs. This action was first studied by Lascoux [La], who showed that the
stabiliser of the empty partition is the subgroup S̃0

s defined above, so that s-cores are naturally in
bijection with left cosets of S̃0

s in S̃s.
Next suppose we shift all residues of nodes in N2 by some fixed amount c; that is, we redefine the

residue of a node (a, b) to be b− a + c + sZ. Then we can define another action of S̃s on Cs in exactly
the same way as defined above; this just amounts to twisting Lascoux’s action by the automorphism
of S̃s defined by si 7→ si+c for all i. We call this the c-shifted action of S̃s on Cs. The stabiliser of ∅
under the c-shifted action is the parabolic subgroup S̃c

s of S̃s generated by { si | i 6= c + sZ}.
Now we consider multipartitions. Suppose we have an l-multipartition datum (s | c); for the

moment we will continue to assume that s > 2 (we will comment below on the case s = 0). We
can define an action of S̃s on P l analogously to the action on P above: if λ ∈ P l , then si(λ) is the
multipartition obtained by adding all addable i-nodes and removing all removable i-nodes. Then we
have the following.

Proposition 2.8. Suppose s > 2. Under the action of S̃s on P l described above, C(s | c) is an orbit.

Proof. First we show that if λ ∈ C(s | c) and i ∈ Z/sZ then si(λ) ∈ C(s | c). Note that λ cannot have both
addable and removable i-nodes, because if it did, then we could remove a removable i-node and add
an addable i-node to obtain another multipartition with the same (s | c)-content, contradicting the
assumption that λ ∈ C(s | c). So we assume that λ has no addable i-nodes (the other case is similar).
Then si(λ) is obtained just by removing all the removable i-nodes from λ. Now by [F1, Lemma 3.6] λ

and si(λ) have the same weight (note that the integers u and δi(λ) appearing in that lemma are both
equal to the number of removable i-nodes of λ in our situation, so the term on the right-hand side is
zero) and hence si(λ) is also an (s | c)-core.

So C(s | c) is a union of orbits. To show that C(s | c) is a single orbit, we show that if λ ∈ C(s | c) with
λ 6= ∅l , then there is a strictly smaller multipartition in the same orbit; applying this repeatedly, we
find that ∅l lies in the same orbit as λ.

The assumption that λ 6= ∅l mean that λ has at least one removable node, of residue i, say. As
observed at the start of the proof, λ cannot have any addable i-nodes, so si(λ) is obtained from λ by
removing i-nodes only. So si(λ) is strictly smaller than λ, as required.

Of course, Proposition 2.8 can be used as an alternative definition of C(s | c) in the case s 6= 1: we
can define C(s | c) to be the orbit containing ∅l under the action of S̃s on P l .

Part of the action of S̃s on C(s | c) is illustrated in Figure 1 in the case s = 3 and c = (0, 1). In this
diagram an arrow labelled i indicates the action of si+3Z.

In order to understand the action of S̃s on C(s | c) in general, we find the stabiliser of ∅l . This is
easy to work out, given the discussion above of the shifted actions of S̃s on Cs. It is clear from the
definitions that g ∈ S̃s fixes ∅l if and only if it fixes ∅ under the ck-shifted action of S̃s on Cs, for
k = 1, . . . , l. Hence the stabiliser of ∅l is the intersection S̃c1

s ∩ · · · ∩ S̃cl
s . It is a standard fact in the

theory of Coxeter groups that the intersection of a family of parabolic subgroups is the parabolic
subgroup generated by the intersection of the generating sets of these subgroups. So the stabiliser of
∅l is the subgroup 〈 si | i /∈ {c1 + sZ, . . . , cl + sZ}〉. Hence the set C(s | c) is in bijection with the set of
left cosets of this subgroup.
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Figure 1: The action of the affine symmetric group of degree 3 on C(3 | 0,1)
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We now consider the case s = 0. Here the discussion above applies, except that the finitely-
generated Coxeter group S̃s is replaced with the finitary symmetric group, i.e. the group S∞ of all
finitely-supported permutations of Z. This is also a Coxeter group, with infinite generating set
{ si | i ∈ Z}, where si is the transposition (i − 1, i). The stabiliser of ∅l under the action of S∞ on
C(0 | c) is 〈 si | i /∈ {c1, . . . , cl}〉.

As a consequence of these actions, we deduce the following.

Proposition 2.9. Suppose (s | c) is an l-multipartition datum. Then C(s | c) is infinite if and only if s 6= 1.

Proof. As noted above, when s = 1 the only (s | c)-core is ∅l . The case where s 6= 1 follows from
the discussion of actions above: the stabiliser of ∅l is easily seen to have infinite index in S̃s (in fact
Hosaka [H, Theorem 3.1] shows that a proper parabolic subgroup of any infinite irreducible Coxeter
group has infinite index), so C(s | c) is in bijection with an infinite set.

3 Finiteness

In this section we prove our main result: given a set T of l-multipartition data, we determine
whether there are only finitely many multipartitions which are (s | c)-cores for all (s | c) ∈ T . We fix
some notation.

Notation in force for Section 3: l is a fixed positive integer, and T is a set of l-multipartition data.
We write T =

{
(s(t) | c(t))

∣∣∣ t ∈ T
}

for an indexing set T.

We define CT to be the intersection
⋂

t∈T C(s(t) | c(t)) (setting CT = P l when T = ∅), and we define
g(T ) to be the greatest common divisor of the integers in the set{

s(t)
∣∣∣ t ∈ T

}
∪
{

c(t)i − c(t)j − c(u)i + c(u)j

∣∣∣ t, u ∈ T, 1 6 i, j 6 l
}

.

If the above set equals {0} or is empty, then we set g(T ) = 0.

3.1 A simple criterion

In this subsection we give a simple necessary condition for CT to be finite. It will turn out that in
almost all cases this condition is also sufficient. We begin with a useful lemma.

