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Abstract

We prove a new ‘runner removal theorem’ for q-decomposition numbers of the level
1 Fock space of type A(1)

e−1, generalising earlier theorems of James–Mathas and the author.
By combining this with another theorem relating to the Mullineux map, we show that the
problem of finding all q-decomposition numbers indexed by partitions of a given weight is
a finite computation.

1 Introduction

Let e be an integer greater than or equal to 2, and letU denote the quantum algebra Uq(ŝle)
over Q. The level 1 Fock space for U is a Q(q)-vector space with a standard basis indexed by
the set of all partitions. This has the structure of an integrableU-module, and the submodule
generated by the empty partition is isomorphic to the irreducible highest-weight module L(Λ0)
forU. On computing the Lusztig–Kashiwara canonical basis for this submodule and expanding
with respect to the standard basis, one obtains coefficients de

λµ(q) indexed by pairs of partitionsλ
and µwith µ e-regular. These polynomials have become known as ‘q-decomposition numbers’
in view of Ariki’s proof of the LLT Conjecture, which states that if λ and µ are partitions of n
with µ e-regular, then de

λµ(1) = [Sλ : Dµ], where Sλ and Dµ denote a Specht module and a simple
module for an Iwahori–Hecke algebra at an eth root of unity inC. Leclerc and Thibon extended
the canonical basis for L(Λ0) to a canonical basis for the whole of the Fock space, yielding
q-decomposition numbers de

λµ(q) for all pairs (λ, µ) of partitions, and conjectured that when
evaluated at q = 1, these polynomials should give decomposition numbers for appropriate
quantised Schur algebras. This conjecture was proved by Varagnolo and Vasserot [VV].

q-decomposition numbers have been studied extensively in the last ten years or so, with
some effort being devoted to finding faster or more enlightening methods for computing the q-
decomposition numbers. An important theorem on these lines is the ‘runner removal theorem’
of James and Mathas [JM], which shows how to equate a q-decomposition number de

λµ(q) with

a ‘smaller’ q-decomposition number de−1
ξπ (q) under certain conditions based on abacus displays

for λ and µ. This observation that the q-decomposition numbers are ‘independent of e’ is
inherent in Lusztig’s famous conjecture for the characters of irreducible modules for reductive
algebraic groups, and indeed the James–Mathas theorem admits a very simple proof using
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the interpretation (due to Goodman and Wenzl [GW] and Varagnolo and Vasserot [VV]) of
q-decomposition numbers as parabolic Kazhdan–Lusztig polynomials.

In [F2], the author proved another runner removal theorem which is in some sense ‘conju-
gate’ to the James–Mathas theorem, and more recently Chuang and Miyachi [CM] have shown
that there are Morita equivalences of ζ-Schur algebras underlying some of these results. In
this paper, we prove a rather stronger runner removal theorem for q-decomposition numbers;
this includes both the James–Mathas theorem and the author’s earlier theorem as special cases.
The way we do this is to define an integer Lk(λ) associated to a partition λ and an integer
k ∈ {0, . . . , e − 1}, and then to show that if two partitions λ and µ satisfy Lk(λ) = Lk(µ) for some
k, then there is a runner which may be removed both abacus displays, resulting in an equality
of q-decomposition numbers. The proof of this theorem involves a long calculation using the
Leclerc–Thibon algorithm for computing the canonical basis of the Fock space.

In the remainder of the paper, we prove some results which indicate the strength of our
main theorem; the main result here is Corollary 3.10, in which we show that the problem of
computing all q-decomposition numbers de

λµ(q) for partitions λ and µ of a given e-weight as e
varies is a finite computation. This requires a further theorem (Theorem 3.5), which is the result
of a detailed computation describing a relationship between our function Lk and the Mullineux
map.

Acknowledgement. This research was undertaken while the author was a visiting Postdoctoral
Fellow at Massachusetts Institute of Technology, with the support of a Research Fellowship
from the Royal Commission for the Exhibition of 1851. The author is very grateful to M.I.T. for
its hospitality, and to the 1851 Commission for its generous support.

2 Background

2.1 Miscellaneous notation

We begin with some mathematical conventions which might not be considered standard
by all readers.

• N0 denotes the set of non-negative integers.

• If i, j and e are integers with e > 2, we write i ≡ j (mod e) to mean that i− j is divisible by
e, and we write i Mod e for the residue of i modulo e.

• If I and J are multisets of integers, then we write I t J for the ‘disjoint union’ of I and J;
that is, the multiset in which the multiplicity of an integer z is the multiplicity of z in I
plus the multiplicity of z in J.

• If I is a multiset of integers and J a set of integers with J ⊆ I, then we write I \ J to indicate
the multiset which consists of I with one copy of each element of J removed.

• If I is a multiset of integers and J a set of integers, then we define |I ∩ J| to be the number
of elements of I with multiplicity which are elements of J.
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2.2 Partitions

As usual, a partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . . ) of non-negative
integers whose sum is n. We write P for the set of all partitions. When writing a parti-
tion, we usually group equal parts and omit zeroes, so that (42, 3, 13) represents the partition
(4, 4, 3, 1, 1, 1, 0, 0, . . . ). We use ∅ to denote the empty partition, i.e. the unique partition of 0.

If λ is a partition, then the conjugate partition λ′ is given by

λ′i =
∣∣∣∣{ j > 1

∣∣∣ λ j > i
}∣∣∣∣ .

If e is an integer greater than 1 and λ is a partition, then we say that λ is e-regular if there does
not exist i > 1 such that λi = λi+e−1 > 0. We say that λ is e-restricted if λi − λi+1 < e for all i, or
equivalently if λ′ is e-regular.

The Young diagram of a partition λ is the set

[λ] =
{
(i, j) ∈N2

∣∣∣ j 6 λi

}
,

whose elements are called nodes of λ. A node (i, j) of λ is removable if [λ] \ {(i, j)} is again the
Young diagram of a partition, while a pair (i, j) not in [λ] is an addable node if [λ] ∪ {(i, j)} is a
Young diagram. If (i, j) and (i′, j′) are addable or removable nodes of λ, then we say that (i, j)
is above (i′, j′) if i < i′.

With e fixed as above, we define the residue of any node or addable node (i, j) to be j−i Mod e.

Given two partitions λ and µ and k ∈ {0, . . . , e− 1}, we write λ k
→ µ to mean that [µ] is obtained

from [λ] by adding an addable node of residue k.

2.3 q-decomposition numbers

Suppose e is an integer greater than or equal to 2. The quantised enveloping algebraU = Uq(ŝle)
is an associative algebra over Q(q) which arises as a deformation of the universal enveloping
algebra of the Kac–Moody algebra ŝle. U has Chevalley generators ei, fi, qh for i ∈ Z/eZ and h
lying in the coroot lattice of ŝle; defining relations between these generators are well-known;
for example, see [LLT, §4.1]. The bar involution is the Q-linear involution ofU defined by

ei = ei, fi = fi, q = q−1, qh = q−h.

In this paper we shall be concerned with a particular U-module, namely the level 1 Fock
space F . As aQ(q)-vector space, this has a ‘standard’ basis {|λ〉 | λ ∈ P} indexed by the set of all
partitions. The U-module structure on F was originally described by Hayashi [H], and may
be found in [LLT, §4.2] and many other references; it will suffice for us to describe the action
of the generators fk. If λ is a partition, then fk|λ〉 is a linear combination of vectors |µ〉 indexed

by those partitions µ for which λ k
→ µ. Given such a partition µ, we write (i, j) for the node

added to [λ] to obtain [µ], and define N(λ, µ) to be the number of addable nodes of λ of residue
k above (i, j) minus the number of removable nodes of λ of residue k above (i, j). Then we have

fk|λ〉 =
∑
λ

k
→µ

qN(λ,µ)
|µ〉.
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The Fock space is of particular interest, because the submodule M generated by the vector
|∅〉 is isomorphic to the irreducible highest-weight representation of U with highest weight
Λ0. Accordingly, there is a bar involution on M, defined by |∅〉 = |∅〉 and um = u m for u ∈ U,
m ∈M.

