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1 Introduction

In [16] and [17], Tan looks at the principal blocks of the symmetric groups S9, S10, S11, S12 over
a field of characteristic three, and highlights the contrast with blocks of small abelian defect. Here we
continue by determining the Ext-quivers of the blocks of S13 over the same field; this in particular
provides examples of a [4 : 1]-pair and a [3 : 2]-pair with non-abelian defect.

For an account of the basic facts of modular representation theory, see Alperin’s book [1]. We use
the following notation (some of it in common with Alperin).

• k will be an algebraically closed field of characteristic p; beyond this introduction, we shall take
p = 3.

• M↑B
A (resp. M↓A

B) will denote the module M induced (resp. restricted) from the block A to the
block B. The A may be omitted if it is clear.

• P(M) will denote the projective cover of a module M, and Ω(M) the submodule of P(M) with
P(M)/Ω(M) � M.

• For any module M and any simple module S , [M : S ] will denote the multiplicity of S as a
composition factor of M.

• If a module M has composition factors S 1, . . . , S r, we write

M ∼ S 1 + . . . + S r.

• We write

M ∼

N1
...

Nr

∗The author is financially supported by the EPSRC.

1



2 Matthew Fayers

to indicate that M has a filtration

0 = M0 6 . . . 6 Mr = M

with Mi/Mi−1 � Ni for all i.

• If S and T are simple modules and M1, . . ., Mr any modules, we write

S
M1 . . . Mr

T

to indicate a module with simple cosocle isomorphic to S , simple socle isomorphic to T and heart
isomorphic to M1 ⊕ . . . ⊕ Mr.

• The Ext-quiver (or ordinary quiver) of a symmetric group block B is a graph with vertices vS

indexed by simple modules S , and with the number of arrows from vS to vT being dimk Ext1B(S ,T ).

1.1 The representation theory of the symmetric group

For a detailed account of the representation theory of the symmetric group, the reader is urged to
consult the books of James [6] and James & Kerber [7]; we summarise the salient points as well as new
results not found in [6] or [7].

In characteristic zero, the Specht modules S λ give a complete set of mutually non-isomorphic simple
modules for Sn as λ runs through the set of partitions of n. In positive characteristic p, the Specht
module S λ has a simple cosocle Dλ provided λ is p-regular, and the set of such give a complete set of
irreducible modules. If we let Q denote the dominance order on partitions, then all composition factors
Dµ of rad(S λ) satisfy µ B λ if λ is p-regular, while all composition factors Dµ of S λ satisfy µ B λ if λ is
p-singular. We use James’s abacus notation [7] for partitions of n.

The block structure of kSn is given by Nakayama’s ‘Conjecture’. In terms of the abacus notation,
this states that the Specht modules S λ and S µ for kSn lie in the same block of kSn if and only if λ and µ
can be displayed on abacuses with the same number of beads on runner i, for each i. The partition whose
abacus display is obtained from that of λ by moving all the beads on each runner as far up as they will
go we call the p-core of λ. If the p-core of λ is a partition of n − ωp, we say that the block containing
S λ has weight ω.

In addition to the Branching Rule for Specht modules [6, Theorem 9.3], we use results of Kleshchev
concerning induction and restriction of simple Sn-modules Dλ. He derives necessary and sufficient
conditions for Dλ↑kSn+1 and Dλ↓kSn−1 to be semi-simple, and describes the socle and cosocle of each. In
[4] this is broken down further, and the same result is achieved for the induction (resp. restriction) of Dλ

to each block of kSn+1 (resp. kSn−1); we use these stronger results, which we now state.
Let Dλ be a simple module lying in a block B of kSn, and take an abacus display for λ. Say that a

bead b on runner i and in row r of the display is:

• normal if there is no bead immediately to the left of b and if for every j > 1 the number of
beads on runner i in rows r + 1, . . . , r + j is at least the number of beads on runner i − 1 in rows
r + 1, . . . , r + j;
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• good if b is the highest normal bead on runner i;

• conormal if there is no bead immediately to the right of b and if for every j > 1 the number of
beads on runner i in rows r − 1, . . . , r − j is at least the number of beads on runner i + 1 in rows
r − 1, . . . , r − j;

• cogood if b is the lowest conormal bead on runner i.

Let B+ be the block of kSn+1 whose abacus is obtained by moving a bead from runner i to runner
i + 1, and let B− be the block of kSn−1 whose abacus is obtained by moving a bead from runner i to
runner i − 1. If b is normal, let λb be the partition obtained by moving b one place to its left, and if b is
conormal, let λb be the partition obtained by moving b one place to its right. With these definitions, the
following holds.

Theorem 1.1.
1. Dλ ↓B

B−= 0 if there are no normal beads on runner i. Otherwise Dλ ↓B
B− is an indecomposable

module with simple cosocle and socle both isomorphic to Dλb , where b is the unique good bead
on runner i; Dλ↓B

B− is simple if and only if b is the only normal bead on runner i.

2. Dλ↑B+

B = 0 if there are no conormal beads on runner i. Otherwise Dλ↑B+

B is an indecomposable
module with simple cosocle and socle both isomorphic to Dλb

, where b is the unique cogood bead
on runner i; Dλ↑B+

B is simple if and only if b is the only conormal bead on runner i.

In [12], Mullineux gave an algorithm which constructs a bijection f from the set of p-regular parti-
tions of n to itself, and conjectured that

Dλ ⊗ sgn = D f (λ) (∗)

for all p-regular λ; here sgn denotes the alternating representation of Sn. This conjecture was finally
verified by Ford and Kleshchev [5], by using the equivalent algorithm given by Kleshchev in [9]. We
now describe the algorithm. For each p-regular partition λ we construct a Mullineux symbol (this term
is due to Bessenrodt & Olsson [2]) by removing rim p-hooks from the Young diagram of λ; since we
use the abacus notation extensively, we shall describe the process in terms of the abacus. We form a
sequence of partitions λ = λ0, . . . , λu = (0), where λi is a partition of some ni < n, and λi+1 is obtained
from λi by the following algorithm.

1. Let x be the greatest occupied position in the abacus display of λi.

2. If there is no unoccupied position less than x in the display, then stop. Otherwise, let y be

• the greatest unoccupied position less than x on the same runner as x, if there are any, or

• the least unoccupied position in the display, if not.

Move the bead at position x to position y.

3. Let x be the greatest occupied position less than y in the abacus, and return to step 2.
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It is clear that this procedure will eventually produce the partition (0). Given the partitions λ0, . . . , λu,
define the Mullineux symbol to be the pair of vectors (r1, . . . , ru), (s1, . . . , su) by

ri = the number of non-zero parts of λi−1,

si = ni−1 − ni.

Mullineux shows that a given Mullineux symbol corresponds to at most one partition, i.e. that a partition
can be reconstructed from its Mullineux symbol. We construct a bijection between Mullineux symbols
as follows: let ((r1, . . . , ru), (s1, . . . , su)) correspond to ((r′1, . . . , r

′
u), (s1, . . . , su)), with

r′i =

si − ri (p | si)

si − ri + 1 (p - si);

this function is evidently self-inverse. It turns out that if ((r1, . . . , ru), (s1, . . . , su)) corresponds to a p-
regular partition λ of n, then ((r′1, . . . , r

′
u), (s1, . . . , su)) also corresponds to a p-regular partition of n; call

this f (λ). (∗) then holds.

1.2 The blocks of kS13

From now on, we let p = 3. By Nakayama’s Conjecture, kS13 has five blocks. Two of these have
defect one, and so are well understood, so we consider the others, namely the principal block with
core (1) and weight four, and the weight three blocks with cores (3, 1) and (2, 12). These last two are
conjugate, so we need only consider one of them.
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2 The principal block of kS13

Let B denote the principal block of kS13, and B̃ the principal block of kS12; these blocks form a
[4 : 1]-pair in the sense of Scopes. We shall use the 〈4, 5, 4〉-notation to denote partitions of B as follows:
form the display of a partition λ on an abacus with four beads on the first runner, five on the second and
four on the third, and then denote λ by

• 〈i〉 if the display has a bead of weight four on runner i;

• 〈i, j〉 if the display has a bead of weight three on runner i and a bead of weight one on runner j;

• 〈i, j〉 if the display has beads of weight two on runners i and j;

• 〈i, j, k〉 if the display has a bead of weight two on runner i and beads of weight one on runners j
and k;

• 〈i, j, k, l〉 if the display has beads of weight one on runners i, j, k and l.

We denote the partitions of B̃ in a similar way, using 〈5, 4, 4〉-notation.
By Theorem 1.1, we find that fifteen of the simple modules of B restrict to simple modules in B̃, while

five do not; call these modules non-exceptional and exceptional modules respectively. The restriction of
non-exceptional modules to B̃ (and induction from B̃) is given by Theorem 1.1, and is as follows.