Lemma 3.1. Suppose s, t ∈ N∪ {0} and c ∈ Zl , and that s divides t. Then C(s | c) ⊆ C(t | c).
Note that when we say s divides t, we mean that t = ns for some integer n, so we include the case

t = 0.

Proof. Since s divides t, two nodes with the same (t | c)-residue must have the same (s | c)-residue.
Hence two multipartitions with the same (t | c)-content have the same (s | c)-content. Now the result
follows from the definition of (s | c)-cores.

Now we can give our necessary condition for CT to be finite.

Corollary 3.2. Suppose CT is finite. Then g(T ) = 1.

Proof. Let g = g(T ), and observe that for any t, u ∈ T there is d ∈ Z such that we have c(t)k ≡ c(u)k +

d (mod g) for all k. Hence by Lemma 2.2, C(g | c(t)) = C(g | c(u)). In other words, the set C(g | c(t)) is the
same for every t ∈ T. By Lemma 3.1 C(g | c(t)) ⊆ C(s(t) | c(t)), so CT contains C(g | c(t)). If g 6= 1 then C(g | c(t))
is infinite by Proposition 2.9, and hence so is CT .
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3.2 The case where every s(t) is zero

In this subsection we assume that s(t) = 0 for all t ∈ T. Perhaps surprisingly, this is the most
complicated case.

We begin with a simple construction of core multipartitions.

Lemma 3.3. Suppose c ∈ Zl , let m = max{c1, . . . , cl}, and let K = { k ∈ {1, . . . , l} | ck = m}. For any
n ∈ N define a multipartition λ by

λ(k) =

(n) (k ∈ K)

∅ (k /∈ K).

Then λ ∈ C(0 | c).

Proof. The (0 | c)-content of λ is {m|K|, (m + 1)|K|, . . . , (m + n− 1)|K|}. Suppose µ is a multipartition
with this (0 | c)-content. Then µ(k) = ∅ for k /∈ K, since µ has no nodes of residue less than m; for the
same reason, µ

(k)
2 = 0 for k ∈ K. Furthermore, µ

(k)
1 6 n for k ∈ K, because µ has no nodes of residue

greater than m + n − 1. The only possible µ satisfying these criteria is µ = λ, so λ is the unique
multipartition with its (0 | c)-content.

Now we make a definition. Given k ∈ {1, . . . , l}, say that k is

� always maximal if c(t)k > c(t)j for all t ∈ T and j ∈ {1, . . . , l};

� sometimes maximal if there is some t ∈ T such that c(t)k > c(t)j for all j ∈ {1, . . . , l};

� never maximal if for every t ∈ T there is j ∈ {1, . . . , l} with c(t)k < c(t)j .

We define always minimal, never minimal and sometimes minimal similarly, with the inequalities re-
versed.

Say that T satisfies condition X if there is at least one k ∈ {1, . . . , l} which is sometimes maximal
but not always maximal, and at least one k which is sometimes minimal but not always minimal.

Now we can state our main result for the case where every s(t) equals 0.

Theorem 3.4. Suppose T =
{
(0 | c(t))

∣∣∣ t ∈ T
}

is a set of l-multipartition data. Then CT is finite if
and only if g(T ) = 1 and T satisfies condition X.

Example. Suppose T = {(0 | 1, 3, 0), (0 | 3, 0, 1)}. Then g(T ) = 1 and T satisfies condition X. If λ ∈ CT ,
then by Proposition 2.4 (λ(1), λ(2)) ∈ C(0 | 1,3) ∩C(0 | 3,0). Lemma 3.5 below then tells us that (λ(1), λ(2)) ∈
C(5 | 1,3), and in particular λ(1) and λ(2) are both 5-cores. Similarly, (λ(2), λ(3)) ∈ C(4 | 3,0), so λ(2) and
λ(3) are both 4-cores; since there are only finitely many (4, 5)-cores, there are only finitely many
possibilities for λ(2). It follows from Proposition 2.7(2) that for a given 5-core λ(2) there are only
finitely many bipartitions (λ(1), λ(2)) in C(5 | 1,3). So there are only finitely many possibilities for λ(1).
Similarly, there are only finitely many possibilities for λ(3), and so CT is finite.

In fact, we find that |CT | = 30, with the largest tripartition in CT being ((13), (32, 13), (22)).

One direction of the proof is easy.
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Proof of Theorem 3.4 (‘only if’ part). By Corollary 3.2 CT is infinite if g 6= 1. Now suppose T does
not satisfy condition X. This means either that every k which is sometimes maximal is always max-
imal, or that every k which is sometimes minimal is always minimal. We assume we are in the first
case (the other case is similar). By Lemma 3.3 the multipartition λ given by

λ(k) =

(n) if k is always maximal

∅ otherwise

lies in CT for every n, so CT is infinite.

Now we address the ‘if’ part of Theorem 3.4, which is considerably harder. Given a > 0, let hka(λ)
denote the number of a-hooks of a partition λ. In particular, hk1(λ) is just the number of removable
nodes of λ. The idea of the proof of Theorem 3.4 is to bound hka(λ(j)) for λ ∈ CT , for each integer a
of the form

∣∣∣c(t)j − c(t)k − c(u)j + c(u)k

∣∣∣. The fact that these integers a are coprime is then used to bound

hk1(λ
(j)). Condition X is then used to finish off the proof.

We start with a result on simultaneous core bipartitions which will also be useful in Section 3.3.

Lemma 3.5. Suppose c1, c2, d1, d2 ∈ Z with c1 − c2 > 0 > d1 − d2, and let a = c1 − c2 − d1 + d2. Then

C(0 | c1,c2) ∩ C(0 | d1,d2) = C(a | c1,c2).