Leclerc and Thibon [LT] found a way to extend this bar involution to the whole of F ; that
is, they defined a bar involution on the whole of F which extends the bar involution on M and
which is still compatible with the action ofU. Furthermore, they provided a way to compute
the image of a standard basis element |µ〉 under the bar involution, which shows that the
image |µ〉 of a standard basis element |µ〉 equals |µ〉 plus a linear combination of standard basis
elements indexed by partitions dominated by µ (see below for a definition of the dominance
order on partitions). This unitriangularity property of the bar involution means that one can
prove the following.

Theorem 2.1. [LT, Theorem 4.1] For each partition µ, there is a unique vector

G(µ) =
∑
λ∈P

de
λµ(q)|λ〉 ∈ F

such that:

• G(µ) = G(µ);

• de
µµ(q) = 1, while de

λµ(q) is a polynomial divisible by q for λ , µ.

The vectors G(µ) form a Q(q)-basis of F , which is called the canonical basis; this is a global
basis in the sense of Kashiwara [Ka].

This paper is chiefly concerned with computing the transition coefficients de
λµ(q) arising in

Theorem 2.1. These polynomials are known as q-decomposition numbers, in view of the following
theorem.

Theorem 2.2. Suppose λ and µ are partitions of n, and let ∆(λ) and L(µ) denote the corresponding
Weyl module and simple module for the ζ-Schur algebraSζ(n,n), where ζ is a primitive eth root of unity
in C. Then

[∆(λ) : L(µ)] = de
λ′µ′(1).

This theorem is due to Varagnolo and Vasserot [VV, §11, Theorem]; it generalises a version
for decomposition numbers of Iwahori–Hecke algebras conjectured by Lascoux, Leclerc and
Thibon and proved by Ariki [A, Theorem 4.4].

2.4 The Mullineux map

Fix an integer e > 2. Given any non-negative integer n, there is a bijection m from the
set of e-regular partitions of n to itself, known as the Mullineux map. This map depends
on the value of e, and we may write it as me if necessary. This map was introduced by
Mullineux in the case where e is a prime, in an attempt to solve the problem of tensoring a
simple module for the symmetric group in characteristic e with the one-dimensional signature
representation. Specifically, ifµ is an e-regular partition of n and Dµ is the corresponding simple
FeSn-module, then the module Dµ

⊗ sgn is also a simple module, and is therefore labelled



General runner removal and the Mullineux map 5

by an e-regular partition which we denote M(µ). Mullineux’s conjecture states that M(µ) =

m(µ) for all µ. This conjecture was proved by Ford and Kleshchev [FK], using Kleshchev’s
alternative combinatorial characterisation [Kl] of the map M. Kleshchev’s results have since
been generalised by Brundan [B] to Iwahori–Hecke algebras of type A at an eth root of unity
(where e need no longer be prime), and an analogue of the Mullineux conjecture holds in this
context as well.

Our interest in the Mullineux map derives from the following connection with q-decomposition
numbers; see the next section for the definition of the e-weight of a partition.

Proposition 2.3. [LLT, Theorem 7.2] Suppose λ and µ are partitions with e-weight w, and that µ is
e-regular. Then

de
λ′m(µ)(q) = qwde

λµ(q−1).

Understanding the Mullineux map will be very helpful for us in computing q-decomposition
numbers. Our main result concerning the Mullineux map is Theorem 3.5; this is proved in
Section 6, where a detailed description of the Mullineux map is given.

2.5 The abacus

Suppose λ is a partition, and r is an integer greater than or equal to λ′1. For i = 1, . . . , r set
βi = λi + r − i. The integers β1, . . . , βr are distinct, and we refer to the set Br(λ) = {β1, . . . , βr} as
the r-beta-set for λ.

Now we suppose e > 2, and take an abacus with e vertical runners numbered 0, . . . , e − 1
from left to right. On runner i we mark positions labelled with the integers i, i + e, i + 2e, . . .
from the top down. For example, if e = 4 then the abacus is marked as follows.

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11ppp ppp ppp ppp
Placing a bead on the abacus at position βi for each i = 1, . . . , r, we obtain an abacus display for
λ. In an abacus display, we call a position occupied if it contains a bead, and empty if it does not,
and we we say that position i is later than or after position j if i > j. For example, we may speak
of the ‘last occupied position’ on the abacus, meaning the position β1.

Taking an abacus display for λ and sliding all the beads up their runners as far as they will
go, we obtain an abacus display for a new partition, which is called the e-core of λ; this partition
is independent of the choice of abacus display (i.e. the choice of r). The total distance the beads
move when we slide them up to obtain the e-core of λ is the e-weight of λ. The e-weight and
e-core are of interest in this paper, because two standard basis vectors |λ〉 and |µ〉 lie in the same
weight space of F if and only if λ and µ have the same e-weight and e-core. (It is unfortunate
that the word ‘weight’ is conventionally used in two different ways in this subject; we hope
to avoid ambiguity by consistently saying ‘e-weight’, reserving ‘weight’ for the Lie-theoretic
term.) Moreover, we have the following statement concerning q-decomposition numbers; this
essentially says that each canonical basis vector is a weight vector in F .
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Proposition 2.4. [LT, §4] Suppose λ, µ ∈ P with de
λµ(q) , 0. Then λ and µ have the same e-core and

e-weight.

From the definition, we see that two partitions λ and µ have the same e-core if and only if
when we take abacus displays for λ and µ (with the same number of beads on each), there are
equal numbers of beads on corresponding runners.

The abacus formulation provides a way to compare different values of e. Suppose e and r
are chosen as above. Given k ∈ {0, . . . , e−1}, we set d = (r+k) Mod e, and we say that a partition
λ is k-empty if all the beads on runner d of the abacus display for λ are as high as possible; that
is, there is no t such that position d + te is occupied while d + (t− 1)e is empty. The way we have
defined this means that this definition does not depend on the choice of r. The term ‘k-empty’
derives from the fact λ is k-empty if and only if the kth component of the e-quotient of λ is the
empty partition; we refrain from defining and using e-quotients in this paper in order to avoid
over-complicating notation.

Throughout this paper, if we are given such a triple (λ, k, r), we set d = (k + r) Mod e, and
we define c to be the number of beads on runner d of the abacus display for λ. The assertion
that λ is k-empty means that these beads lie in positions d, d + e, . . . , d + (c − 1)e.

Example. Suppose e = 4, and λ is the partition (14, 11, 9, 5, 4, 15). Taking r = 14, we obtain the
following abacus display for λ. u u u uu u uu uu uu uu
We see that λ is k-empty for both k = 0 and k = 3. For k = 0, we have d = c = 2, while for k = 3
we have d = 1, c = 4.

2.6 The dominance order

Now we introduce a partial order on the set of partitions, which we shall use in place of
the usual dominance order. First we need a partial order on the set of multisets of integers;
this is sometimes referred to as the Bruhat order. Suppose I = {i1, . . . , is} and J = { j1, . . . , jt} are
multisets of non-negative integers. We write I < J if and only if s = t and there is a permutation
σ ∈ Ss such that ik > jσ(k) for all k. It is easy to see that < is a partial order.

Now for any finite multiset B of non-negative integers, we define the e-extension of B to be
the multiset Xe(B) of non-negative integers in which the multiplicity of an integer z is∣∣∣B ∩ {z, z + e, z + 2e, . . . }

∣∣∣.
If λ is a partition and r a large integer, we define the r-beta-set Br(λ) for λ as above, and then
define the extended beta-set

Xe
r(λ) = Xe(Br(λ)).

Given two partitions λ and µ, we say that µ dominates λ (and write µ Q λ) if λ and µ have
the same e-core and Xe

r(µ) < Xe
r(λ). We note that this order does not depend on the choice of r.