D〈2〉↓B
B̃ � D〈1〉; D〈1〉↑B

B̃ � D〈2〉;

D〈2,3〉↓B
B̃ � D〈1,3〉; D〈1,3〉↑B

B̃ � D〈2,3〉;

D〈2,3〉↓B
B̃ � D〈1,3〉; D〈1,3〉↑B

B̃ � D〈2,3〉;

D〈3,1,2〉↓B
B̃ � D〈3,1,1〉; D〈3,1,1〉↑B

B̃ � D〈3,1,2〉;

D〈2,1,3〉↓B
B̃ � D〈1,1,3〉; D〈1,1,3〉↑B

B̃ � D〈2,1,3〉;

D〈3〉↓B
B̃ � D〈3〉; D〈3〉↑B

B̃ � D〈3〉;

D〈3,2〉↓B
B̃ � D〈3,1〉; D〈3,1〉↑B

B̃ � D〈3,2〉;

D〈3,1〉↓B
B̃ � D〈3,2〉; D〈3,2〉↑B

B̃ � D〈3,1〉;

D〈1,3〉↓B
B̃ � D〈3,1,2〉; D〈3,1,2〉↑B

B̃ � D〈1,3〉;

D〈3,3〉↓B
B̃ � D〈3,3〉; D〈3,3〉↑B

B̃ � D〈3,3〉;

D〈1,2〉↓B
B̃ � D〈1,2〉; D〈1,2〉↑B

B̃ � D〈1,2〉;

D〈1,2,2〉↓B
B̃ � D〈2,1,1〉; D〈2,1,1〉↑B

B̃ � D〈1,2,2〉;

D〈1,3〉↓B
B̃ � D〈1,2,3〉; D〈1,2,3〉↑B

B̃ � D〈1,3〉;

D〈1〉↓B
B̃ � D〈1,2〉; D〈1,2〉↑B

B̃ � D〈1〉;

D〈1,2〉↓B
B̃ � D〈1,1〉; D〈1,1〉↑B

B̃ � D〈1,2〉.
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Thus the Ext1-space between any two of the non-exceptional simple modules of B may be determined
using the Eckmann-Shapiro relations and the Ext-quiver of B̃. So we turn our attention to the excep-
tional simple modules of B, namely D〈2,2〉, D〈3,2,2〉, D〈2,2〉, D〈2,2,3,3〉 and D〈2,2,3〉. First we determine
the extensions between an exceptional and a non-exceptional module, and then between exceptional
modules.

2.1 The exceptional simple modules

Since the abacus display for each of the corresponding partitions has two beads which may be moved
from the second to the first runner, we consider restriction to the block B̌ of kS11 with core (3, 12). For
ease of notation, we label partitions of B, B̃ and B̌ as follows.

• In B: α1 = 〈2, 2〉, α2 = 〈3, 2, 2〉, α3 = 〈2, 2〉, α4 = 〈2, 2, 3, 3〉, ε = 〈2, 2, 3〉.

• In B̃: α̃1 = 〈2〉, α̃2 = 〈2, 3〉, α̃3 = 〈2, 1〉, α̃4 = 〈2, 3, 3〉, ε̃ = 〈2, 3〉.

• In B̌: α̌1 = (9, 12), α̌2 = (5, 4, 2), α̌3 = (6, 4, 1), α̌4 = (32, 22, 1), ε̌ = (6, 3, 2).

We reproduce the Ext-quiver of B̌ from [17].

u(9,12)

u(6,4,1)

u(32,22,1)

u(5,4,2)

u(6,3,2)

�
�
�
�
�
�
�@

@
@
@
@
@
@

Figure 1: The Ext-quiver of B̌

Theorem 1.1 implies that:

• Dα̃ j↓B̌� Dα̌ j for j = 1, 2, 3, 4;

• Dε̃↓B̌� Dε̌ ;

• Dλ̃↓B̌= 0 for other simple modules Dλ̃ in B̃.

We consider the relationships in B̃ between modules restricted from B and modules induced from B̌.

Lemma 2.1.

cosoc(Ω(Dα̌ j↑B̃)) � Dε̃;

cosoc(Ω(Dε̌↑B̃)) � Dα̃1 ⊕ Dα̃2 ⊕ Dα̃3 ⊕ Dα̃4 .

Proof. By inducing the short exact sequence

0 −→ Ω(Dα̌ j) −→ P(Dα̌ j) −→ Dα̌ j −→ 0
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to B̃, we obtain
0 −→ Ω(Dα̌ j)↑B̃−→ P(Dα̃ j) −→ Dα̌ j↑B̃−→ 0,

the middle term following by Frobenius reciprocity. This implies

Ω(Dα̌ j↑B̃) � Ω(Dα̌ j)↑B̃;

the latter module has cosocle Dε̃ , by Frobenius reciprocity.
The second part is proved similarly. �

Dα̌ j↑B̃ turns out to be a rather large module; in particular, it contains Dα j↓B̃, as we shall now see.

Proposition 2.2. If M is a B̃-module with simple cosocle isomorphic to Dα̃ j , and Dε̃ does not occur as a
composition factor of M, then M is a quotient of Dα̌ j↑B̃.

If M is a B̃-module with simple cosocle isomorphic to Dε̃ , and none of Dα̃1 , Dα̃2 , Dα̃3 , Dα̃4 occurs as
a composition factor of M, then M is a quotient of Dε̌↑B̃.

Proof. For the first assertion, it suffices to show that Ω(M) contains Ω(Dα̌ j↑B̃) as a submodule (viewing
both as submodules of P(Dα̃ j)). Suppose the contrary; then

Ω(M) ∩Ω(Dα̌ j↑B̃) � Ω(Dα̌ j)↑B̃,

which implies that Dε̃ occurs as a composition factor of

Ω(Dα̌ j↑B̃)

Ω(M) ∩Ω(Dα̌ j↑B̃)
�

Ω(M) + Ω(Dα̌ j↑B̃)
Ω(M)

which is isomorphic to a submodule of M; contradiction.
The second statement is proved similarly. �

In order to apply Proposition 2.2, we determine explicitly the module structures of the restrictions
of the exceptional simple modules of B to B̃.

Lemma 2.3.

Dα1↓B̃ �

D〈2〉

D〈3〉D〈1,2〉

D〈2〉
;

Dα2↓B̃ �

D〈2,3〉

D〈1,2〉D〈3,1,2〉

D〈2,3〉
;

Dα3↓B̃ �

D〈2,1〉

D〈1,2〉D〈3,1〉D〈1,2〉

D〈2,1〉
;

Dα4↓B̃ �

D〈2,3,3〉

D〈3〉D〈3,1,2〉D〈2,1,1〉

D〈2,3,3〉
;
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Dε↓B̃ �

D〈2,3〉

D〈3,2〉D〈1,2,3〉

D〈2,3〉
.

Proof. We may obtain the composition factors of each of these restricted modules using the Branching
Rule. First we find the composition factors of S αi and of S αi ↓B̃ by using the Branching Rule and the
decomposition matrices for B and B̃. Then for each composition factor Dµ of rad(S αi), we delete from
S αi ↓B̃ the composition factor(s) of Dµ↓B̃. Given that Dαi ↓B̃ must be self-dual with cosocle and socle
both isomorphic to Dα̃i , this is enough to determine the module structure completely. �

Corollary 2.4.
1. Dα j↓B̃ is a quotient of Dα̌ j↑B̃ for j = 1, 2, 3, 4;

2. Dε↓B̃ is a quotient of Dε̌↑B̃.

Proof. This follows immediately from Proposition 2.2 and Lemma 2.3. �

Given this last result, we find that almost all simple modules of B̃ which extend Dα̃ j (resp. Dε̃)
appear as factors of Dα̌ j↑B̃ (resp. Dε̌↑B̃).

Proposition 2.5.
1. Suppose M is a submodule of Dα̌ j ↑B̃ such that Dα j ↓B̃� Dα̌ j ↑B̃ /M. Suppose also that Dλ̃ is a

simple module in B̃ not isomorphic to Dε̃ . Then

dim Ext1B̃(Dα j↓B̃,D
λ̃) = [cosoc(M) : Dλ̃].

2. Suppose M is a submodule of Dε̌↑B̃ such that Dε↓B̃� Dε̌↑B̃ /M. Suppose also that Dλ̃ is a simple
module in B̃ not isomorphic to any Dα̃ j . Then

dim Ext1B̃(Dε↓B̃,D
λ̃) = [cosoc(M) : Dλ̃].

Proof. P(Dα̃ j) has a filtration of the form

Dα j↓B̃

M
Ω(Dα̌ j↑B̃)

,

and so the result follows. Similarly for P(Dε̃). �

Before proceeding, we state a very general lemma, which will be useful later and whose proof is
obvious.

Lemma 2.6. Suppose B is a block of kSn, where k is a field of any characteristic, and B̃ is a block of
kSn−1. Suppose that Dλ and Dµ are simple modules of B, with Ext1B(Dλ,Dµ) , 0. Suppose further that
soc(Dλ↓B̃) is a simple module Dλ̃. Then either
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1. Ext1B(Dλ̃↑B,Dµ) = 0, in which case dim Ext1B(Dλ,Dµ) is the composition multiplicity of Dµ in the
second Loewy layer of Dλ̃↑B, or

2. Ext1
B̃
(Dλ̃,Dµ↓B̃) , 0; in particular, Dµ↓B̃, 0.

2.2 Extensions of exceptional simple modules

Now we are able to determine the extensions between exceptional and non-exceptional simple mod-
ules of B. Let Dλ be a non-exceptional simple module, and let Dλ̃ be the simple module of B̃ such
that

Dλ↓B̃� Dλ̃, Dλ̃↑B� Dλ.

Then
Ext1B(Dα j ,Dλ) � Ext1B̃(Dα j↓B̃,D

λ̃)

and
Ext1B(Dε ,Dλ) � Ext1B̃(Dε↓B̃,D

λ̃).