Proof. Since c1 − c2 ≡ d1 − d2 (mod a), we have C(a | c1,c2) = C(a | d1,d2) by Lemma 2.2. Moreover, this
set is contained in both C(0 | c1,c2) and C(0 | d1,d2) by Lemma 3.1. So we just need to show that if λ ∈
C(0 | c1,c2) ∩ C(0 | d1,d2) then λ ∈ C(a | c1,c2). To see this, note that by Proposition 2.7(1)

Bλ(1)

c1
⊇ Bλ(2)

c2
, Bλ(1)

d1
⊆ Bλ(2)

d2

so that
Bλ(1)

c1−c2
⊇ Bλ(2) ⊇ Bλ(1)

d1−d2
.

The inequalities c1 − c2 > 0 > d1 − d2 mean that the residue of c1 − c2 modulo a is c1 − c2, so λ ∈
C(a | c1,c2) by Proposition 2.7(2).

We derive a simple consequence for simultaneous core multipartitions.

Corollary 3.6. Suppose c(t)j − c(t)k > 0 > c(u)j − c(u)k for some t, u ∈ T and 1 6 j, k 6 l. Let a = c(t)j −
c(t)k − c(u)j + c(u)k . If λ ∈ CT , then λ(j) and λ(k) are a-cores.

Proof. By Proposition 2.4 the bipartition (λ(j), λ(k)) is both a (0 | c(t)j , c(t)k )-core and an (0 | c(u)j , c(u)k )-

core. So by Lemma 3.5 (λ(j), λ(k)) is an (a | c(u)j , c(u)k )-core, and in particular λ(j) and λ(k) are a-cores.

Note that the difference in the signs of c1 − c2 and d1 − d2 is crucial in Lemma 3.5. In the absence
of this hypothesis, the components of a bipartition in C(0 | c1,c2) ∩ C(0 | d1,d2) need not be a-cores. How-
ever, we can give a weaker result which shows that we can bound the number of a-hooks of each
component.

Lemma 3.7. Suppose c1, c2, d1, d2 ∈ Z with c1 − c2 > d1 − d2 > 0, and let a = c1 − c2 − d1 + d2. If
λ ∈ C(0 | c1,c2) ∩ C(0 | d1,d2), then hka(λ(k)) 6 d1 − d2 for k = 1, 2.
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Proof. We consider only λ(2) (the proof for λ(1) is similar). From Proposition 2.7(1) and Lemma 2.6
we know that

Bλ(1)

c1−c2
= Bλ(2) t C, Bλ(1)

d1−d2
= Bλ(2) t D

for some sets C, D of sizes c1 − c2, d1 − d2 respectively. Hence{
b− a

∣∣∣ b ∈ Bλ(2) t C
}
= Bλ(2) t D.

This means that if b ∈ Bλ(2)
but b − a /∈ Bλ(2)

, then b − a ∈ D. Hence there are only |D| = d1 − d2

possible values for b, so by Proposition 2.5 λ(2) has at most d1 − d2 a-hooks.

Again, we note the consequences for multipartitions in T .

Corollary 3.8. Suppose t, u ∈ T and 1 6 j, k 6 l, and let a = |c(t)j − c(t)k − c(u)j + c(u)k |. If a > 0 and λ ∈ CT ,
then

max
{

hka(λ
(j)), hka(λ

(k))
}
6 min

{∣∣∣c(t)j − c(t)k

∣∣∣ , ∣∣∣c(u)j − c(u)k

∣∣∣} .

Proof. By interchanging j and k or t and u if necessary, we can assume c(t)j − c(t)k > c(u)j − c(u)k and

c(t)j − c(t)k > 0. If c(u)j − c(u)k < 0, then the result follows from Corollary 3.6, since then λ(j) and λ(k) are a-

cores. So assume c(u)j − c(u)k > 0. Since (λ(j), λ(k)) is both an (s(t) | c(t)j , c(t)k )-core and an (s(u) | c(u)j , c(u)k )-

core, it is also a (0 | c(t)j , c(t)k )-core and an (0 | c(u)j , c(u)k )-core by Lemma 3.1, so the result follows from
Lemma 3.7.

The preceding results show that for λ ∈ CT the number of a-hooks of λ(j) is bounded for each a of
the form

∣∣∣c(t)j − c(t)k − c(u)j + c(u)k

∣∣∣. We want to use this to show that hk1(λ
(j)) is bounded. We do this

via the following general result.

Proposition 3.9. Suppose P is a set of partitions, A a set of coprime positive integers and f : A→ N a
function such that hka(λ) < f (a) for all λ ∈ P and a ∈ A. Then there is M ∈ N such that hk1(λ) < M
for all λ ∈ P.

Proof. We assume that A is finite; if it is not, we can certainly replace A with a finite subset whose
elements are still coprime. Since the elements of A are coprime, we can find G ∈ N such that every
integer greater than G can be written as a sum of elements of A. Suppose for a contradiction that
hk1(λ) is unbounded for λ ∈ P; then by Proposition 2.5 we can find, for any M ∈ N, a partition λ ∈ P
and integers b1 < · · · < bM ∈ Bλ such that b1 − 1, . . . , bM − 1 /∈ Bλ. Hence (letting N = bM/Gc) we
can find c1 < d1 < c2 < d2 < · · · < cN < dN such that for each i we have di − ci > G, di ∈ Bλ and
ci /∈ Bλ. But now by writing each di − ci as a sum of elements of A and checking which integers
between ci and di lie in Bλ, we can find ci 6 ei < fi 6 di such that fi − ei ∈ A, fi ∈ Bλ and ei /∈ Bλ.
Hence ∑a∈A hka(λ) > N; taking M such that N > ∑a∈A f (a) now gives a contradiction.

As a consequence of this result, we see that when g(T ) = 1, the number of removable nodes of
a multipartition in CT is bounded, even without assuming Condition X. Now we use Condition X to
complete the proof of the theorem. For this we need two more simple lemmas.

Lemma 3.10. Suppose s, b ∈ N. Then there are only finitely many s-core partitions having no more
than b removable nodes.
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Proof. An s-core λ satisfies λi − λi+1 < s for every i, since if λi − λi+1 > s then there is an s-hook
contained in row i of [λ]. So if λ has no more than b removable nodes, then λ1 6 (s− 1)b. Similarly,
the length of the first column of λ is at most (s− 1)b, so |λ| is bounded.