Indeed, Xe
r+1(λ) may be obtained from Xe

r(λ) by increasing each entry by 1, and then adding b
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copies of the integer 0, where b is the number of beads on runner 0 of the abacus display for λ
with r + 1 beads. From this it is easy to see that Xe

r(µ) < Xe
r(λ) if and only if Xe

r+1(µ) < Xe
r+1(λ).

We use Q to denote this order throughout this paper; the usual dominance order will not
be used. Our dominance order depends on the integer e, and we may write Qe where there is
a possibility of ambiguity.

2.7 The Scopes equivalence

In this section, we briefly recall the Scopes equivalence, as it relates to q-decomposition
numbers. Let us define a block to be an equivalence class of partitions under the equivalence
relation ‘has the same e-core and e-weight as’. In view of Proposition 2.4, any non-zero q-
decomposition number can be regarded as a q-decomposition number for (partitions lying in)
a particular block. We define the e-core and e-weight of a block to be the common e-core and
e-weight of the partitions in that block. It is easy to see (either combinatorially, or using the fact
that F has finite-dimensional weight spaces) that any block is finite.

Scopes defined an equivalence relation on the set of blocks of a given e-weight, for a given
value of e. To describe this, suppose B is a block with e-weight w and core β. Suppose that
for some k ∈ {0, . . . , e − 1} β has a addable nodes of residue k for some a > w, and let γ be the
partition obtained by adding all these addable nodes. Then γ is also an e-core; we let C denote
the block with e-weight w and core γ. We say that B and C are Scopes equivalent, and we make
the Scopes equivalence into an equivalence relation by extending transitively and reflexively.

If B and C are as above, then any λ ∈ B has exactly a addable nodes of residue k and no
removable nodes of this residue. If we define Φ(λ) to be the partition obtained by adding these
addable nodes, then Φ is a bijection between B and C; these results are proved in [S, §2]. The
condition on addable and removable nodes, together with the action of fk described in §2.3,
implies that for any λ ∈ B we have

f (a)
k |λ〉 = |Φ(λ)〉,

where f (a)
k denotes the quantum divided power f a

k /[a]!. This implies the following.

Proposition 2.5. [LM, Theorem 20] Let B and C be as above, and take λ, µ ∈ B. Then

de
λµ(q) = de

Φ(λ)Φ(µ)(q).

Proof. Since the q-decomposition number de
νµ(q) is zero unless µ and ν have the same e-core

and e-weight, we can write
G(µ) =

∑
ν∈B

de
νµ(q)|ν〉.

Then by the above remarks we have

f (a)
k G(µ) =

∑
ν∈B

de
νµ(q)|Φ(ν)〉.

This vector is invariant under the bar involution (since G(µ) is, and the bar involution is com-
patible with the action of U), and hence by the uniqueness statement in Theorem 2.1 must
equal G(Φ(µ)). �

This gives us an important finiteness result for q-decomposition numbers.
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Corollary 2.6. Suppose e,w are fixed, and let

De
w =

{
de
λµ(q)

∣∣∣∣ λ, µ partitions of e-weight w
}
.

Then De
w is finite, and there is a finite algorithm to compute it.

Proof. For any block B, write

DB =
{

de
λµ(q)

∣∣∣∣ λ, µ ∈ B
}
.

Then by Proposition 2.4, we have
De

w = {0} ∪
⋃

B

DB,

taking the union over all blocks of e-weight w. If B and C are as in Proposition 2.5, then by
that result we have DB = DC; extending transitively, we get DB = DC whenever B and C are
Scopes equivalent blocks. So to compute De

w it suffices to consider just one block in each Scopes
equivalence class. Scopes [S, Theorem 1] shows that for given w, e there are only finitely many
classes (and indicates how to find a representative of each class), and so one only has finitely
many blocks to consider. But any block B is finite, and so the set DB is finite and may be found
with a finite computation. �

3 Removing a runner from the abacus – the main results

In this section, we describe the procedure of removing a runner from the abacus, and state
our main theorems.

3.1 The runner removal theorems

Suppose e > 3, k ∈ {0, . . . , e − 1} and λ is a k-empty partition. Choose a large integer r, and
let c, d be as defined in §2.5. Construct the abacus display for λ with r beads, and then remove
runner d. The resulting configuration will be the abacus display, with e − 1 runners and r − c
beads, for a partition which we denote λ−k. It is a simple exercise to show that the definition of
λ−k does not depend on the choice of r.

We describe this construction in terms of beta-sets. Define a function

φd : {z ∈N0 | z . d (mod e)} −→N0

by setting

φd(z) = z −
⌊

z + e − d
e

⌋
.

Then φd is an order-preserving bijection. If λ is k-empty, then the r-beta-set for λ consists of
the integers d, d + e, . . . , d + (c − 1)e, together with some integers h1, . . . , hr−c not congruent to d
modulo e. The set {φd(h1), . . . , φd(hr−c)} is then the (r − c)-beta-set for λ−k.

The idea of removing a runner from the abacus was introduced by James and Mathas,
who proved the first ‘runner removal theorem’ for q-decomposition numbers; the author
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subsequently proved a ‘conjugate’ theorem to the James–Mathas theorem. The idea of these
theorems is that if λ and µ are partitions which are k-empty and satisfy some other specified
condition, then there is an equality of q-decomposition numbers

de
λµ(q) = de−1

λ−kµ−k(q).

To give precise statements, we suppose that r, k are chosen as above, and set d = (r + k) Mod e.

Theorem 3.1. [JM, Theorem 4.5] Suppose e > 3 and λ and µ are k-empty partitions with the same
e-core and e-weight. Suppose that in the r-bead abacus displays for each of λ and µ the last occupied
position on runner d is earlier than the first empty position on any runner. Then

de
λµ(q) = de−1

λ−kµ−k(q).

Theorem 3.2. [F2, Theorem 4.1] Suppose e > 3 and λ and µ are k-empty partitions with the same
e-core and e-weight. Suppose that in the r-bead abacus displays for each of λ and µ the first empty
position on runner d is later than the last occupied position on any runner. Then

de
λµ(q) = de−1

λ−kµ−k(q).

The theorem we shall prove in this paper generalises both of these theorems; the way we
achieve this generality is by finding a condition which is actually a relation between λ and µ
rather than just an absolute condition which both λ and µ satisfy. In order to state our theorem,
we need to introduce some more notation; the following is the key definition in this paper.

Definition 3.3. Suppose λ is k-empty for some k; choose a large r, and let c, d be as in §2.5.
Construct the extended beta-set Xe

r(λ) as in §2.6, and then define Lk(λ) to be the number of
elements of Xe

r(λ) (with multiplicity) which are greater than d + ce.

It is straightforward to show that the definition of Lk(λ) does not depend on the choice of
r. Now we can state our main theorem.

Theorem 3.4. Suppose e > 3, λ andµ are partitions with the same e-core and e-weight, and k ∈ {0, . . . , e−1}.
If λ and µ are k-empty and Lk(λ) = Lk(µ), then

de
λµ(q) = de−1

λ−kµ−k(q).

Remark. We comment that the hypothesis ‘λ and µ have the same e-core and e-weight’ in
Theorems 3.1, 3.2 and 3.4 is not at all restrictive from the point of view of computing q-
decomposition numbers, because of Proposition 2.4. We include the hypothesis about the
e-cores of λ and µ in order to avoid counterexamples where the abacus displays for λ and µ
have different numbers of beads on runner d; and we include the hypothesis concerning the
e-weights of λ and µ so that Theorem 3.4 is actually a generalisation of Theorem 3.1 (see the
remark following Corollary 4.9 below).

Example. Suppose e = 4, λ = (7, 4, 2, 12) and µ = (11, 2, 12). Taking r = 9, we obtain the
following abacus displays:

λu u u uu uu uu
µu u u uu u uu u
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We see that λ and µ both have the same 4-core and are 1-empty. We compute

X4
9(λ) = {0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 7, 8, 11, 11, 15},

X4
9(µ) = {0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 7, 9, 11, 15, 19}.