In view of Corollary 2.4, we look at the structures of the induced modules Dα̌ j↑B̃, Dε̌↑B̃, which we obtain
using the Branching Rule.

2.2.1 Extensions of Dα1 and Dα2

From the decomposition matrix of B̌ we see that D(9,12) � S (9,12). By the Branching Rule we find
that D(9,12)↑B̃ has a filtration

S 〈2〉

S 〈1,2〉

S 〈1,1〉
.

Looking at the decomposition matrix for B̃, we see that

S 〈2〉 ∼ D〈2〉 + D〈3〉;

S 〈1,2〉 ∼ D〈1,2〉 + D〈2〉 + D〈1,3〉 + D〈1〉 + D〈1〉 + D〈3〉;

S 〈1,1〉 ∼ D〈1,2〉 + D〈2〉.

Lemma 2.7.
soc(S 〈1,2〉) � D〈3〉.

Proof. From the Ext-quiver of B̃ we see that the copy of D〈1,3〉 in S 〈1,2〉 must lie between the copies of
D〈1〉, and so the only possible factors of soc(S 〈1,2〉) are D〈3〉, D〈2〉 and one of the copies of D〈1〉.

Consider the block C of kS11 with 3-core (12). Using the decomposition matrices of C and B̃ we
find that

D(9,2)↑B̃
C∼ D〈1,3〉 × 2 + D〈1〉 × 2 + D〈1,2〉.

By Theorem 1.1 we have that cosoc(D(9,2)↑B̃
C) � D〈1,3〉, and so D(9,2)↑B̃

C has a quotient isomorphic to the
unique non-split extension of D〈1,3〉 by D〈1〉. Hence if D〈1〉 appears in the socle of S 〈1,2〉 we must have

0 , Hom(D(9,2)↑B̃
C , S

〈1,2〉)
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� Hom(D(9,2), S 〈1,2〉↓B̃
C)

� Hom(D(9,2), S (9,2))

by the Branching rule. But S (9,2) is not simple. Contradiction.
Next we show that D〈2〉 does not lie in the socle of S 〈1,2〉. D(9,12)↑B̃ has a submodule isomorphic to

Dα1↓B̃�

D〈2〉

D〈3〉D〈1,2〉

D〈2〉
;

from the above Specht filtration and decompositions we see that the top copy of D〈2〉 and the copy of
D〈3〉 in this submodule are factors of S 〈1,2〉. Hence D〈2〉 does not lie in the socle of S 〈1,2〉. Thus the only
factor of soc(S 〈1,2〉) is D〈3〉. �

Thus we can determine the structure of D(9,12)↑B̃. In particular, we have the following.

Lemma 2.8. Let M be the submodule of D(9,12)↑B̃ with

D(9,12)↑B̃

M
� Dα1↓B̃ .

Then M has (simple) cosocle D〈1〉.

Proof. The composition factors of M are D〈1,2〉, D〈2〉, D〈1,3〉, D〈1〉 (twice) and D〈3〉. As in the proof of
Lemma 2.7, the copy of D〈1,3〉 must lie between the two copies of D〈1〉; these copies of D〈1〉 must extend
D〈1,2〉 and D〈3〉 from what we know about the structure of S 〈1,2〉 and since D(9,12)↑B̃ is self-dual. The
copy of D〈2〉 constitutes the socle of M. �

Given this last result, we can apply Proposition 2.5. We find that the only non-exceptional simple
module of B extending Dα1 is D〈1〉↑B= D〈2〉, and

Ext1B(Dα1 ,D〈2〉) � k.

To find the extensions of Dα2 , we use Mullineux’s algorithm, which tells us that

Dα2 � Dα1 ⊗ sgn.

It is clear that for any kSn-modules M, N,

Ext1kSn
(M ⊗ sgn,N ⊗ sgn) � Ext1kSn

(M,N);

and so the only non-exceptional simple module of B extending Dα2 is D〈2〉 ⊗ sgn � D〈2,3〉, and the
corresponding Ext-space is one-dimensional.
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2.2.2 Extensions of Dα3 and Dα4

Now we look at Dα3 ; the corresponding results for Dα4 will follow, since Dα4 � Dα3 ⊗ sgn. We have

Dα̌3 = D(6,4,1) � S (6,4,1),

and the Branching Rule gives a filtration

D(6,4,1)↑B̃�

S 〈2,1〉

S 〈1,2〉

S 〈1,1〉
.

Looking at the decomposition matrix for B̃, we see

S 〈2,1〉 ∼ D〈2,1〉 + D〈1,3〉 + D〈1,2〉 + D〈3,1〉 + D〈1〉;

S 〈1,2〉 ∼ D〈1,2〉 + D〈2,1〉 + D〈1,3〉 + D〈3,1〉;

S 〈1,1〉 ∼ D〈1,1〉 + D〈1,2〉 + D〈2,1〉 + D〈1,2〉 + D〈1〉.

Lemma 2.9.

soc(S 〈2,1〉) � D〈1,3〉;

soc(S 〈1,2〉) � D〈3,1〉.

Proof. Again we consider the block C of S11 with core (12). By using the Branching Rule and the
decomposition matrices we find that

D〈1〉↓B̃
C = 0,

D〈1,2〉↓B̃
C = 0,

D〈2,1〉↓B̃
C = 0,

D〈1,3〉↓B̃
C � D(9,2),

D〈3,1〉↓B̃
C � D(7,4),

D〈1,3〉↓B̃
C � D(6,5).

The Branching Rule also gives filtrations

S (7,4)↑B̃∼
S 〈3,1〉

S 〈2,1〉
, S (6,5)↑B̃∼

S 〈1,3〉

S 〈1,2〉
;

so for a simple module Dλ̃ in B̃,

HomB̃(Dλ̃, S 〈2,1〉) 6 HomB̃(Dλ̃, S (7,4)↑B̃)

� HomC(Dλ̃↓C , S (7,4))

and

HomB̃(Dλ̃, S 〈1,2〉) 6 HomB̃(Dλ̃, S (6,5)↑B̃)
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� HomC(Dλ̃↓C , S (6,5)).

The result now follows, given the module structures

S (7,4) �
D(7,4)

D(9,2) S (6,5) �
D(6,5)

D(7,4)

and the above decompositions of S 〈2,1〉 and S 〈1,2〉. �

Lemma 2.10. Let M be the submodule of D(6,4,1)↑B̃ with

D(6,4,1)↑B̃

M
� Dα3↓B̃ .

Then cosoc(M) has factors D〈1〉 and possibly D〈1,3〉.

Proof. We know the composition factors of M from above, and we know that D〈2,1〉 ↑B̃ has both a
submodule and a quotient isomorphic to

Dα3↓B̃�

D〈2,1〉

D〈1,2〉D〈3,1〉D〈1,2〉

D〈2,1〉
.

The copy of D〈1,3〉 in M is the socle of S 〈2,1〉, so lies below one of the copies of D〈1〉, and hence above
the other, since D〈2,1〉↑B̃ is self-dual.

D〈1,1〉 lies above the lower copy of D〈1〉, and hence below the upper copy; all other factors of S 〈1,1〉

lie below this.
D〈3,1〉 lies below D〈1,3〉, being the socle of S 〈1,2〉, and so the only factors which can possibly lie in the

cosocle of M are the upper copy of D〈1〉 and the copy of D〈1,3〉. The former cannot lie below the latter
since D〈2,1〉↑B̃ is self-dual. �

Now we can apply Proposition 2.5.

Corollary 2.11.

Ext1B(Dα3 ,D〈2〉) � k;

Ext1B(Dα3 ,D〈2,3〉) � 0 or k;

Ext1B(Dα3 ,Dλ) = 0 for any other non-exceptional simple module Dλ of B.

Proof. From Proposition 2.5 and Lemma 2.10. �

We still have one Ext-space undetermined. To find this, we shall use Lemma 2.6, with λ = α3 and
µ = 〈2, 3〉. Now Ext1

B̃
(D〈2,1〉,D〈1,3〉) = 0, so the dimension of the unknown Ext-space is the number of

copies of D〈2,3〉 lying in the second Loewy layer of D〈2,1〉↑B.
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Using the Branching Rule and the decomposition matrices, we find that

D〈2,1〉↑B∼ D〈2,2〉 × 2 + D〈2〉 × 2 + D〈2,3〉 + D〈2,3〉 + D〈1,2〉.

In addition,
Ext1B(D〈2〉,D〈2,3〉) � Ext1B̃(D〈1〉,D〈1,3〉) = 0

and D〈2,1〉↑B is self-dual, so there is exactly one copy of D〈2,3〉 lying in its second Loewy layer. Thus

Ext1B(Dα3 ,D〈2,3〉) � k.

2.2.3 Extensions of Dε

Finally we look at Dε . Here we have

Dε̌ � D(6,3,2) � S (6,15),

and from the Branching Rule we get

D(6,3,2)↑B̃�

S 〈2,2〉

S 〈1,2,2〉

S 〈1,1,1〉
.

The decomposition matrices give

S 〈2,2〉 ∼ D〈2,3〉 + D〈3,2〉,

S 〈1,2,2〉 ∼ D〈2,3〉 + D〈3,2〉 + D〈1,2,3〉 + D〈1,1,3〉,

S 〈1,1,1〉 ∼ D〈1,2,3〉 + D〈2,3〉.

Thus we may deduce the following.