Lemma 3.11. If λ ∈ C(s | c1,c2) with c1 6 c2, then λ
(1)
1 + c1 6 λ

(2)
1 + c2.

Proof. By Proposition 2.7 and Lemma 3.1 we have Bλ(1)

c1
⊆ Bλ(2)

c2
. In particular, λ

(1)
1 + c1 ∈ Bλ(2)

c2
, so

there is a > 1 such that λ
(1)
1 − 1+ c1 = λ

(2)
a − a+ c2. But λ

(2)
a − a 6 λ

(2)
1 − 1, which gives the result.

Now we can proceed with the proof of the ‘if’ part of Theorem 3.4. Suppose s(t) = 0 for all t ∈ T,
and that g(T ) = 1 and T satisfies condition X. Recall that k ∈ {1, . . . , l} is sometimes maximal if there
is t ∈ T such that c(t)k > c(t)m for all 1 6 m 6 l, and sometimes minimal if there is t ∈ T such that c(t)k 6 c(t)m
for all 1 6 m 6 l.

Lemma 3.12. Suppose k ∈ {1, . . . , l} is sometimes maximal or sometimes minimal. Then the set{
λ(k)

∣∣∣ λ ∈ CT
}

is finite.

Proof. Given the assumption that s(t) = 0 for every t ∈ T, g(T ) is the greatest common divisor of
the integers c(t)k − c(t)j − c(u)k + c(u)j obtained as j ranges over {1, . . . , l} and t, u range over T; so by as-

sumption these integers are coprime. By Corollary 3.8 if
∣∣∣c(t)k − c(t)j − c(u)k + c(u)j

∣∣∣ > 0 then the number

of
∣∣∣c(t)k − c(t)j − c(u)k + c(u)j

∣∣∣-hooks of λ is bounded as λ ranges over CT . So if we let

A =
{∣∣∣c(t)k − c(t)j − c(u)k + c(u)j

∣∣∣ ∣∣∣ t, u ∈ T, j ∈ {1, . . . , l}
}
\ {0}

and P =
{

λ(k)
∣∣∣ λ ∈ CT

}
, then A and P satisfy the hypotheses of Proposition 3.9. So the number of

1-hooks (i.e. the number of removable nodes) of a partition in P is bounded, by b say.

Now Condition X together with the fact that k is sometimes maximal or sometimes minimal im-
plies that there are t, u ∈ T and j ∈ {1, . . . , l} such that either c(t)k − c(t)j > 0 > c(u)k − c(u)j or c(t)j − c(t)k >

0 > c(u)j − c(u)k . If we let a =
∣∣∣c(t)k − c(t)j − c(u)k + c(u)j

∣∣∣, then by Corollary 3.6 λ(k) is an a-core for every
λ ∈ CT . Since a > 0, Lemma 3.10 gives the result.

Now we can complete the proof.

Proof of Theorem 3.4 (‘if’ part). Suppose g(T ) = 1 and T satisfies condition X. To show that CT is
finite, it suffices to show that for every k ∈ {1, . . . , l} the set

{
λ(k)

∣∣∣ λ ∈ CT
}

is finite. We have proved
this when k is sometimes maximal or sometimes minimal, so assume k is never maximal and never
minimal. The fact that k is never maximal means that there is j which is sometimes maximal and t ∈ T
such that c(t)k 6 c(t)j . If λ ∈ CT , then (λ(k), λ(j)) ∈ C

(0 | c(t)k ,c(t)j )
, so by Lemma 3.11 λ

(k)
1 6 λ

(j)
1 + c(t)j − c(t)k .

Since by Lemma 3.12 there are only finitely many possible λ(j), this means that λ
(k)
1 is bounded as λ

ranges over CT . Similarly (using the fact that k is never minimal) the first column of λ(k) is bounded,
so there are only finitely many possible λ(k).
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3.3 The case where s(t) > 0 for some t

In this subsection we complete the analysis of when CT is finite by considering the case where
s(t) > 0 for some t ∈ T. The statement here is simpler.

Theorem 3.13. Suppose T =
{
(s(t) | c(t))

∣∣∣ t ∈ T
}

is a set of l-multipartition data with s(t) > 0 for at
least one t ∈ T. Then CT is finite if and only if g(T ) = 1.

We can deduce Theorem 3.13 fairly easily from Theorem 3.4. To begin with, we use Lemma 3.5 to
express C(s | c) for any s, c as an intersection of sets C(0 | d).

Proposition 3.14. Suppose (s | c) is an l-multipartition datum with s > 0. Then

C(s | c) =
⋂

d∈Zl

C(0 | c+sd).

Proof. For each d ∈ Zl we have C(s | c) = C(s | c+sd) ⊆ C(0 | c+sd) by Lemmas 2.2 and 3.1, so the left-
hand side is contained in the right-hand side. For the opposite inclusion, suppose λ ∈ C(0 | c+sd) for
every d ∈ Zl . Given 1 6 j < k 6 l, we can find d, e ∈ Zl such that 0 6 (cj + sdj)− (ck + sdk) < s and
ej− ek = dj− dk− 1. Then (λ(j), λ(k)) ∈ C(0 | cj+sdj,ck+sdk) ∩ C(0 | cj+sej,ck+sek) = C(s | cj,ck), by Proposition 2.4
and Lemma 3.5. Since this is true for every j, k, we have λ ∈ C(s | c) by Proposition 2.4.

Remark. In fact, one can write C(s | c) =
⋂

d∈M C(0 | c+sd) for a much smaller subset M of Zl : it is possible
to take |M| = l. But it is easier for us to take M to be the whole of Zl as in Proposition 3.14.

This yields the following.