So, taking c = d = 2, we have L1(λ) = L1(µ) = 3, and hence

d4
λµ(q) = d3

λ−1µ−1(q),

where

λ−1 =

u u uuu uu = (5, 3, 2, 1), µ−1 =

u u uu uu u = (8, 2, 1).

Theorem 3.4 will be proved in Section 5. We now give our second main theorem, which
concerns the relationship between the Mullineux map and the function Lk. Fix e > 2, and let m
denote the Mullineux map (see §2.4).

Theorem 3.5. Supposeµ is an e-regular partition. Ifµ and m(µ)′ are both k-empty, thenLk(µ) = Lk(m(µ)′).

Theorem 3.5 will be proved in Section 6, where a detailed description of the Mullineux map
will be given.

3.2 Consequences for the computation of q-decomposition numbers

For the rest of this section, we examine the consequences of Theorems 3.4 and 3.5 for the
computation of q-decomposition numbers. In order to get to our third main result as quickly
as possible, we quote some results which we do not prove until later.

First we need a result which relates q-decomposition numbers with the dominance order
and the Mullineux map.

Lemma 3.6. Suppose λ and µ are partitions with µ e-regular. If de
λµ(q) , 0, then

µ Q λ Q m(µ)′.

Proof. The left-hand inequality is a standard result if Q is taken to be the usual dominance
order; that it holds with our refined dominance order is proved in Proposition 5.3 below. The
right-hand inequality follows from this result, together with Proposition 2.3 and the fact that
conjugation of partitions reverses the dominance order (Proposition 4.2). �

Now we prove a useful lemma which seems to be well-known but which the author cannot
find in print.

Proposition 3.7. Suppose λ and µ are partitions of e-weight w. If µ is e-regular and λ = m(µ)′, then
de
λµ(q) = qw. Otherwise, de

λµ(q) has degree at most w − 1.
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Proof. When µ is e-regular, this is a straightforward consequence of Proposition 2.3, since
de
λ′m(µ)(q) is a polynomial which is divisible by q unless λ′ = m(µ). So we assume that µ is

e-singular, and for a contradiction we suppose de
λµ(q) has degree at least w.

Taking abacus displays for λ and µ, we add a new runner at the left of each display,
containing no beads. Let λ+ and µ+ be the partitions defined by the resulting displays. Then
by Theorem 3.1 we have de

λµ(q) = de+1
λ+µ+(q). λ+ and µ+ obviously have (e + 1)-weight w and µ+ is

(e+1)-regular, and so by the ‘regular’ case of the present proposition we see that λ+ = me+1(µ+)′.
This implies in particular that λ+ is (e + 1)-restricted, and it is easy to see that this implies that
λ is e-restricted. So we can define ξ = m(λ′); then ξ is e-regular, and de

λξ(q) = qw. Let ξ+ be the
partition obtained by adding an empty runner at the left of the abacus display for ξ; then ξ+ is
(e + 1)-regular, and we have de+1

λ+ξ+(q) = de
λξ(q) = qw. Applying the ‘regular’ part of the present

proposition again, we find that λ+ = me+1(ξ+)′. So

ξ+ = me+1((λ+)′) = µ+,

and hence ξ = µ. But this means that µ is e-regular; contradiction. �

Now we can combine Theorems 3.4 and 3.5.

Proposition 3.8. Suppose e > 3 and k ∈ {0, . . . , e − 1}. Suppose that µ is an e-regular partition such
that both µ and m(µ)′ are k-empty. Then

1. µ−k is (e − 1)-regular, with me−1(µ−k)′ = (m(µ)′)−k, and

2. for every partition λ with de
λµ(q) , 0, we have de

λµ(q) = de−1
λ−kµ−k(q).

Proof. We prove (2) first. Since de
λµ(q) , 0, we have µ Q λ Q m(µ)′ by Lemma 3.6, so by Lemma

4.6 below and Theorem 3.5 λ is k-empty and Lk(λ) = Lk(µ). Hence by Theorem 3.4 we have
de−1
λ−kµ−k(q) = de

λµ(q).

Now we prove (1). Putting λ = m(µ)′ in (2), we have de−1
λ−kµ−k(q) = qw, where w is the e-weight

of µ (and therefore the (e − 1)-weight of µ−k). Now (1) follows from Proposition 3.7. �

Now we can show that every q-decomposition number which occurs for partitions of e-
weight w occurs with e 6 2w.

Corollary 3.9. Suppose e > 2w > 0. If λ, µ are partitions with e-weight w and with de
λµ(q) , 0, then

there are partitions ξ, ρ of (2w)-weight w such that de
λµ(q) = d2w

ξρ (q).

Proof. We begin with the case where µ is e-regular. There are at least e − w values of k for
which µ is k-empty, and at least e − w values for which m(µ)′ is k-empty. Since e > 2w, there
must therefore be some k such that µ and m(µ)′ are both k-empty. By Proposition 3.8, µ−k is
(e− 1)-regular and de

λµ(q) equals de−1
λ−kµ−k(q). By induction on e, this equals d2w

ξρ (q) for some ξ, ρ of
(2w)-weight w.

Now we consider the case where µ is e-singular. In this case, we take abacus displays for λ
and µ, and add an empty runner at the left of each display. The resulting partitions λ+ and µ+

both have (e + 1)-weight w, and µ+ is (e + 1)-regular, and we have de
λµ(q) = de+1

λ+µ+(q). So we may



12 Matthew Fayers

apply the ‘regular’ case of the present proposition, replacing λ, µ, e with λ+, µ+, e + 1. �

This yields our third main result.

Corollary 3.10. Fix w > 0. Then the set{
de
λµ(q)

∣∣∣∣ e > 2, λ, µ partitions of e-weight w
}

is finite, and there is a finite algorithm to compute it.

Proof. By Corollary 3.9, the given set equals{
de
λµ(q)

∣∣∣∣ 2 6 e 6 2w, λ, µ partitions of e-weight w
}

= D2
w ∪D3

w ∪ · · · ∪D2w
w ,

where De
w is given in Corollary 2.6. Now Corollary 2.6 gives the result. �

As an application of Corollary 3.10, consider the case w = 3. In this case, one can check
that each q-decomposition number de

λµ(q) is always zero or a monic monomial; specifically, it

always equals 0, 1, q, q2 or q3. This is a significant part of a more general theorem (namely,
that all decomposition numbers for weight three blocks of Iwahori–Hecke algebras of type A
in characteristic at least 5 are either 0 or 1) which presented great difficulties for several years,
until finally proved by the author [F1]. Using the above results, more than half of the proof in
[F1] may be replaced by a short computer calculation.

4 Combinatorial results

In this section, we examine the combinatorics of dominance and runner removal, and prove
some simple results which will be useful in the rest of the paper.

4.1 Conjugation and the dominance order

First we examine how conjugation of partitions relates to the abacus and the dominance
order. Supposeλ is a partition and r, s are large integers. LetBr(λ) = {β1, . . . , βr} be the r-beta-set
for λ, and let Bs(λ′) = {γ1, . . . , γs} be the s-beta-set for λ′1. The following relationship between
these beta-sets is well-known and easy to prove.

Lemma 4.1. The set {0, . . . , r+s−1} is the disjoint union of {β1, . . . , βr} and {r+s−1−γ1, . . . , r+s−1−γs}.

To express this result in terms of abacus displays, suppose that r + s ≡ 0 (mod e). Then
the s-bead abacus display for λ′ may be obtained from the r-bead abacus display for λ by
truncating the diagram after position r + s− 1, rotating through 180◦, replacing each bead with
an empty space, and replacing each empty space with a bead. As a consequence, we see that
the e-core of λ′ is the conjugate of the e-core of λ; hence two partitions λ and µ have the same
e-core if and only if λ′ and µ′ have the same e-core.
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Example. Suppose e = 3, and λ = (9, 7, 42, 2, 13), so that λ′ = (8, 5, 42, 23, 12). Abacus displays
for λ and λ′, with 11 and 13 beads respectively, are as follows, and Lemma 4.1 can easily be
checked.