Lemma 2.12. Let M be the submodule of D(6,3,2)↑B̃ with

D(6,3,2)↑B̃

M
� Dε↓B̃ .

Then cosoc(M) has factors D〈1,1,3〉 and possibly one of D〈3,2〉 or D〈1,2,3〉.

Proof. D(6,3,2) ↑B̃ has the above listed factors and is self-dual, with both a submodule and a quotient
isomorphic to

Dε↓B̃�

D〈2,3〉

D〈3,2〉D〈1,2,3〉

D〈2,3〉
.

The result follows; note that D〈3,2〉 and D〈1,2,3〉 cannot both occur in the cosocle of M. �

We apply Proposition 2.5 once more.
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Corollary 2.13.
Ext1B(Dε ,D〈2,1,3〉) � k;

Ext1B(Dε ,Dλ) = 0 for any other non-exceptional simple module Dλ of B.

Proof. From Proposition 2.5 and Lemma 2.12, we get:

• Ext1B(Dε ,D〈2,1,3〉) � k;

• Ext1B(Dε ,D〈3,1〉) � 0 or k;

• Ext1B(Dε ,D〈1,3〉) � 0 or k;

• Ext1B(Dε ,Dλ) = 0 for any other non-exceptional simple module Dλ of B.

But by Mullineux’s algorithm we have
Dε ⊗ sgn � Dε

and
D〈3,1〉 ⊗ sgn � D〈1,3〉,

whence
Ext1B(Dε ,D〈3,1〉) � Ext1B(Dε ,D〈1,3〉).

But from the last statement of the proof of Lemma 2.12, these spaces cannot both be non-zero; hence
they are both zero, and the result follows. �

Thus we have a complete list of non-zero Ext-spaces between exceptional and non-exceptional sim-
ple modules of B (all one-dimensional).

Exceptional Module Non-exceptional Modules
D〈2,2〉 D〈2〉

D〈3,2,2〉 D〈2,3〉

D〈2,2〉 D〈2〉, D〈2,3〉

D〈2,2,3,3〉 D〈2〉, D〈2,3〉

D〈2,2,3〉 D〈2,1,3〉

2.3 Extensions between exceptional modules

In order to determine the Ext-quiver of B, it remains to determine the extensions between the ex-
ceptional simple modules of B. These will turn out to follow exactly the extensions between the simple
modules of B̌.

Proposition 2.14.
1. Dαi↓B̃ does not extend Dα̃ j for any i, j.

2. Dε↓B̃ does not extend Dε̃ .
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Proof. This follows from Proposition 2.5, given what we have seen about the structures of Dα̌ j↑B̃ and
Dε̌↑B̃. �

Using this we can find all the zero Ext-spaces between the exceptional simple modules; in particular,
we find that they do not self-extend. We use the technique outlined in Lemma 2.3 to find composition
factors of induced modules.

Corollary 2.15.
1. Dαi does not extend Dα j for any i, j.

2. Dε does not self-extend.

Proof. From Lemma 2.6 and Proposition 2.14, we need only show that Dα̃i↑B does not contain any Dα j

in its second Loewy layer, and that Dε̃ ↑B does not contain Dε in its second Loewy layer. But in fact
by using the Branching rule and the decomposition matrices together with Theorem 1.1, we find that
Dα̃i↑B (respectively Dε̃↑B) with socle and cosocle both isomorphic to Dαi (respectively Dε) and no factor
isomorphic to Dα j (respectively Dε) in its (non-zero) heart. �

Finally we find the non-zero Ext-spaces between exceptional simple modules.

Lemma 2.16.

Ext1B(Dα j ,Dε) � k

for j = 1, 2, 3, 4.

Proof. First we claim that Ext1
B̃
(Dα j↓B̃,D

ε̃) � k. Certainly Ext1
B̃
(Dα̃ j ,Dε̃) , 0, and Dα j↓B̃ has simple

head Dα̃ j and does not include Dε̃ as a composition factor; so

0 , Ext1B̃(Dα̃ j ,Dε̃) ⊆ Ext1B̃(Dα j↓B̃,D
ε̃).

Now from the filtration given in the proof of Proposition 2.5 and the fact that Dε̃ does not feature as a
composition factor of Dα̌ j↑B̃, we have Ext1

B̃
(Dα j↓B̃,D

ε̃) � k. By the Eckmann-Shapiro relations we then
have

k � Ext1B(Dα j ,Dε̃↑B).

Now

Dε̃↑B�

Dε

D〈2,1,3〉

Dε

and no Dα j extends D〈2,1,3〉, so each Dα j must extend Dε . Ext1B(Dα j ,Dε) is a vector subspace of
Ext1B(Dα j ,Dε̃↑B), and so is one-dimensional. �
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2.4 The Ext-quiver of B

We have now determined the Ext-quiver of B. In order to illustrate the comparison with the principal
block B̃ of kS12, we give the Ext-quiver of this also (note that the vertex labelling is not the same as in
[17], since Tan uses 〈43〉-notation for B̃), and highlight the vertices corresponding to exceptional simple
modules.

In each quiver, the automorphism corresponding to the Mullineux map is achieved by rotating the
entire diagram (except for the two central vertices) through 180◦ about its centre.

In [17], Tan notes that the Ext-quiver of B̃ is not bipartite; this holds for the Ext-quiver of B also.
Note, however, that both Ext-quivers are subdivisions of bipartite graphs (as defined by Bollobás [3,
p. 16]): the Ext-quiver of B̃ has four vertices of valency two; if we delete each of these and join its
neighbours with a single edge, we obtain a bipartite graph. Similarly we may delete four of the two-
valent vertices of the Ext-quiver of B and replace each with an edge joining its neighbours to obtain a
bipartite graph (note that the Ext-quiver of B has six two-valent vertices; we must be careful which ones
we delete).
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u〈1,2〉
e〈2,1〉
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〈3,1,1〉
u〈1,1,3〉e〈2〉 e〈2,3〉 e〈2,3〉

u〈1,3〉u
〈2,1,1〉 u〈3,1,2〉

u〈1〉 u〈3,2〉u〈3,3〉
e〈2,3,3〉

u〈3〉

HH
HH

H
HH

H

HH
HH

H
HH

H

HH
HH

H
HH

H

H
HH

H
HH

H
H

H
HH

H
HH

H
H

HH
H
HH

H
HH

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@

@
@

@
@

@
@
@

@

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

c
c
c

c
c
c

c
c
c

c
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@

@
@
@

@
@
@

@
@
@

@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@

Figure 2: The Ext-quiver of B̃
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Figure 3: The Ext-quiver of B
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3 The block of kS13 with 3-core (3, 1)

In order to determine completely the Ext-quiver of kS13, we must look at the block B1 with 3-core
(3, 1). This has weight three (and hence defect four), and forms a [3 : 2]-pair with the principal block
B̃1 of kS11. We shall use this fact to determine the extensions of all but one simple module of B1; the
remaining extensions we determine using a range of standard elementary techniques.

We shall use the 〈3, 5, 3〉-notation to denote partitions of B1 as follows: form the display of a partition
λ on an abacus with three beads on the first runner, five on the second and three on the third, and then
denote λ by

• 〈i〉 if the display has a bead of weight three on runner i;

• 〈i, j〉 if the display has a bead of weight two on runners i and a bead of weight one on runner j;

• 〈i, j, k〉 if the display has beads of weight one on runners i, j and k.

We denote the partitions of B̃1 in a similar way, using 〈5, 3, 3〉-notation.

3.1 [3 : 2]-pairs

In [11], Martin and Russell discuss [3 : 2]-pairs. Although they consider the case of non-abelian
defect, i.e. where the base field has characteristic at least five, many of their results hold with the same
proofs in characteristic three. Let C and C̃ be a pair of weight three blocks of symmetric groups over
a field of characteristic p such that the abacus display of the core of C has two more beads on the ith
runner than the (i − 1)th, and that the abacus display of the core of C̃ is the same as that of C but with
runners i and i − 1 interchanged.

We call a partition λ of C exceptional if in the abacus display of λ there are more than two beads
which may be moved from runner i to runner i − 1, and non-exceptional otherwise. Correspondingly,
call a partition λ̃ of C̃ exceptional if there are three or more beads in its abacus display which may be
moved from runner i − 1 to runner i, and non-exceptional otherwise.

There are four exceptional partitions of C, which we denote α, β, γ and δ, and four of C̃, denoted α̃,
β̃, γ̃ and δ̃. The (i − 1)th and ith runners of their abacus displays are as follows.

...
...u uuu

α

...
...uu uu

β

...
...uuu u

γ

...
...uuuu
δ

...
...uuu u

α̃

...
...uu uu

β̃

...
...u uuu

γ̃

...
...uuuu
δ̃
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Martin and Russell prove the following results concerning the induction and restriction of excep-
tional simple modules; we shall prove using the decomposition matrices that the same results hold for
the blocks in which we are interested.

Proposition 3.1.
• α and α̃ are always p-regular.

• β is p-regular if and only if δ̃ is p-regular, and in this case

Dβ↓C̃� Dδ̃ ⊕ Dδ̃, Dδ̃↑C� Dβ ⊕ Dβ.

• γ is p-regular if and only if γ̃ is p-regular, and in this case

Dγ↓C̃� Dγ̃ ⊕ Dγ̃, Dγ̃↑C� Dγ ⊕ Dγ.