Proposition 3.15. Suppose s(t) > 0 for at least one t ∈ T. Then there is a set U =
{
(0 | c(u))

∣∣∣ u ∈ U
}

of l-multipartition data such that:

1. U satisfies condition X;

2. g(U ) = g(T );

3. CU = CT .

Proof. Define
U =

{
(0 | c(t) + s(t)d)

∣∣∣ t ∈ T, d ∈ Zl
}

.

Now we check the conditions in the proposition.

1. By assumption there is t ∈ T such that s(t) > 0. For any 1 6 j < k 6 l we can easily find d, e ∈ Zl

such that c(t)j + s(t)dj > c(t)k + s(t)dk and c(t)j + s(t)ej < c(t)k + s(t)ek. This shows that no k ∈ {1, . . . , l}
is always maximal or always minimal for U , which a fortiori gives condition X for U .

2. By definition g(T ) is the greatest common divisor of the integers in the set{
s(t)

∣∣∣ t ∈ T
}
∩
{

c(t)i − c(t)j − c(u)i + c(u)j

∣∣∣ t, u ∈ T, 1 6 i, j 6 l
}

,

while g(U ) is the greatest common divisor of the integers in the set{
c(t)i − c(t)j − c(u)i + c(u)j + as(t) + bs(u)

∣∣∣ t, u ∈ T, 1 6 i, j 6 l, a, b ∈ Z
}

.

It is easy to see that these greatest common divisors are the same.
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3. This follows from Proposition 3.14.

Proof of Theorem 3.13. The ‘only if’ part is Corollary 3.2. For the ‘if’ part, suppose g(T ) = 1, and let
U be as in Proposition 3.15. Then by Theorem 3.4 CT = CU is finite.

4 Enumeration of simultaneous core multipartitions

An early success in the study of simultaneous core partitions was Anderson’s Theorem [An, The-
orems 1 & 3] that when s and t are coprime, the number of (s, t)-cores is the rational Catalan number

1
s + t

( s + t
s

)
. Extending this to the enumeration of partitions in Cs1 ∩ · · · ∩ Csr for coprime integers

s1, . . . , sr with r > 3 seems to be much more difficult, although various special cases have been ad-
dressed in the recent literature [HN, Am, AL, W, X].

Naturally, one can extend these enumerative questions to simultaneous core multipartitions: in
particular, given a set T of l-multipartition data such that CT is finite (as determined by Theorems 3.4
and 3.13), what is |CT |? This question seems to be very hard to answer in general; the proofs of
Theorems 3.4 and 3.13 do not give anything like an efficient algorithm for calculating CT , so it is
difficult even to gather data. In this section we address the very simplest case, where l = |T | = 2.
Even here the enumeration question is difficult to answer, and we restrict to two particular subcases.

If l = |T | = 2, we can assume (in view of Lemma 2.2) that

T = {(s | 0, a), (t | 0, b)}

with s, t ∈ N∪ {0} and a, b ∈ Z. Moreover, if s > 0 then we can take 0 6 a < s, and similarly for t and
b.

4.1 The case where s divides t

In this subsection we take T as above with s dividing t. We start with the case s = t = 0. In this
case g(T ) = |a− b|, so we need |a− b| = 1 in order to have CT finite. But we also need T to satisfy
condition X, which means that a or b equals 0. Now we have the following result.

Proposition 4.1. Suppose T = {(0 | 0, a), (0 | 0, b)}, with {|a|, |b|} = {0, 1}. Then |CT | = 1.

Proof. We assume a = 0 and b = 1 (the other cases follow symmetrically). Suppose (λ, µ) is a bipar-
tition lying in CT ; we will show that λ = µ = ∅. By Proposition 2.7(1) the fact that (λ, µ) ∈ C(0 | 0,0)

says that Bλ = Bµ; since a partition can be recovered from its beta-set, we obtain λ = µ. Now the fact
that (λ, λ) ∈ C(0 | 0,1) gives Bλ ⊆ Bλ

1 ; by Lemma 2.6 this means that Bλ
1 = Bλ ∪ {b} for some integer b.

In fact it is easy to see that b must equal λ1 (since this lies in Bλ
1 and is larger than the largest element

λ1 − 1 of Bλ). Hence we have Bλ
1 \ {λ1} = Bλ; writing the elements of these sets in decreasing order,

we obtain
λ2 − 1 = λ1 − 1, λ3 − 2 = λ2 − 2, λ4 − 3 = λ3 − 3, . . .

so that λ1 = λ2 = λ3 = . . . , and therefore λ = ∅.

Now we consider the case where s, t > 0. We will deduce our main result here as a special case of
a more general result. So to begin with we do not assume that s divides t, and we let g be the greatest
common divisor of s and t throughout this section. We will restrict attention to bipartitions (λ, µ) for
which both λ, µ are g-cores. Let C2

g denote the set of such bipartitions.
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Let Us,a
g denote the set of all tuples u = (ui | i ∈ Z/gZ) of integers with ∑i ui = a and 0 6 ui 6 s/g

for each i ∈ Z/gZ. By a simple application of the Inclusion–Exclusion Principle,

|Us,a
g | = ∑

d>0
(−1)d

(
g
d

)(
a + g− 1− d(1 + s/g)

g− 1

)
.

Now we can state our main theorem in this section.

Theorem 4.2. Suppose 0 6 a < s and 0 6 b < t. Let g = gcd(s, t), and assume g and a− b are coprime.
Then ∣∣∣C(s | 0,a) ∩ C(t | 0,b) ∩ C2

g

∣∣∣ = 1
g
|Us,a

g ||Ut,b
g |.

In particular, if s divides t, then ∣∣∣C(s | 0,a) ∩ C(t | 0,b)

∣∣∣ = 1
s

(
s
a

)
|Ut,b

s |.

We remark that in the very special case where s = t, we get the even simpler formula∣∣∣C(s | 0,a) ∩ C(s | 0,b)

∣∣∣ = 1
s

(
s
a

)(
s
b

)
.