λu u uu uu uuu uu

λ′u u uu uu uu uu uu u
One consequence of Lemma 4.1 is the fact that conjugation reverses the dominance order.

Proposition 4.2. Suppose λ and µ are partitions. Then µ Q λ if and only if λ′ Q µ′.

To prove this, we give an alternative characterisation of the dominance order. Given a
partition λ and a large integer r, we define the weight multisetWe

r(λ) as follows. We construct
the abacus display for λ with r beads, and slide the beads up their runners to obtain an abacus
display for the e-core of λ. Each time we slide a bead up one space, from position b to position
b − e, say, we add a copy of the integer b to the multisetWe

r(λ).
Note that when we slide a bead from position b to position b − e, we remove a copy of b

from the extended beta-set Xe
r(λ). So if we let κ denote the e-core of λ, then we see that

Xe
r(λ) = Xe

r(κ) tWe
r(λ).

Example. Suppose e = 2 and λ = (33). Then κ = (1), and taking r = 5 we get the following
abacus displays for λ and κ.

λu uuu u
κu uu uu

We can compute

X2
5(κ) = {0, 0, 1, 1, 1, 2, 3, 3, 5}.

W2
5(λ) = {4, 5, 6, 7},

X2
5(λ) = {0, 0, 1, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7}.

Now it is easy to see the following.

Lemma 4.3. Suppose λ and µ are partitions with the same e-core, and r is a large integer. Then µ Q λ
if and only ifWe

r(µ) <We
r(λ).

Notice that the cardinality ofWe
r(λ) is the e-weight of λ; so Lemma 4.3 implies in particular

that if µ Q λ then λ and µ have the same e-weight.

Proof of Proposition 4.2. Assume λ and µ have the same e-core, and choose large integers
r, s. Define â = r + s + e − 1 − a for any integer a. By Lemma 4.3, it suffices to show that if
We

r(µ) < We
r(λ) then We

s(λ′) < We
s(µ′). But by Lemma 4.1, we see that moving a bead from
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position b to position b − e in the r-bead abacus display for λ corresponds to moving a bead
from position b̂ to position b̂ − e in the s-bead abacus display for λ′. So if We

r(λ) = {b1, . . . , bw}

andWe
r(µ) = {c1, . . . , cw}, then we have

We
s(λ
′) = {b̂1, . . . , b̂w}, We

s(µ
′) = {ĉ1, . . . , ĉw}.

Now if σ ∈ Sw is such that ci > bσ(i) for all i, then b̂i > ĉσ−1(i) for all i. �

4.2 Runner removal and the dominance order

Lemma 4.4. Suppose λ is a k-empty partition. Then the map ξ 7→ ξ−k is a bijection from the set{
ξ ∈ P

∣∣∣ ξ is k-empty and has the same e-core as λ
}

to the set {
π ∈ P

∣∣∣ π has the same (e − 1)-core as λ−k
}
.

Furthermore, if ξ is a k-empty partition with the same e-core as λ, then we have ξ Qe λ if and only if
ξ−k Qe−1 λ−k.

Proof. The first statement is obvious from the construction. For the second statement, we use
the characterisation of the dominance order in terms of weight multisets from §4.1, and observe
that ifWe

r(λ) = {b1, . . . , bw}, then b1, . . . , bw . d (mod e) and

We−1
r−c (λ−k) =

{
φd(b1), . . . , φd(bw)

}
.

A similar statement applies toWe−1
r−c (ξ), and the fact thatφd is order-preserving gives the result. �

Lemma 4.5. Suppose λ and µ are k-empty partitions satisfying µ Q λ. Then Lk(µ) > Lk(λ).

Proof. This is immediate from the definitions. �

Example. We now demonstrate why it is important that we use our coarse version of the
dominance order in this paper. Suppose e = 9, µ = (9, 52, 24) and λ = (72, 33, 14). Taking r = 9,
we get beta-sets

B9(µ) = {17, 12, 11, 7, 6, 5, 4, 1, 0},

B9(λ) = {15, 14, 9, 8, 7, 4, 3, 2, 1},

giving abacus displays as follows.

µu u u u u uu u u
λu u u u u uu u u
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We see that λ and µ are 4-empty. The extended beta-sets are

X9
9(µ) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 17},

X9
9(λ) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15},

from which we see that L4(µ) = 1, L4(λ) = 2 and µ S λ. But it is easy to check that µ Q λ in the
usual dominance order. So in Lemma 4.5 (and in everything that follows from it) we need to
use our dominance order.

Lemma 4.6. Suppose λ and µ are k-empty partitions satisfying µ Q λ and Lk(λ) = Lk(µ). Then any
partition ξ such that µ Q ξ Q λ is k-empty, with Lk(ξ) = Lk(µ). Furthermore, the map ξ 7→ ξ−k defines
a bijection between the sets

{ξ ∈ P | µ Qe ξ Qe λ}

and
{π ∈ P | µ−k Qe−1 π Qe−1 λ

−k
}.

Proof. It suffices to prove that ξ is k-empty; the other statements then follow from Lemmata 4.4
and 4.5. So suppose for a contradiction that ξ is not k-empty. The fact that µ Q ξ Q λ implies
that λ, ξ, µ all have the same e-core. So if we take a large integer r and define c, d as in §2.5, then
c is the number of beads on runner d in the abacus display for each of λ, ξ, µ. The fact that ξ is
not k-empty implies that in the abacus display for ξ, there is a bead at position d + te for some
t > c. In particular, this means that the extended beta-set Xe

r(ξ) contains the integer d + ce.
Write

Xe
r(λ) = {l1, . . . , ls},

Xe
r(ξ) = {x1, . . . , xs},

Xe
r(µ) = {m1, . . . ,ms},

choosing the ordering so that li 6 xi 6 mi for each i, and x1 = d + ce. Recall that

Lk(λ) =
∣∣∣{i | li > d + ce}

∣∣∣
and similarly for µ. Now given our choice of numbering, we see that

{i | li > d + ce} ⊂ {i | mi > d + ce};

the inclusion is strict because l1 < d + ce < m1. So Lk(λ) < Lk(µ), which is a contradiction. �

4.3 Runner removal and conjugation

Now we examine the relationship between runner removal and conjugation. We begin with
a lemma which gives an alternative way to compute Lk(λ); the proof of this is an easy exercise.

Lemma 4.7. Suppose λ is a k-empty partition and r is a large integer. Let c, d be as defined in §2.5, and
for any integer β let

β̊ =


⌊
β − d − (c − 1)e

e

⌋
(β > d + (c − 1)e)

0 (β < d + (c − 1)e).
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Then
Lk(λ) =

∑
β∈Br(λ)

β̊.

Lemma 4.8. Suppose λ is a partition with e-core κ and e-weight w, and k ∈ {0, . . . , e − 1}. Then λ is
k-empty if and only if λ′ is (e − 1 − k)-empty. If this is the case, then

Lk(λ) + Le−1−k(λ′) = Lk(κ) + Le−1−k(κ′) + w.

Proof. We construct abacus displays for λ and λ′ using r beads and s beads respectively, where
for convenience we choose r and s such that e | r + s. Let c, d be as defined in §2.5, and set

ď = e − 1 − d, č =
r + s

e
− c.

Then ď = (s + (e − 1 − k)) Mod e, and by Lemma 4.1 there are č beads on runner ď of the abacus
display forλ′. λ′ is (e−1−k)-empty if and only if these beads are in positions ď, ď+e, . . . , ď+(č−1)e.
By Lemma 4.1, this is equivalent to the condition that the beads on runner d of the abacus display
for λ are in positions d, d + e, . . . , d + (c − 1)e, i.e. λ is k-empty.