• δ is p-regular if and only if β̃ is p-regular, and in this case

Dδ↓C̃� Dβ̃ ⊕ Dβ̃, Dβ̃↑C� Dδ ⊕ Dδ.

Applying the above notation to the block B1, we find that γ = 〈1, 2〉 and δ = 〈1〉 are 3-regular, while
β = 〈2, 1〉 is not. We have the following result concerning induction and restriction between B1 and B̃1.

Proposition 3.2.

D〈2〉↓B1

B̃1
� D〈1〉 ⊕ D〈1〉; D〈1〉↑B1

B̃1
� D〈2〉 ⊕ D〈2〉;

D〈2,2〉↓B1

B̃1
� D〈1,1〉 ⊕ D〈1,1〉; D〈1,1〉↑B1

B̃1
� D〈2,2〉 ⊕ D〈2,2〉;

D〈2,3〉↓B1

B̃1
� D〈1,3〉 ⊕ D〈1,3〉; D〈1,3〉↑B1

B̃1
� D〈2,3〉 ⊕ D〈2,3〉;

D〈3〉↓B1

B̃1
� D〈3〉 ⊕ D〈3〉; D〈3〉↑B1

B̃1
� D〈3〉 ⊕ D〈3〉;

D〈3,2〉↓B1

B̃1
� D〈3,1〉 ⊕ D〈3,1〉; D〈3,1〉↑B1

B̃1
� D〈3,2〉 ⊕ D〈3,2〉;

D〈2,2,3〉↓B1

B̃1
� D〈1,1,3〉 ⊕ D〈1,1,3〉; D〈1,1,3〉↑B1

B̃1
� D〈2,2,3〉 ⊕ D〈2,2,3〉;

D〈1〉↓B1

B̃1
� D〈2,1〉 ⊕ D〈2,1〉; D〈2,1〉↑B1

B̃1
� D〈1〉 ⊕ D〈1〉;

D〈1,2〉↓B1

B̃1
� D〈1,1,2〉 ⊕ D〈1,1,2〉; D〈1,1,2〉↑B1

B̃1
� D〈1,2〉 ⊕ D〈1,2〉;

D〈3,1〉↓B1

B̃1
� D〈3,2〉 ⊕ D〈3,2〉; D〈3,2〉↑B1

B̃1
� D〈3,1〉 ⊕ D〈3,1〉.

Proof. The composition factors of the restricted and induced modules follow from the decomposition
matrices of the blocks and the Branching Rule. The structures of the restricted modules then follow,
since we know that the simple modules of B̃1 do not self-extend. To show that the induced modules are
also semi-simple, we use Frobenius reciprocity: if

Dλ↓
B1

B̃1
� Dλ̃ ⊕ Dλ̃

and
Dλ̃↑

B1

B̃1
∼ Dλ + Dλ,
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then

k ⊕ k � Hom(Dλ↓
B1

B̃1
,Dλ̃)

� Hom(Dλ,Dλ̃↑
B1

B̃1
)

and so Dλ̃↑
B1

B̃1
� Dλ ⊕ Dλ. �

By the Eckmann-Shapiro relations and using the general fact that

Ext1(M ⊕ M,N) � Ext1(M,N) ⊕ Ext1(M,N),

we can determine all the Ext-spaces Ext1B1
(Dλ,Dµ) for Dλ � Dα � Dµ. This leaves us with the task of

determining the Ext-spaces Ext1B1
(Dα,Dλ); to do this, we use Lemma 2.6 extensively.

3.2 Restriction to B̌

Again we consider the block B̌ of kS11 with 3-core (3, 12); we find that some of the simple modules
of B1 restrict simply to B̌.

Lemma 3.3.

D〈2,3〉↓B1

B̌
� D(9,12);

D〈3,2〉↓B1

B̌
� D(5,4,2);

D〈2,2,2〉↓B1

B̌
� D(6,4,1);

D〈3,1〉↓B1

B̌
� D(32,22,1);

D〈2,2,3〉↓B1

B̌
� D(6,3,2);

D〈2〉↓B1

B̌
= 0;

D〈1〉↓B1

B̌
= 0;

D〈2,2〉↓B1

B̌
= 0;

D〈1,2〉↓B1

B̌
= 0;

D(9,12)↑
B1

B̌
∼

D〈2,3〉

D〈2〉

D〈2,2〉

D〈2〉

D〈2,3〉

;

D(5,4,2)↑
B1

B̌
∼

D〈3,2〉

D〈1〉

D〈3,2〉
;
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D(32,22,1)↑
B1

B̌
∼

D〈3,1〉

D〈2〉D〈1〉

D〈3,1〉
;

D(6,3,2)↑
B1

B̌
∼

D〈2,2,3〉

D〈1,2〉

D〈2,2,3〉
.

Proof. The composition factors of restricted and induced modules are obtained using the Branching
Rule and the decomposition matrices of B1 and B̌. The socles of the induced modules are found by
Frobenius reciprocity; their structures then follow from the fact that they are self-dual and that D〈2,3〉

does not extend D〈2,2〉. �

Remark. Note that we do not attempt to find the structure of D(6,4,1)↑
B1

B̌1
; we do not need it, and there are

very many composition factors.

This immediately gives us some of the Ext-spaces.

Corollary 3.4.

Ext1B1
(D〈2,2,2〉,D〈2,3〉) = 0;

Ext1B1
(D〈2,2,2〉,D〈3,2〉) = 0;

Ext1B1
(D〈2,2,2〉,D〈3,1〉) = 0.

Proof. We would like to use Lemma 2.6, but here we are restricting between Sn and Sn−2. But we may
use the following modification: if Dλ and Dµ are simple modules of B1 with Ext1B1

(Dλ,Dµ) , 0, and if

soc(Dλ↓B̌) is a simple module Dλ̌ with soc(Dλ̌↑B1) � Dλ, then either

1. Ext1B1
(Dλ̌↑B1 ,Dµ) = 0, in which case dimExt1B1

(Dλ,Dµ) is the composition multiplicity of Dµ in

the second Loewy layer of Dλ̌↑B1 , or

2. Ext1
B̌
(Dλ̌,Dµ↓B̌) , 0.

The proof of this is also obvious. Using this together with Lemma 3.3 and the Ext-quiver of B̌, the
corollary follows. �

3.3 Induction to the block of kS14 with 3-core (3, 12)

We can find more of the unknown Ext-spaces by inducing modules from B1 to the block B̂1 of kS14.
Although we do not know the Ext-quiver of B̂1, it has the advantage of being self-conjugate; thus in
order to find Ext-spaces in B1, we may use the following general method:

• induce modules from B1 to B̂1;

• tensor with the alternating representation by Mullineux’s algorithm;
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• restrict back to B1 and use the known Ext-spaces.

We deal with B̂1 in full detail, since its Ext-quiver will then follow very easily from that of B1. We
denote the p-regular partitions of B̂1 using 〈4, 5, 2〉-notation as defined at the beginning of this section;
this is consistent with using 〈3, 5, 3〉-notation for B1, and it does not matter for our purposes that not all
p-singular partitions of B̂1 can be displayed with this notation.

First, we use Mullineux’s algorithm on the simple modules of B̂1; this gives the following.

Lemma 3.5.

D〈2〉 ⊗ sgn � D〈1,2〉;

D〈2,2〉 ⊗ sgn � D〈1,1〉;

D〈2,1〉 ⊗ sgn � D〈1,2,2〉;

D〈1〉 ⊗ sgn � D〈3〉;

D〈2,2,2〉 ⊗ sgn � D〈1,1,2〉.

Next we find that we can determine explicitly the induction and restriction of all simples between
B1 and B̂1.

Proposition 3.6.

D〈2〉↑B̂1
B1
� D〈2〉; D〈2〉↓B̂1

B1
� D〈2〉;

D〈3,2〉↑B̂1
B1
� D〈1,2〉; D〈1,2〉↓B̂1

B1
� D〈3,2〉;

D〈2,2〉↑B̂1
B1
� D〈2,2〉; D〈2,2〉↓B̂1

B1
� D〈2,2〉;

D〈2,3〉↑B̂1
B1
� D〈2,1〉; D〈2,1〉↓B̂1

B1
� D〈2,3〉;

D〈2,2,3〉↑B̂1
B1
� D〈1,2,2〉; D〈1,2,2〉↓B̂1

B1
� D〈2,2,3〉;

D〈3〉↑B̂1
B1
� D〈1〉; D〈1〉↓B̂1

B1
� D〈3〉;

D〈3,1〉↑B̂1
B1
� D〈3〉; D〈3〉↓B̂1

B1
� D〈3,1〉;

D〈2,2,2〉↑B̂1
B1
� D〈2,2,2〉; D〈2,2,2〉↓B̂1

B1
� D〈2,2,2〉;

D〈1,2〉↑B̂1
B1
�

D〈1,1,2〉

D〈2,1〉D〈2,2,2〉

D〈1,1,2〉
; D〈1,1,2〉↓B̂1

B1
�

D〈1,2〉

D〈2〉

D〈2,2〉

D〈2〉
⊕ D〈2,2,3〉

D〈1,2〉

;

D〈1〉↑B̂1
B1
�

D〈1,1〉

D〈1,2〉

D〈1,2,2〉

D〈1,2〉

D〈1,1〉

; D〈1,1〉↓B̂1
B1
�

D〈1〉

D〈3,1〉

D〈1〉
.
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Proof. The composition factors of the induced and restricted modules are determined using the Branch-
ing Rule together with the decomposition matrices of B1 and B̂1; Theorem 1.1 can be used to speed up
the process. In order to determine the structures of the non-simple induced and restricted modules, we
note that their cosocles and socles are given by Frobenius reciprocity, and that they must be self-dual.
We already know most of the Ext-quiver of B1, in particular that

Ext1B1
(D〈1,2〉,D〈2,2〉) = Ext1B1

(D〈2〉,D〈2,2,3〉) = 0,

which gives the structure of D〈1,1,2〉 ↓B̂1
B1

. For D〈1〉 ↑B̂1
B1

, we need only show that D〈1,1〉 does not extend
D〈1,2,2〉. But

Ext1
B̂1

(D〈1,1〉,D〈1,2,2〉) � Ext1
B̂1

(D〈2,2〉,D〈2,1〉)

by Lemma 3.5

� Ext1B1
(D〈2,2〉,D〈2,3〉)

by Eckmann-Shapiro

= 0

from the part of the Ext-quiver of B1 we already have. �

This gives us three more Ext-spaces, as follows.