To prove Theorem 4.2, we use a slightly different version of Proposition 2.7(2) to characterise
core bipartitions. Suppose λ is an s-core. For each i ∈ Z/sZ, let ♦i(λ) be the smallest element of i
not contained in Bλ. The set ♦s(λ) = {♦i(λ) | i ∈ Z/sZ} is referred to as the s-set of λ; these sets
were studied extensively in [F2, F3, F4]. Observe that ♦s(λ) is a set of s integers which are pairwise
incongruent modulo s and sum to (s

2). Conversely, any such set of integers is the s-set of a unique
s-core.

The following lemma, which follows easily from the definition, shows how to obtain the s-set of
a g-core from its g-set.

Lemma 4.3. Suppose s, g are integers with g | s, and λ ∈ Cg. Then

♦s(λ) = {♦i(λ) + kg | i ∈ Z/gZ, 0 6 k < s/g} .

Using s-sets, we can give a different version of Proposition 2.7(2) (in fact, this is much closer to
the original version of this result in [F1]).

Proposition 4.4. Suppose λ, µ ∈ P and 0 6 a < s. Then (λ, µ) ∈ C(s | 0,a) if and only if λ, µ ∈ Cs and

♦i(µ) + a ∈ {♦i+a(λ),♦i+a(λ) + s}

for each i ∈ Z/sZ.

Proof. This follows easily from Proposition 2.7(2).

In order to use Proposition 4.4 to prove Theorem 4.2, we want to consider bipartitions (λ, µ) ∈
C(s | 0,a) ∩ C2

g . So suppose λ, µ ∈ Cg. Proposition 4.4 says that (λ, µ) ∈ C(s | 0,a) if and only if ♦i(µ) + a−
♦i+a(λ) equals either s or 0 for each i. Since g | s and λ, µ ∈ Cg, we have

♦s(λ) = {♦i+a(λ) + kg | i ∈ Z/gZ, 0 6 k < s/g} ,
♦s(µ) = {♦i(µ) + kg | i ∈ Z/gZ, 0 6 k < s/g}
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by Lemma 4.3. So if (λ, µ) ∈ C(s | 0,a), then for each i ∈ Z/gZ there is an integer ui ∈ {0, . . . , s/g}
such that ♦i(µ) + a = ♦i+a(λ) + gui. Summing over i and using the fact that ∑i∈Z/gZ♦i(λ) =

∑i∈Z/gZ♦i(µ), we find that ∑i∈Z/gZ ui = a, so that the tuple u = {ui | i ∈ Z/gZ} lies in u ∈ Us,a
g .

So if we define σ(λ, µ) = u, we obtain a function

σ : C(s | 0,a) ∩ C2
g −→ Us,a

g .

Doing the same with s, a replaced by t, b, we get another function

τ : C(t | 0,b) ∩ C2
g −→ Ut,b

g .

Proof of Theorem 4.2. We want to consider the images of the maps σ, τ defined above, and for this
we need some more notation. For any tuple u = (ui | i ∈ Z/gZ) and any c ∈ Z/gZ define the tuple
u(+c) by u(+c)i = ui+c for each i ∈ Z/gZ.

To prove the theorem we will prove the following claim: given u ∈ Us,a
g and v ∈ Ut,b

g , there is a
unique bipartition (λ, µ) ∈ C(s | 0,a) ∩ C(t | 0,b) ∩ C2

g and a unique c ∈ Z/sZ such that σ(λ, µ) = u(+c)
and τ(λ, µ) = v(+c).

Our first aim is to find integers xi, yi for i ∈ Z/gZ such that

yi = xi+a − a + gui = xi+b − b + gvi (∗)

for all i. In fact, this is straightforward: we just fix k ∈ Z and set

xd(b−a)+gZ = k + d(b− a) + g
d−1

∑
j=0

uj(b−a)+gZ − g
d

∑
j=1

vj(b−a)+gZ

yd(b−a)−a+gZ = k + d(b− a)− a + g
d

∑
j=0

uj(b−a)+gZ − g
d

∑
j=1

vj(b−a)+gZ

for all 0 6 d < g. Since b− a and g are coprime, this uniquely defines xi and yi for every i ∈ Z/gZ, and
it is easy to see that (∗) is satisfied. Moreover, apart from the choice of k, these are the unique integers
xi, yi satisfying (∗): once x0+gZ = k is chosen, (∗) forces the choice of y−a+gZ, xb−a+gZ, yb−2a+gZ, x2b−2a+gZ, . . . ,
so that xi and yi are forced for every i.

Now observe that the integers xi are pairwise incongruent modulo g, so in particular sum to
(g

2) modulo g. Changing k by 1 changes this sum by g, and therefore there is a unique choice of k
(which we fix henceforth) such that ∑i xi = (g

2). This also gives ∑i yi = (g
2), so { xi | i ∈ Z/gZ} and

{yi | i ∈ Z/gZ} are the g-sets of g-cores λ and µ respectively. Since xi ∈ i + k, we have ♦i(λ) = xi−k,
and similarly ♦i(µ) = yi−k, for each i ∈ Z/gZ, and hence

♦i(µ) + a−♦i+a(λ) = yi−k − xi+a−k + a = gui+k,

so that (λ, µ) ∈ C(s | 0,a) with σ(λ, µ) = u(+c), where c = k + gZ. Similarly (λ, µ) ∈ C(t | 0,b) with
τ(λ, µ) = v(+c), so we have the required λ, µ, c. Moreover, the integers xi, yi can be recovered from
λ, µ, c, so (by the statement above about the uniqueness of xi, yi) we have uniqueness for λ, µ, c.