Now suppose λ is k-empty. Assuming w > 0, we may slide a bead one space up its runner,
to obtain a new partition ξ. ξ has e-core κ and e-weight w − 1 and is k-empty, so by induction
on w it suffices to show that Lk(λ) + Le−1−k(λ′) = Lk(ξ) + Le−1−k(ξ′) + 1.

Suppose that to obtain ξ from λ we move a bead from position b to position b − e. Then we
have Xe

r(ξ) = Xe
r(λ) \ {b}, and therefore

Lk(ξ) =

Lk(λ) (b < d + ce)

Lk(λ) − 1 (b > d + ce).

By Lemma 4.1, an abacus display for ξ′ is obtained from an abacus display for λ′ by moving a
bead from position r + s − 1 − b + e to position r + s − 1 − b, so

Xe
s(ξ
′) = Xe

s(λ
′) \ {r + s − 1 − b + e}.

By definition Le−1−k(λ′) is the number of elements of Xe
s(λ′) greater than ď + če, so

Le−1−k(ξ′) =

Le−1−k(λ′) (r + s − 1 − b + e < ď + če)

Le−1−k(λ′) − 1 (r + s − 1 − b + e > ď + če).

Retracing the definitions gives r + s − 1 − b + e < ď + če if and only if b > d + ce, and the result
follows. �

Now the following is immediate.

Corollary 4.9. Suppose λ and µ are k-empty partitions with the same e-core and the same e-weight.
Then

Lk(λ) + Le−1−k(λ′) = Lk(µ) + Le−1−k(µ′).

In particular, Lk(λ) = Lk(µ) if and only if Le−1−k(λ′) = Le−1−k(µ′).
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Remark. We can now show that Theorem 3.4 is a generalisation of Theorems 3.1 and 3.2. To
see this, it suffices to show that if λ and µ satisfy the conditions of one of these theorems then
Lk(λ) = Lk(µ). For Theorem 3.2 this is easy, since by Lemma 4.7 the condition in that theorem
implies that Lk(λ) = 0 = Lk(µ). For Theorem 3.1, we note that if λ and µ satisfy the given
conditions, then (by Lemma 4.1) the partitions λ′ and µ′ satisfy the hypotheses of Theorem 3.2
(with k replaced by e − 1 − k). Hence Le−1−k(λ′) = 0 = Le−1−k(µ′), and so by Corollary 4.9 we
have Lk(λ) = Lk(µ).

4.4 An alternative characterisation

The next result in this section gives an alternative characterisation of the relation Lk(λ) =

Lk(µ), for two partitions λ and µ. Given a large integer r, define c, d as in §2.5, and set

nr,k(λ) =
∣∣∣∣{a, b ∈ Br(λ)

∣∣∣ a < b, a ≡ d . b (mod e)
}∣∣∣∣.

Lemma 4.10. Suppose λ is a k-empty partition, with e-weight w and e-core κ. If r is a large integer,
then

Lk(λ) + nr,k(λ) = Lk(κ) + nr,k(κ) + w.

Proof. If λ = κ then there is nothing to prove, so we assume otherwise. Then in the abacus
display for λ with r beads, we may slide a bead up its runner, from position b to position b − e,
say, to obtain a new partition ξwith e-weight w− 1. By induction on w, it suffices to prove that

Lk(λ) + nr,k(λ) = Lk(ξ) + nr,k(ξ) + 1.

The r-beta-set Br(λ) consists of the integers d, d + e, . . . , d + (c − 1)e, together with r − c integers
not congruent to d modulo e; the same statement applies to Br(ξ). Write

Nr,k(λ) =
{
a, b ∈ Br(λ)

∣∣∣ a < b, a ≡ d . b (mod e)
}
,

Nr,k(ξ) =
{
a, b ∈ Br(ξ)

∣∣∣ a < b, a ≡ d . b (mod e)
}
.

Suppose first that b > d + ce. Then we have Lk(λ) − Lk(ξ) = 1 by Lemma 4.7. On the other
hand, both b and b − e are greater than all of d, d + e, . . . , d + (c − 1)e, so we have

Nr,k(ξ) = Nr,k(λ)∪
{
(d, b − e), (d + e, b − e), . . . , (d + (c − 1)e, b − e)

}
\

{
(d, b), (d + e, b), . . . , (d + (c − 1)e, b)

}
and nr,k(λ) = nr,k(ξ).

Alternatively, suppose b < d + ce. Then Lk(λ) = Lk(ξ) by Lemma 4.7. Let a be the largest
integer congruent to d modulo e which is less than b; that is, a = b − ((b − d) Mod e). Since
b < d + ce, we have a ∈ Br(λ) and a ∈ Br(ξ), so

Nr,k(ξ) = Nr,k(λ)∪
{
(d, b − e), (d + e, b − e), . . . , (a − e, b − e)

}
\

{
(d, b), (d + e, b), . . . , (a, b)

}
and nr,k(λ) = nr,k(ξ) + 1. �

This implies the following.
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Corollary 4.11. Suppose λ and µ are k-empty partitions with the same e-core and the same e-weight.
Then Lk(λ) = Lk(µ) if and only if nr,k(λ) = nr,k(µ).

5 Canonical bases and q-decomposition numbers

In this section, we prove Theorem 3.4. In order to do this, we must give a detailed description
of how to compute the q-decomposition numbers. The method we use here is via a direct
computation of the bar involution.

Our set-up is largely based on [LT], where the Fock space is realised as the space of semi-
infinite wedges (of a fixed charge) modulo ordering relations; this realisation is due to Kashiwara,
Miwa and Stern [KMS]. Our treatment actually uses finite wedges; for each r, we define the
truncated Fock spaceF e

r to be the span of wedges of length r modulo the ordering relations, and
we define a bar involution on F e

r . Given a partition µ, there is a corresponding basis element
|µ〉 in F e

r for any r > µ′1; moreover, the image of |µ〉 under the bar involution, when written as
a linear combination of basis elements |λ〉, is independent of r, provided r is sufficiently large
(in fact, r > |µ| is sufficient; this stability result is implicit in the description in [LT] of the bar
involution). So for a given partition µ we can define |µ〉 in the Fock space F by taking a value
of r which is large relative to µ. This defines the bar involution on the whole of the Fock space,
and hence the canonical basis and the q-decomposition numbers.

5.1 The truncated Fock space and the bar involution

Fix a positive integer r, and define an r-wedge to be a symbol of the form

i1 ∧ i2 ∧ . . . ∧ ir ,

where i1, . . . , ir are non-negative integers. The r-wedge space is the Q(q)-vector space with the
set of all r-wedges as a basis. We say that the r-wedge i1 ∧ . . . ∧ ir is ordered if i1 > · · · > ir.
Given e > 2, we impose commutation relations on the r-wedge space, depending on our fixed
integer e > 2, as follows. First suppose that r = 2 and l,m are non-negative integers with l 6 m.
If l ≡ m (mod e), then we set

l ∧ m = − m ∧ l .

If l . m (mod e), then we define i = (m − l) Mod e, and set

l ∧ m = −q−1 m ∧ l + (q−2
− 1)

(
m − i ∧ l + i

− q−1 m − e ∧ l + e

+ q−2 m − e − i ∧ l + e + i

− q−3 m − 2e ∧ l + 2e

+ . . .
)
,

where the summation on the right continues as long as the terms are ordered. For r > 2, we
impose the above commutation relations in every adjacent pair of positions. The truncated Fock
space F e

r is defined to be the r-wedge space modulo the commutation relations.
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Now suppose µ is a partition, and r > µ′1. Write Br(µ) = {β1, . . . , βr} with β1 > · · · > βr, and
define

|µ〉 = β1 ∧ . . . ∧ βr .