Proposition 3.7.

Ext1B1
(D〈2,2,2〉,D〈2〉) = 0;

Ext1B1
(D〈2,2,2〉,D〈3〉) = 0;

Ext1B1
(D〈2,2,2〉,D〈2,2,3〉) � k.

Proof. By Eckmann-Shapiro,

Ext1B1
(D〈2,2,2〉,D〈2〉) � Ext1

B̂1
(D〈2,2,2〉,D〈2〉)

� Ext1
B̂1

(D〈1,1,2〉,D〈1,2〉)

= 0

by Lemma 3.5 and Lemma 2.6 and the known part of the Ext-quiver of B1. The other assertions follow
similarly. �
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3.4 D〈2,2,2〉 does not self-extend

In order to check that D〈2,2,2〉 does not self-extend, we consider the defect one block D of kS12 with
3-core (3, 22, 12). Defect one blocks of symmetric group algebras are well understood; in particular we
know that

P(D(6,22,12)) �
D(6,22,12)

D(42,2,12)

D(6,22,12)
.

Theorem 1.1 gives the following.

Lemma 3.8.
D〈1,2〉↓B1

D � D(6,22,12), D〈1〉↓B1
D � D(42,2,12),

Dλ↓D= 0 for any other simple module Dλ in B1.

Lemma 3.9.
cosoc(Ω(D(6,22,12)↑B1) � D〈1〉.

Proof. By Frobenius reciprocity and Lemma 3.8 we know that P(D(6,22,12))↑B1� P(D〈1,2〉), so by inducing
the short exact sequence

0 −→ Ω(D(6,22,12)) −→ P(D(6,22,12)) −→ D(6,22,12) −→ 0

to B1, we obtain
Ω(D(6,22,12))↑B1� Ω(D(6,22,12)↑B1).

The lemma follows by Frobenius reciprocity and from the structure of P(D(6,22,12)) given above. �

Proposition 3.10. If M is a B1-module with simple cosocle isomorphic to D〈1,2〉, and if D〈1〉 does not
appear as a composition factor of M, then M is a quotient of D(6,22,12)↑B1 .

In particular, D〈1,1,2〉↓B̂1
B1

is a quotient of D(6,22,12)↑B1 .

Proof. The first statement is proved exactly as in Proposition 2.2; the second statement follows from
Proposition 3.6. �

Lemma 3.11. cosoc(Ω(D〈1,1,2〉↓B̂1
B1

)) does not contain a copy of D〈1,2〉, i.e.

Ext1B1
(D〈1,1,2〉↓B̂1

B1
,D〈1,2〉) = 0.

Proof. Let N be a submodule of D(6,22,12)↑B1 such that D(6,22,12)↑B1 /N � D〈1,1,2〉↓B̂1
B1

. By Proposition

3.9 we know that any factor of cosoc(Ω(D〈1,1,2〉↓B̂1
B1

) isomorphic to D〈1,2〉 must lie in the cosocle of N.
By using the decomposition matrices and the Branching Rule, we find that N contains just one copy of
D〈1,2〉. This must constitute the socle of N, since D(6,22,12)↑B1 is self-dual; since N is not simple, it does
not contain a copy of D〈1,2〉 in its cosocle. The result follows. �
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Proposition 3.12.
Ext1B1

(D〈2,2,2〉,D〈2,2,2〉) = 0.

Proof. By Eckmann-Shapiro and Lemma 3.5 we have

Ext1B1
(D〈2,2,2〉,D〈2,2,2〉) � Ext1

B̂1
(D〈2,2,2〉,D〈2,2,2〉)

� Ext1
B̂1

(D〈1,1,2〉,D〈1,1,2〉);

the latter space is zero, by Lemma 2.6, Proposition 3.6 and Lemma 3.11. �

This leaves us to find Ext1B1
(D〈2,2,2〉,Dλ) for λ = 〈2, 2〉, 〈1〉, 〈1, 2〉. To do this we consider the projec-

tive cover of D〈2,2,2〉; the second Loewy layer of P(D〈2,2,2〉) gives all the Ext-spaces Ext1B1
(D〈2,2,2〉,Dλ);

in addition, we can easily find a filtration of this projective module by Specht modules.

3.5 The projective Specht module S (6,4,2,12)

Consider the Specht module S (6,4,2,12) of kS14. (6, 4, 2, 12) is a 3-core, so D(6,4,2,12) is the unique sim-
ple module in its block; hence the block is simple, and D(6,4,2,12) = S (6,4,2,12) is projective. Furthermore,
Theorem 1.1 implies that

soc(S (6,4,2,12)↓B1) � D〈2,2,2〉,

so that

P(D〈2,2,2〉) � S (6,4,2,12)↓B1∼

S 〈2,2,2〉

S 〈1,2,2〉

S 〈1,2〉

S 〈1〉

.

We examine the Specht module at the top of this filtration.

Lemma 3.13.
soc(S 〈2,2,2〉) � D〈3〉.

Proof. By [6, Theorem 8.15],
S 〈2,2,2〉 ⊗ sgn � (S (4,3,22,12))∗,

so

soc(S 〈2,2,2〉) � D(4,3,22,12) ⊗ sgn

� D〈3〉

by Mullineux. �

Now we can find the remaining unknown Ext-spaces.

Corollary 3.14.
Ext1B1

(D〈2,2,2〉,D〈2,2〉) � k.
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Proof. We know that

S 〈2,2,2〉 ∼ D〈2,2,2〉 + D〈3〉 + D〈2〉 + D〈2,2〉 + D〈2,3〉 + D〈3,2〉 + D〈2,2,3〉;

of these factors, D〈2,2〉 only extends D〈2〉 and possibly D〈2,2,2〉. D〈2,2〉 does not lie in the cosocle or the so-
cle of S 〈2,2,2〉, so must extend (or be extended by) at least two other factors. Hence Ext1B1

(D〈2,2,2〉,D〈2,2〉) ,
0.

Given the above Specht filtration of P(D〈2,2,2〉), we see that the only copies of D〈2,2〉 which can lie in
the second Loewy layer must lie in S 〈2,2,2〉; we have just seen that there is only one such. �

Proposition 3.15.

Ext1B1
(D〈2,2,2〉,D〈1〉) = 0;

Ext1B1
(D〈2,2,2〉,D〈1,2〉) = 0.

Proof. Using the above Specht filtration and the decomposition matrix of B1, we find that there is exactly
one copy of D〈1〉 lying in P(D〈2,2,2〉), namely the cosocle of S 〈1〉. But S 〈1〉 has factors other than D〈1〉

and D〈2,2,2〉(= soc(S 〈1〉)). So D〈1〉 does not lie in the second socle layer of P(D〈2,2,2〉), and the first result
follows.

There are two copies of D〈1,2〉 in P(D〈2,2,2〉); one of these lies in S 〈1〉, and so lies below the only copy
of D〈1〉; hence the other copy of D〈1,2〉 lies above D〈1〉. We claim that the copy of D〈1,2〉 lying in S 〈1〉 does
not lie in its second socle layer, and thus does not lie in the second socle layer of P(D〈2,2,2〉). S 〈1〉 has
cosocle D〈1〉, socle D〈2,2,2〉 and heart with factors D〈2〉, D〈2,2〉, D〈3,2〉, D〈2,2,3〉 and D〈1,2〉. From the known
part of the Ext-quiver of B1 we see that D〈2,2〉 must lie above D〈2,2,2〉 and below D〈2〉, and that D〈2〉 must
lie above D〈2,2〉 and below D〈1,2〉; hence the latter factor lies in at least the fourth socle layer. �

3.6 The Ext-quiver of B1

We have now determined all the required Ext-spaces, and so we have the Ext-quiver of B1; for
comparison, we give the Ext-quiver of B̃1 as well. Again our labelling of the vertices differs from that in
[17], since Tan uses 〈3, 3, 4〉-notation for B̃1.

Note that the Ext-quiver of B1 is not bipartite. In [15], Tan attempts to show that every weight three
block of a symmetric group with abelian defect has a bipartite Ext-quiver, provided a certain conjecture
holds, namely that

[P(Dα) : Dλ] 6 3

whenever we have a [3 : 2]-pair (C, C̃) as above, with Dα as above and Dλ a non-exceptional simple
module of C.