As a consequence of this claim, we find that
∣∣∣C(s | 0,a) ∩ C(t | 0,b) ∩ C2

g

∣∣∣ equals 1
g times the number of

choices of u, v. u can be chosen in |Us,a
g | ways, and v in |Ut,b

g | ways, giving the result.
For the special case where s divides t, we have g = s, so that |Us,a

g |= (s
a). Furthermore, C(s | 0,a) ⊆ C2

g

by Lemma 2.3, and the result follows.
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Example. Take s = 3, t = 9, a = 1 and b = 5. The twelve bipartitions (λ, µ) ∈ C(3 | 0,1) ∩ C(9 | 0,5) are
given by the following table, where we give ♦3(λ), ♦3(µ), σ(λ, µ), τ(λ, µ), writing each Z/3Z-tuple
u in the form (u0+3Z, u1+3Z, u2+3Z). We see that up to simultaneous cyclic permutation, each pair in
U3,1

3 ×U9,5
3 occurs once as (σ(λ, µ), τ(λ, µ)).

λ µ ♦3(λ) ♦3(µ) σ(λ, µ) τ(λ, µ)

∅ ∅ {0, 1, 2} {0, 1, 2} (0, 0, 1) (1, 2, 2)
∅ (1) {0, 1, 2} {3, 1,−1} (1, 0, 0) (2, 2, 1)
(1) ∅ {3, 1,−1} {0, 1, 2} (0, 1, 0) (2, 1, 2)
∅ (2) {0, 1, 2} {0, 4,−1} (0, 1, 0) (1, 3, 1)
(12) ∅ {3,−2, 2} {0, 1, 2} (1, 0, 0) (1, 1, 3)
(1) (12) {3, 1,−1} {3,−2, 2} (1, 0, 0) (3, 0, 2)
(2) (1) {0, 4,−1} {3, 1,−1} (0, 1, 0) (3, 2, 0)
(2) (12) {0, 4,−1} {3,−2, 2} (0, 0, 1) (3, 1, 1)
(1) (3, 1) {3, 1,−1} {0,−2, 5} (0, 0, 1) (2, 0, 3)

(2, 12) (1) {−3, 4, 2} {3, 1,−1} (0, 0, 1) (2, 3, 0)
(12) (2, 12) {3,−2, 2} {−3, 4, 2} (0, 1, 0) (0, 2, 3)
(3, 1) (2) {0,−2, 5} {0, 4,−1} (1, 0, 0) (0, 3, 2)

Remark. To complete the study of the situation where s divides t, it remains to consider the case
where s > 0 and t = 0. We deal with this case as a limiting case of Theorem 4.2. So take s, t, a, b,
with t = ns for n ∈ N. For large n (in fact, for n > b), the value of |Uns,b

s | stabilises at (b+s−1
s−1 ). In

addition, one can see from the proof of Theorem 4.2 that the set C(s | 0,a) ∩ C(ns | 0,b) stabilises; call this
limiting set C. We claim that C(s | 0,a) ∩ C(0 | 0,b) = C. By Lemma 3.1, C(ns | 0,b) ⊆ C(0 | 0,b) for every n, so
we have C ⊆ C(s | 0,a) ∩ C(0 | 0,b). On the other hand, given a bipartition (λ, µ) and given N sufficiently
large relative to (λ, µ), we have (λ, µ) ∈ C(N | 0,b) if and only if (λ, µ) ∈ C(0 | 0,b): we just take N large
enough that any two nodes which can occur as nodes of bipartitions of size |λ|+ |µ| and which have
the same (N | 0, b)-residue must also have the same (0 | 0, b)-residue. So if (λ, µ) /∈ C, then (λ, µ) /∈
C(s | 0,a) ∩ C(ns | 0,b) for sufficiently large n, so that (λ, µ) /∈ C(s | 0,a) ∩ C(0 | 0,b). Hence C(s | 0,a) ∩ C(0 | 0,b) ⊆ C,
so C(s | 0,a) ∩ C(0 | 0,b) = C as required.

So we deduce that ∣∣∣C(s | 0,a) ∩ C(0 | 0,b)

∣∣∣ = 1
s

(
s
a

)(
b + s− 1

s− 1

)
.

4.2 The case 0 6 a = b < s, t

Now we consider the case where the residue of a modulo s is the same as the residue of b modulo
t. In this case, we may assume that 0 6 a = b < s, t.

Theorem 4.5. Suppose 0 6 a < s 6 t, and that s and t are coprime. Then∣∣∣C(s | 0,a) ∩ C(t | 0,a)

∣∣∣ = (s + t− a− 1)!
a!(s− a)!(t− a)!

.

In order to prove Theorem 4.5, we recall the (s, t)-lattice used in Anderson’s proof of her theorem.
This is a diagram of Z2, with the point (x, y) replaced by the integer sx + ty. For example, part of the
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(3, 5)-lattice is drawn as follows.
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Note that the (s, t)-lattice is periodic: it is unchanged under translations by multiples of the vector
(t,−s). To construct the (s, t)-diagram (sometimes called the (s, t)-abacus diagram) of a partition λ,
one simply colours or circles the integers lying in Bλ. By Proposition 2.5, the condition that λ is an
(s, t)-core is then simply that each coloured position has coloured positions both below and to the
left. Part of the (3, 5)-diagram of the (3, 5)-core (1) is as follows.
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Now consider the boundary between the coloured and uncoloured parts of the diagram. The con-
dition that λ is an (s, t)-core means that this path consists only of steps to the right and steps down.
Moreover, it is periodic, with each period consisting of t steps to the right and s steps down. We
can encode this boundary path by writing down one period; of course, any cyclic permutation of
this period will encode the same periodic boundary path. For example, we can encode the boundary
path in the diagram above by (any cyclic permutation of) the sequence DRDRDRRR.

Conversely, any cyclic sequence comprising s Rs and t Ds yields the (s, t)-diagram of an (s, t)-
core: if we draw the corresponding periodic path in the (s, t)-lattice, then the set of integers below
and to the left of the path is the shifted beta-set of an (s, t)-core. Translating the path to a different
position just changes the shift of the beta-set, without changing the partition.

As a consequence, we find that the number of (s, t)-cores equals the number of arrangements of s
Rs and t Ds modulo cyclic shifts, which yields Anderson’s Theorem.