Clearly, any ordered r-wedge has the form |λ〉 for some partition λwith λ′1 6 r. Any unordered
r-wedge can be uniquely written as a linear combination of ordered r-wedges, so the elements
|λ〉with λ′1 6 r form a basis for F e

r , which we call the standard basis.
Now we can define the bar involution. Given a partitionµwithµ′1 6 r, let |µ〉 = β1 ∧. . .∧ βr

as above, and let |̂µ〉 be the reversed wedge βr ∧ . . . ∧ β1 . Write |̂µ〉 as a linear combination
of ordered wedges using the commutation relations:

|̂µ〉 =
∑
λ

bλµ(q)|λ〉.

The coefficient bµµ(q) is easy to compute (an expression is given in [LT, §3]) and in particular is
non-zero. So we can normalise by defining aλµ(q) = bλµ(q)

/
bµµ(q) for all λ, µ, and setting

|µ〉 =
∑
λ

ae
λµ(q)|λ〉.

Example. Take e = 3, r = 4 and µ = (4). Then |̂µ〉 = 0 ∧ 1 ∧ 2 ∧ 7 , and applying the
commutation relations we find that this equals

q−5 7 ∧ 2 ∧ 1 ∧ 0 + (q−4
− q−6) 5 ∧ 4 ∧ 1 ∧ 0 + (q−7 + q−5) 4 ∧ 3 ∧ 2 ∧ 1 .

Multiplying by q5, we obtain

|(4)〉 = |(4)〉 + (q − q−1)|(22)〉 + (q−2
− 1)|(14)〉.

As mentioned above, the coefficients ae
λµ(q) are independent of the choice of r, provided r

is sufficiently large. So we may define the bar involution on the full Fock space F : for each
partition µwe define |µ〉 by computing the coefficients aλµ(q) in F e

r for sufficiently large r; then
we extend semi-linearly to the whole of F , i.e. given coefficients cµ(q) ∈ Q(q) we set∑

µ

cµ(q)|µ〉 =
∑
µ

cµ(q−1)|µ〉.

As mentioned in §2.3 (and as we shall shortly prove), the coefficient ae
λµ(q) is zero unless

µ Q λ, and by construction the coefficient ae
µµ(q) equals 1. So the canonical basis of F and the q-

decomposition numbers de
λµ(q) may be defined as in Theorem 2.1, and there is a straightforward

algorithm to compute them. From this construction of the canonical basis, it follows that
de
λµ(q) = 0 unless µ Q λ, and that de

λµ(q) depends only on the coefficients ae
ρξ(q) for µ Q ξ Q ρ Q

λ; the proof of Theorem 3.4 essentially rests on these statements.
Now we prove the promised results concerning the dominance order. Recall from §2.6 the

partial order < and the definition of the e-extension of a multiset.
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Lemma 5.1. Suppose i1 ∧ . . . ∧ ir is any r-wedge, and write it as a linear combination of ordered
wedges:

i1 ∧ . . . ∧ ir =
∑

j1>···> jr

c j1... jr(q) j1 ∧ . . . ∧ jr .

Then for any j1 > · · · > jr with c j1... jr , 0, the following statements hold.

1. j1 6 max{i1, . . . , ir} and jr > min{i1, . . . , ir}.

2. The multisets
{i1 Mod e, . . . , ir Mod e}, { j1 Mod e, . . . , jr Mod e}

are equal.

3. Xe(i1, . . . , ir) < Xe( j1, . . . , jr).

Proof. Define A(i1, . . . , ir) =
∑

16k<l6r(ik − il − 1)2, and proceed by induction on A(i1, . . . , ir). If
i1 ∧ . . . ∧ ir is ordered then the lemma is trivial, so suppose otherwise and choose k such
that ik 6 ik+1. If ik = ik+1, then i1 ∧ . . . ∧ ir = 0 and again there is nothing to prove; so we
can assume ik < ik+1. Applying the commutation relations in positions k, k + 1, we can write
i1 ∧ . . . ∧ ir as a linear combination of wedges of the form

i1 ∧ . . . ∧ ik−1 ∧ jk ∧ jk+1 ∧ ik+2 ∧ . . . ∧ ir

with jk > jk+1. To prove the lemma, it suffices to show that for any such jk, jk+1 we have:

0. A(i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir) < A(i1, . . . , ir);

1. max{i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir} 6 max{i1, . . . , ir} and
min{i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir} > min{i1, . . . , ir};

2. jk, jk+1 are congruent to ik, ik+1 in some order, modulo e.

3. Xe(i1, . . . , ir) < Xe(i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir).

(0) is a simple exercise in inequalities, using the facts

ik + ik+1 = jk + jk+1 and ik+1 > jk > jk+1 > ik (†)

which are immediate from the commutation relations. (1) also follows from (†), and (2) is
inherent in the commutation relations. So we are left with (3). We suppose jk ≡ ik (mod e); the
case jk ≡ ik+1 is similar. (†) and (2) imply that the multiset Xe(i1, . . . , ik−1, jk, jk+1, ik+2, . . . , ir) may
be obtained from Xe(i1, . . . , ir) by adding a copy of each of the integers ik + e, ik + 2e, . . . , jk, and
removing a copy of each of jk+1 + e, jk+1 + 2e, . . . , ik+1. We have

ik + e 6 jk+1 + e,

ik + 2e 6 jk+1 + 2e,
...

jk 6 ik+1,
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and (3) follows. �

Given our definition of the dominance order, part (3) of Lemma 5.1 immediately gives the
following.

Corollary 5.2. Suppose λ and µ are partitions. Then the coefficient ae
λµ(q) equals 0 unless µ Q λ.

Now the following result is deduced in exactly the same way as for the standard dominance
order [LT, §4].

Proposition 5.3. Suppose λ and µ are partitions. Then the q-decomposition number de
λµ(q) equals 0

unless µ Q λ.

5.2 Runner removal and the bar involution

The proof of Theorem 3.4 will reduce to the following, which is the corresponding statement
for the coefficients ae

λµ(q).

Proposition 5.4. Suppose e > 3, λ and µ are partitions and k ∈ {0, . . . , e − 1}. If λ and µ are k-empty
and Lk(λ) = Lk(µ), then ae

λµ(q) = ae−1
λ−kµ−k(q).

The proof of Proposition 5.4 amounts to comparing the computations of ae
λµ(q) and ae−1

λ−kµ−k(q)
using the commutation relations. We begin by proving all the intermediate results we need
concerning the commutation relations.

Lemma 5.5. Suppose l < m − 2e, and put i = m − l Mod e. If i , 0, then:

1. m ∧ l − m − e ∧ l + e = −q l ∧ m + q−1 l + e ∧ m − e + (q−1
− q) m − i ∧ l + i ;

2. l ∧ m − l + e ∧ m − e = −q−1 m ∧ l + q m − e ∧ l + e + (q − q−1) l + i ∧ m − i .

Proof. Both statements are straightforward consequences of the commutation relations. �

Lemma 5.6. Suppose l < m and put i = m − l Mod e. If i , 0, then

1. m ∧ l = −q l ∧ m + (q−1
−q)

(
l + e ∧ m − e + l + 2e ∧ m − 2e + · · ·+ m − i ∧ l + i

)
;

2. l ∧ m = −q−1 m ∧ l +(q−q−1)
(

m − e ∧ l + e + m − 2e ∧ l + 2e + · · ·+ l + i ∧ m − i
)
.

Proof. Both statements are easily proved by induction on m−l; the cases m−l = i and m−l = e+i
follow easily from the commutation relations, and the inductive step from Lemma 5.5. �

Now we fix d ∈ {0, . . . , e − 1}.

Lemma 5.7. Suppose h1, . . . , hs, i ∈ N0, with h1, . . . , hs . d ≡ i (mod e). Then the wedge h1 ∧

. . . ∧ hs ∧ i can be expressed as a linear combination of wedges j ∧ k1 ∧ . . . ∧ ks in which
j ≡ d . k1, . . . , ks (mod e), and j, k1, . . . , ks 6 max{h1, . . . , hs, i}.