In characteristic three, this conjecture fails to hold; for

[P(D〈2,2,2〉) : D〈2〉] = 4,
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Figure 4: The Ext-quivers of B̃1 and B1

and this is where things begin to break down. However, the Ext-quiver is a subdivision of a bipartite
graph, as defined in the previous section for the Ext-quiver of B: the sets

{〈2〉, 〈3〉, 〈1〉, 〈2, 2, 3〉}, {〈3, 1〉, 〈3, 2〉, 〈1, 2〉, 〈2, 2, 2〉, 〈2, 2, 3〉}

illustrate the bipartition, with the vertex labelled 〈2, 2〉 being added in the subdivision.

3.7 The Ext-quiver of B̂1

Given our work on the block B̂1, we are able to find its Ext-quiver very easily, and so we do this.
By Eckmann-Shapiro (using Proposition 3.6) and by tensoring with the alternating representation (using
Lemma 3.5), we get all the Ext-spaces between simple modules of B̂1 except for

Ext1
B̂1

(D〈2,2〉,D〈1,1〉),

Ext1
B̂1

(D〈2,2〉,D〈1,1,2〉),

Ext1
B̂1

(D〈2,2,2〉,D〈1,1〉),

Ext1
B̂1

(D〈2,2,2〉,D〈1,1,2〉).

But these follow immediately from Lemma 2.6 and Proposition 3.6. Hence B̂1 has the Ext-quiver shown.
Since B̂1 is self-conjugate, the quiver has rotational symmetry about the central vertical axis indicated
corresponding to the Mullineux involution.

Note that this Ext-quiver is also not bipartite, but is a subdivision of a bipartite graph: the sets

{〈2〉, 〈1〉, 〈1, 1, 2〉, 〈1, 2, 2〉}, {〈3〉, 〈1, 2〉, 〈2, 2, 2〉, 〈2, 1〉}

illustrate the bipartition, with the vertices labelled 〈2, 2〉, 〈1, 1〉 being added in the subdivision.
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Figure 5: The Ext-quiver of B̂1
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A Decomposition matrices

We reproduce all the decomposition matrices used in this paper; they are taken from [7], with the
exception of the matrix for the block B̂1 of kS14, which was found by ad hoc means. In each matrix, the
(λ, µ)th entry is the composition multiplicity [S λ : Dµ].

A.1 The principal block of kS11 (〈5, 3, 3〉-notation)
(1

1)
(8
,3

)
(8
,2
,1

)
(7
,3
,1

)

(6
,3
,1

2 )

(5
2 ,

1)

(5
,4
,1

2 )

(5
,3

2 )
(5
,3
,2
,1

)

(4
,3
,2

2 )

(11) = 〈1〉 1
(8, 3) = 〈1, 1〉 1 1

(8, 2, 1) = 〈1, 3〉 2 1 1
(7, 3, 1) = 〈3〉 1 1 1 1

(6, 3, 12) = 〈2〉 1 1 1 1
(52 , 1) = 〈3, 1〉 1 1

(5, 4, 12) = 〈2, 1〉 1 1 1 1
(5, 32) = 〈1, 1, 3〉 1 1 1 1

(5, 3, 2, 1) = 〈1, 1, 2〉 2 1 1 1 1 1 1 1 1
(4, 3, 22) = 〈3, 2〉 2 1 1 1 1 1 1

(8, 13) = 〈1, 2〉 1
(5, 3, 13) = 〈1, 1, 1〉 1 1 1 1

(5, 23) = 〈1, 2, 3〉 2 1 1
(5, 2, 14) = 〈1, 3, 3〉 1 1

(5, 16) = 〈1, 2, 2〉 1
(4, 3, 14) = 〈3, 3〉 1 1 1 1 1 1

(33 , 2) = 〈2, 3〉 1 1 1 1
(32 , 15) = 〈2, 2〉 1 1 1 1

(25 , 1) = 〈2, 3, 3〉 1 1
(24 , 13) = 〈2, 2, 3〉 1 1
(22 , 17) = 〈3, 3, 3〉 1 1

(2, 19) = 〈2, 2, 2〉 1

A.2 The block of kS11 with 3-core (3, 12)

(9
,1

2 )
(6
,4
,1

)
(6
,3
,2

)
(5
,4
,2

)

(3
2 ,

22 ,
1)

(9, 12) 1
(6, 4, 1) 1
(6, 3, 2) 1 1 1
(5, 4, 2) 1 1 1

(32 , 22 , 1) 1 1 1
(6, 15) 1

(32 , 2, 13) 1 1 1
(3, 23 , 12) 1

(3, 18) 1
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A.3 The block of kS11 with 3-core (12)

(1
0,

1)
(9
,2

)
(7
,4

)

(7
,2

2 )
(6
,5

)

(6
,2

2 ,
1)

(5
,2

2 ,
12 )

(4
2 ,

3)

(4
2 ,

2,
1)

(4
,3
,2
,1

2 )

(10, 1) 1
(9, 2) 1 1
(7, 4) 1 1

(7, 22) 1 1 1 1
(6, 5) 1 1

(6, 22 , 1) 1 1 1 1 1 1
(5, 22 , 12) 1 1 1 1

(42 , 3) 1 1 1 1
(42 , 2, 1) 1 1 1 2 1 1 1

(4, 3, 2, 12) 1 1 1 2 1 1 1 1 1
(7, 14) 1

(6, 2, 13) 1 1
(42 , 13) 2 1 1

(4, 23 , 1) 1 1 1 1
(4, 22 , 13) 1 1 1 1

(4, 17) 1
(33 , 12) 1 1 1 1
(3, 24) 1 1

(3, 22 , 14) 1 1 1 1
(3, 2, 16) 2 1 1
(23 , 15) 1 1

(111) 1

A.4 The block of kS12 with 3-core (3, 22, 12)

(6
,2

2 ,
12 )

(4
2 ,

2,
12 )

(6, 22 , 12) 1
(42 , 2, 12) 1 1
(3, 22 , 15) 1
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A.5 The principal block of kS12 (〈5, 4, 4〉-notation)

(1
2)

(1
1,

1)

(1
0,

12 )
(9
,3

)
(9
,2
,1

)
(8
,4

)

(8
,2

2 )
(7
,4
,1

)
(7
,3
,2

)

(6
2 )

(6
,5
,1

)

(6
,4
,1

2 )

(6
,3

2 )
(6
,3
,2
,1

)

(5
2 ,

2)
(5
,4
,3

)
(5
,4
,2
,1

)

(5
,3
,2
,1

2 )

(4
2 ,

22 )

(4
,3
,2

2 ,
1)

(12) = 〈1〉 1
(11, 1) = 〈3〉 1 1

(10, 12) = 〈2〉 1 1
(9, 3) = 〈1, 3〉 1 1 1

(9, 2, 1) = 〈1, 2〉 2 1 1 1 1
(8, 4) = 〈3, 1〉 1 1 1

(8, 22) = 〈3, 2〉 2 1 1 1 1 1
(7, 4, 1) = 〈2, 1〉 1 1 1 1 1
(7, 3, 2) = 〈2, 3〉 1 1 1 1 1 1 1 1 1

(62) = 〈1, 3〉 1 1
(6, 5, 1) = 〈1, 2〉 1 1 1 1

(6, 4, 12) = 〈1, 1〉 1 1 1 1 1
(6, 32) = 〈1, 2, 3〉 1 1 1 1 1 1

(6, 3, 2, 1) = 〈1, 1, 3〉 3 1 1 1 2 1 1 1 1 1 1 1 1 1
(52 , 2) = 〈2, 3〉 1 1 1 1

(5, 4, 3) = 〈3, 1, 2〉 1 1 1 1 1 1 1 1 1 1
(5, 4, 2, 1) = 〈3, 1, 1〉 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1
(5, 3, 2, 12) = 〈3, 3〉 3 1 1 1 1 3 1 1 1 2 1 1 1
(42 , 22) = 〈2, 1, 1〉 2 1 1 1 1 2 1 1 1 1 1

(4, 3, 22 , 1) = 〈2, 3, 3〉 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1
(9, 13) = 〈1, 1〉 1 1
(8, 14) = 〈3, 3〉 1 1
(7, 15) = 〈2, 2〉 1 1

(6, 3, 13) = 〈1, 3, 3〉 2 1 1 1 1
(6, 23) = 〈1, 1, 2〉 2 1 1 1 1 1 1

(6, 2, 14) = 〈1, 2, 2〉 1 1 1 1
(6, 16) = 〈1, 1, 1〉 1 1

(5, 4, 13) = 〈3, 1, 3〉 1 2 1 1 1 1
(5, 23 , 1) = 〈3, 2, 3〉 2 1 1 1 1 1

(5, 22 , 13) = 〈3, 2, 2〉 2 1 1 1 1
(5, 17) = 〈3, 3, 3〉 1 1

(43) = 〈2, 1, 3〉 1 1 1 1
(42 , 14) = 〈2, 1, 2〉 1 2 1 1 1 1 1

(4, 3, 2, 13) = 〈2, 2, 3〉 1 1 1 1 3 1 1 1 1 2 1 1 1 1
(4, 23 , 12) = 〈2, 2〉 1 1 1 1 1
(4, 18) = 〈2, 2, 2〉 1 1
(34) = 〈1, 1, 2, 3〉 1 1 1 1

(33 , 2, 1) = 〈1, 2, 3, 3〉 1 1 1 1 1 1 1 1 1 1
(33 , 13) = 〈1, 2, 2, 3〉 1 1 1 1 1 1
(32 , 23) = 〈1, 1, 3, 3〉 1 1 1 1