Now we extend these ideas to the setting of Theorem 4.5. Suppose we have 0 6 a < s, t, and
that (λ, µ) ∈ C(s | 0,a) ∩ C(t | 0,a). Consider the shifted beta-set Bµ

a . By Proposition 2.7(2), this is obtained
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from Bλ by adding a integers x1, . . . , xa, with xj − s, xj − t ∈ Bλ for each j. So drawing the a-shifted
(s, t)-diagram of µ (i.e. colouring the elements of Bµ

a ) amounts to taking the (s, t)-diagram of λ and
additionally colouring a integers each of which has coloured integers both immediately below and
immediately to the left. For example, take (s, t, a) = (3, 5, 2), and (λ, µ) = ((1), (2)). Combining the
(3, 5)-diagram of λ and the 2-shifted (3, 5)-diagram of µ, we get the following picture (in which we
use a lighter colour for the additional positions coloured in µ).
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We can encode this diagram by writing a B for each light-coloured box, with a sequence of Rs and Ds
representing the path joining each box to the next. We see that we obtain a periodic sequence, with
each period comprising a Bs, s− a Ds, and t− a Rs. Conversely, any cyclic sequence of these symbols
yields a bipartition (λ, µ) ∈ C(s | 0,a) ∩ C(t | 0,a) in this way. For example, the diagram above corresponds
to the cyclic sequence BDRBRR.

So we see that
∣∣∣C(s | 0,a) ∩ C(t | 0,a)

∣∣∣ is the number of sequences comprising a Bs, s− a Ds, and t− a
Rs, modulo cyclic shifts. Counting these is a straightforward combinatorial exercise: disregarding
cyclic shifts there are (s + t − a)!/a!(s − a)!(t − a)! such sequences. None of these is fixed by any
non-trivial cyclic shift, since the integers a, s− a, t− a are coprime. So the final count is (s + t− a−
1)!/a!(s− a)!(t− a)!.

4.3 Extending Armstrong’s Conjecture

A recent exciting development in the theory of (s, t)-cores is Johnson’s proof [J] of Armstrong’s
Conjecture, which says that the average size of an (s, t)-core is 1

24 (s− 1)(t− 1)(s + t + 1). Of course,
one can ask for the average size of a simultaneous core multipartition. Here we comment briefly on
analogues of Armstrong’s Conjecture for the two special cases mentioned in Sections 4.1 and 4.2.

First consider the case where s divides t; we enumerated simultaneous bicores in this situation in
Section 4.1. We conjecture the average size of these bicores in two special subcases: where s = t, and
where t = 0.

Conjecture 4.6. Suppose 0 6 a, b < s, and that s and a − b are coprime. Then the average size of a
bipartition in C(s | 0,a) ∩ C(s | 0,b) is

(s + 1)(a(s− a) + b(s− b) + 1− s)
12

.
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Example. Take s = 5, a = 1 and b = 3. Then
∣∣∣C(5 | 0,1) ∩ C(5 | 0,3)

∣∣∣ = 1
5 (

5
1)(

5
3) = 10. The Young diagrams

of the ten bicores in C(5 | 0,1) ∩ C(5 | 0,3) are as follows.

∅ ∅ ∅ ∅ ∅ ∅

These bipartitions have an average size of 3, as predicted by Conjecture 4.6.

Remark. In fact, Armstrong’s Conjecture appears in disguise as a special case of Conjecture 4.6. Sup-
pose a = 0. Proposition 2.7(2) shows that (λ, µ) ∈ C(s | 0,0) if and only if λ = µ and λ is an s-core.
Applying Proposition 2.7(2) again, we find that (λ, λ) ∈ C(s | 0,b) if and only if λ is both a b-core and
an (s− b)-core. So in this case, CT is simply the set of bipartitions (λ, λ), where λ is a (b, s− b)-core.
(Note that such a partition is automatically an s-core.) So when a = 0, Conjecture 4.6 is equivalent to
Armstrong’s Conjecture.

Conjecture 4.7. Suppose 0 6 a < s and 0 6 b, and that s and a− b are coprime. Then the average size
of a bipartition in C(s | 0,a) ∩ C(0 | 0,b) is

(s + 1)a(s− a) + (s− 1)(b− 1)(b + s + 1)
12

.

Example. Take s = 3, a = 1 and b = 2. Then
∣∣∣C(3 | 0,1) ∩ C(0 | 0,2)

∣∣∣ = 1
3 (

3
1)(

4
2) = 6. The Young diagrams of

the six bicores in C(3 | 0,1) ∩ C(0 | 0,2) are as follows.

∅ ∅ ∅ ∅ ∅ ∅

These bipartitions have an average size of 5
3 , as predicted by Conjecture 4.7.

Now consider the case a = b addressed in Section 4.2. Here we make the following conjecture.

Conjecture 4.8. Suppose 0 6 a < s 6 t, and that s and t are coprime. Then the average size of a
bipartition in C(s | 0,a) ∩ C(t | 0,a) equals

(s− 1)(t− 1)(s + t− 2a + 1)− 2a2 + 2a
12

.

Again, the case a = 0 is equivalent to Armstrong’s Conjecture, since C(s | 0,0) ∩ C(t | 0,0) is the set of
bipartitions (λ, λ) with λ an (s, t)-core.

Example. Take s = 3, t = 4 and a = 1. Then
∣∣∣C(3 | 0,1) ∩ C(4 | 0,3)

∣∣∣ = 5!
1!2!3!

= 10. The Young diagrams of
the ten bicores in C(3 | 0,1) ∩ C(4 | 0,3) are as follows.

∅ ∅ ∅ ∅ ∅ ∅

These bipartitions have an average size of 3, as predicted by Conjecture 4.8.

Johnson’s proof of Armstrong’s Conjecture relies on a geometric realisation of the set of (s, t)-
cores, using Ehrhart theory. We hope to extend these ideas to core multipartitions in a future paper.
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