(32 , 2, 14) = 〈1, 1, 1, 3〉 1 1 1 1 1 1 1 1 1
(32 , 16) = 〈1, 3, 3, 3〉 2 1 1 1 1 1

(3, 24 , 1) = 〈1, 1, 2, 2〉 1 1 1 1
(3, 23 , 13) = 〈1, 1, 1, 2〉 1 1 1 1 1

(3, 2, 17) = 〈1, 2, 2, 2〉 2 1 1 1 1
(3, 19) = 〈1, 1, 1, 1〉 1 1

(26) = 〈2, 2, 3, 3〉 1 1
(24 , 14) = 〈2, 3, 3, 3〉 1 1 1
(23 , 16) = 〈2, 2, 2, 3〉 1 1 1
(2, 110) = 〈3, 3, 3, 3〉 1 1

(112) = 〈2, 2, 2, 2〉 1
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A.6 The principal block of kS13 (〈4, 5, 4〉-notation)

(1
3)

(1
1,

2)
(1

0,
3)

(1
0,

2,
1)

(9
,2
,1

2 )
(8
,5

)

(8
,2

2 ,
1)

(7
,6

)
(7
,5
,1

)

(7
,4
,1

2 )

(7
,3

2 )
(7
,3
,2
,1

)

(6
,5
,1

2 )

(6
,3

2 ,
1)

(5
2 ,

3)

(5
2 ,

2,
1)

(5
,4
,3
,1

)

(5
,3

2 ,
12 )

(4
2 ,

3,
2)

(4
,3

2 ,
2,

1)

(13) = 〈2〉 1
(11, 2) = 〈3〉 1 1

(10, 3) = 〈2, 3〉 1 1 1
(10, 2, 1) = 〈2, 2〉 2 1 1 1

(9, 2, 12) = 〈1〉 2 1 1 1
(8, 5) = 〈3, 2〉 1 1 1

(8, 22 , 1) = 〈3, 1〉 2 1 1 1 1 1
(7, 6) = 〈2, 3〉 1 1

(7, 5, 1) = 〈2, 2〉 1 1 1 1 1
(7, 4, 12) = 〈1, 2〉 2 1 1 1 1
(7, 32) = 〈2, 2, 3〉 1 1 1 1 1

(7, 3, 2, 1) = 〈2, 1, 3〉 4 1 2 1 1 1 1 1 1 1 1 1
(6, 5, 12) = 〈1, 2〉 1 1 1 1 1
(6, 32 , 1) = 〈1, 3〉 3 1 1 1 1 1 1 1 1 1 1
(52 , 3) = 〈3, 2, 2〉 1 1 1 1

(52 , 2, 1) = 〈3, 1, 2〉 2 1 2 1 1 1 1 1 1 1
(5, 4, 3, 1) = 〈1, 3〉 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1
(5, 32 , 12) = 〈3, 3〉 3 1 1 1 1 3 1 2 1 1 1 1 1

(42 , 3, 2) = 〈1, 2, 2〉 2 1 1 1 1 2 1 1 1 1 1
(4, 32 , 2, 1) = 〈2, 2, 3, 3〉 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1

(10, 13) = 〈2, 1〉 1
(8, 2, 13) = 〈3, 3〉 1 1

(7, 3, 13) = 〈2, 3, 3〉 2 1 1 1 1
(7, 23) = 〈2, 1, 2〉 2 1 1 1 1 1 1

(7, 2, 14) = 〈2, 2, 2〉 1 1 1
(7, 16) = 〈2, 1, 1〉 1
(6, 2, 15) = 〈1, 1〉 1 1 1

(52 , 13) = 〈3, 2, 3〉 1 2 1 1 1 1
(5, 24) = 〈3, 1, 3〉 2 1 1 1 1 1

(5, 22 , 14) = 〈3, 1, 1〉 2 1 1 1 1
(5, 2, 16) = 〈3, 3, 3〉 1 1

(43 , 1) = 〈1, 2, 3〉 1 1 1 1
(42 , 15) = 〈1, 1, 2〉 1 2 1 1 1 1 1

(4, 33) = 〈1, 2, 2, 3〉 1 1 1 1
(4, 32 , 13) = 〈2, 2, 2, 3〉 1 1 1 3 1 1 1 1 1 1 1
(4, 3, 23) = 〈1, 2, 3, 3〉 2 1 1 1 2 1 1 1 1 1

(4, 3, 2, 14) = 〈1, 1, 2, 3〉 1 4 1 1 1 1 1 2 1 1 1 1
(4, 3, 16) = 〈2, 3, 3, 3〉 2 1 1 1 1 1
(4, 24 , 1) = 〈1, 2, 2, 2〉 1 1 1 1 1

(4, 23 , 13) = 〈1, 1, 2, 2〉 2 1 1 1 1
(4, 2, 17) = 〈2, 2, 2, 2〉 2 1 1 1

(4, 19) = 〈1, 1, 1, 2〉 1
(33 , 22) = 〈1, 3, 3〉 1 1 1 1
(33 , 14) = 〈1, 1, 3〉 1 1 1 1 1
(3, 24 , 12) = 〈1, 1〉 1 1 1 1 1

(3, 2, 18) = 〈1, 1, 1〉 2 1 1 1
(26 , 1) = 〈1, 1, 3, 3〉 1 1

(25 , 13) = 〈1, 3, 3, 3〉 1 1 1
(23 , 17) = 〈1, 1, 1, 3〉 1 1 1
(22 , 19) = 〈3, 3, 3, 3〉 1 1

(113) = 〈1, 1, 1, 1〉 1
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A.7 The block of kS13 with 3-core (3, 1) (〈3, 5, 3〉-notation)

(1
2,

1)
(9
,4

)

(9
,2

2 )
(7
,4
,2

)
(6
,5
,2

)
(6
,4
,3

)
(6
,4
,2
,1

)

(6
,3
,2
,1

2 )

(5
,4
,2
,1

2 )

(4
2 ,

22 ,
1)

(12, 1) = 〈2〉 1
(9, 4) = 〈2, 2〉 1 1

(9, 22) = 〈2, 3〉 2 1 1
(7, 4, 2) = 〈3〉 1 1 1 1

(6, 5, 2) = 〈3, 2〉 1 1
(6, 4, 3) = 〈2, 2, 3〉 1 1 1 1

(6, 4, 2, 1) = 〈2, 2, 2〉 1 1 1 1 1 1 1
(6, 3, 2, 12) = 〈1, 2〉 2 1 1 1 1 1

(5, 4, 2, 12) = 〈1〉 1 1 1 1 1 1 1
(42 , 22 , 1) = 〈3, 1〉 2 1 1 1 1 1 1

(9, 14) = 〈2, 1〉 1
(6, 4, 13) = 〈1, 2, 2〉 1
(6, 23 , 1) = 〈1, 2, 3〉 2 1 1

(6, 22 , 13) = 〈2, 3, 3〉 1 1
(6, 17) = 〈1, 1, 2〉 1

(42 , 2, 13) = 〈3, 3〉 1 1 1 1 1 1
(34 , 1) = 〈1, 3〉 1 1 1 1

(32 , 2, 15) = 〈1, 1〉 1 1 1 1
(3, 25) = 〈1, 3, 3〉 1 1

(3, 23 , 14) = 〈1, 1, 3〉 1 1
(3, 22 , 16) = 〈3, 3, 3〉 1 1

(3, 110) = 〈1, 1, 1〉 1

A.8 The block of kS14 with 3-core (3, 12) (〈4, 5, 2〉-notation)

(1
2,

12 )
(9
,4
,1

)
(9
,3
,2

)
(8
,4
,2

)

(6
2 ,

2)

(6
,4

4 )

(6
,4
,2

2 )

(6
,3
,2

2 ,
1)

(5
,4
,2

2 ,
1)

(4
2 ,

22 ,
12 )

(12, 12) = 〈2〉 1
(9, 4, 1) = 〈2, 2〉 1 1
(9, 3, 2) = 〈2, 1〉 2 1 1

(8, 4, 2) = 〈1〉 1 1 1 1
(62 , 2) = 〈1, 2〉 1 1

(6, 44) = 〈1, 2, 2〉 1 1 1 1
(6, 4, 22) = 〈2, 2, 2〉 1 1 1 1 1 1 1

(6, 3, 22 , 1) = 〈1, 1, 2〉 2 1 1 1 1
(5, 4, 22 , 1) = 〈1, 1〉 1 1 1 1 1 1 1 1

(42 , 22 , 12) = 〈3〉 1 1 1 1 1 1 1
(9, 15) = 〈2, 3〉 1

(6, 4, 14) = 〈2, 2, 3〉 1
(6, 3, 2, 13) = 〈1, 2, 3〉 1 1 1 1

(6, 23 , 12) = 〈3, 2〉 1
(6, 18) = 〈2, 3, 3〉 1

(5, 4, 2, 13) = 〈1, 3〉 2 1 1 1 1
(34 , 12) = 〈3, 1〉 1 1 1 1

(32 , 24) = 〈1, 1, 3〉 1 1
(32 , 22 , 14) = 〈1, 1, 1〉 1 1 1 1
(32 , 2, 16) = 〈1, 3, 3〉 2 1 1

(3, 23 , 15) = 〈3, 3〉 1 1
(3, 111) = 〈3, 3, 3〉 1
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