Furthermore, if max{h1, . . . , hs, i} = i, then we may construct such a linear combination in such
a way that the only wedge of the form i ∧ k1 ∧ . . . ∧ ks occurring with non-zero coefficient is
i ∧ h1 ∧ . . . ∧ hs .
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Proof. We proceed by induction on s. The case s = 0 is trivial, so assume s > 1. Using Lemma
5.6, we may express hs ∧ i as a linear combination of wedges i′ ∧ k , with i′ ≡ d . k (mod e);
we use part (1) of that lemma if hs > i, or part (2) if hs < i. Either way, we see that for every
such wedge we have i′, k 6 max{hs, i}; moreover, if hs < i, then the wedge i ∧ hs occurs with
non-zero coefficient (and no other wedge of the form i ∧ k occurs). Now for each such pair
(i′, k), we apply the inductive hypothesis to the s-wedge h1 ∧ . . . ∧ hs−1 ∧ i′ . �

Corollary 5.8. Suppose we are given h1, . . . , hs, i1, . . . , ic ∈N0 and 0 6 m1 6 . . . 6 mc 6 s such that:

• i1, . . . , ic ≡ d (mod e) and i1 < · · · < ic;

• h1, . . . , hs . d (mod e);

• ix > h1, . . . , hmx for each x ∈ {1, . . . , c}.

Then the (s + c)-wedge(
h1 ∧ . . . ∧ hm1

)
∧ i1 ∧

(
hm1+1 ∧ . . . ∧ hm2

)
∧ i2 ∧ . . . ∧ ic ∧

(
hmc+1 ∧ . . . ∧ hs

)
may be written as a linear combination of wedges of the form

j1 ∧ . . . ∧ jc ∧ k1 ∧ . . . ∧ ks ,

where

• j1, . . . , jc ≡ d (mod e);

• k1, . . . , ks . d (mod e);

• jx 6 ix for each x ∈ {1, . . . , c}.

Furthermore, this may be done in such a way that the only wedge of the form i1 ∧. . .∧ ic ∧ k1 ∧. . .∧ ks

occurring with non-zero coefficient is

i1 ∧ . . . ∧ ic ∧ h1 ∧ . . . ∧ hs .

Proof. We use induction on c, with the case c = 0 being trivial. Assuming c > 1, we apply
Lemma 5.7 to the (m1 + 1)-wedge h1 ∧ . . . ∧ hm1 ∧ i1 . This yields a linear combination
of wedges of the form j1 ∧ k1 ∧ . . . ∧ km1 , with j1, k1, . . . , km1 6 i1 and j1 ≡ d (mod e);
furthermore, the only such wedge occurring with non-zero coefficient in which j1 = i1 is the
wedge i1 ∧ h1 ∧ . . . ∧ hm1 .

Given a wedge j1 ∧ k1 ∧ . . . ∧ km1 occurring in this linear combination, we have
k1, . . . , km1 6 i1 < i2, so we can apply the inductive hypothesis to the (s + c − 1)-wedge(

k1 ∧ . . . ∧ km1 ∧ hm1+1 ∧ . . . ∧ hm2

)
∧ i2 ∧ . . . ∧ ic ∧

(
hmc+1 ∧ . . . ∧ hs

)
,

which gives the result. �
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Corollary 5.9. Suppose we are given h1, . . . , hs ∈N0 and 0 6 m1 6 . . . 6 mc 6 s such that

• h1, . . . , hs . d (mod e);

• h1, . . . , hmx < d + (x − 1)e for each x ∈ {1, . . . , c}.

Let w be the (s + c)-wedge(
h1 ∧. . .∧ hm1

)
∧ d ∧

(
hm1+1 ∧. . .∧ hm2

)
∧ d + e ∧ . . . ∧ d + (c − 1)e ∧

(
hmc+1 ∧. . .∧ hs

)
.

Then w equals a non-zero multiple of the wedge(
d ∧ d + e ∧ . . . ∧ d + (c − 1)e

)
∧

(
h1 ∧ . . . ∧ hs

)
.

Proof. Apply Corollary 5.8 to w, and suppose j1 ∧ . . . ∧ jc ∧ k1 ∧ . . . ∧ ks is one of the
resulting wedges. Since j1, . . . , jc are all congruent modulo e, we may re-write j1 ∧ . . . ∧ jc
as ± jπ(1) ∧ . . . ∧ jπ(c) , where π ∈ Sc is such that jπ(1) > . . . > jπ(c). If any two of j1, . . . , jc are
equal, then the latter wedge will equal zero. So we may discard any terms in which j1, . . . , jc
are not pairwise distinct. But recall that we have j1, . . . , jc ≡ d (mod e), and jx 6 d + (x − 1)e for
each x. The only way such j1, . . . , jc can be pairwise distinct is if jx = d + (x − 1)e for each x.
Now the last statement of Corollary 5.8 gives the result. �

Example. Suppose e = 3 and µ = (7, 3, 1). Taking r = 6, we get Br(µ) = {12, 7, 4, 2, 1, 0}, so that

|̂µ〉 = 0 ∧ 1 ∧ 2 ∧ 4 ∧ 7 ∧ 12 .

Taking d = 1 and applying Lemma 5.6 repeatedly to move terms congruent to 1 modulo 3 to
the left, we find that

|̂µ〉 = − q−5 1 ∧ 4 ∧ 7 ∧ 0 ∧ 2 ∧ 12

+q−4(q − q−1) 1 ∧ 4 ∧ 4 ∧ 3 ∧ 2 ∧ 12

+q−4(q − q−1) 1 ∧ 4 ∧ 1 ∧ 6 ∧ 2 ∧ 12

+q−4(q − q−1) 1 ∧ 1 ∧ 7 ∧ 3 ∧ 2 ∧ 12

−q−3(q − q−1)2 1 ∧ 1 ∧ 4 ∧ 6 ∧ 2 ∧ 12

+q−4(q − q−1) 1 ∧ 4 ∧ 4 ∧ 0 ∧ 5 ∧ 12

−q−3(q − q−1)2 1 ∧ 4 ∧ 1 ∧ 3 ∧ 5 ∧ 12

−q−3(q − q−1)2 1 ∧ 1 ∧ 4 ∧ 3 ∧ 5 ∧ 12 .

When we apply the commutation relations in the first three positions, all terms apart from the
first vanish, so that |̂µ〉 equals a non-zero multiple of 1 ∧ 4 ∧ 7 ∧ 0 ∧ 2 ∧ 12 .

Now we need to compare the Fock spaces F e
s and F e−1

s . To avoid ambiguity, we write a
wedge in the latter Fock space as

i1 Z . . . Z is ;

so wedges written in this way are subject to the commutation relations modulo e − 1, while
wedges written using the symbol ∧ are subject to the commutation relations modulo e. Now,
recalling the function φd from §3.1, we have the following.
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Lemma 5.10. Suppose we have ikl ∈N0 for 1 6 k 6 t and 1 6 l 6 s, with ikl . d (mod e), and suppose
b1(q), . . . , bt(q) ∈ Q(q) are such that

t∑
k=1

bk(q)
(

ik1 ∧ . . . ∧ iks

)
= 0.

Then
t∑

k=1

bk(q)
(
φd(ik1) Z . . . Z φd(iks)

)
= 0.

Proof. This comes directly from a comparison of the commutation relations for l ∧ m and
for φd(l) Z φd(m) when l 6 m. We leave this for the reader to check. �

Example. Suppose e = 3. Then the commutation relations give

0 ∧ 2 ∧ 12 = − q−2 12 ∧ 2 ∧ 0 + (q−3
− q−1) 11 ∧ 3 ∧ 0

+ (q−2
− q−4) 9 ∧ 5 ∧ 0 + (q−5

− q−3) 8 ∧ 6 ∧ 0 ,

while the commutation relations modulo 2 give

0 Z 1 Z 8 = − q−2 8 Z 1 Z 0 + (q−3
− q−1) 7 Z 2 Z 0

+ (q−2
− q−4) 6 Z 3 Z 0 + (q−5

− q−3) 5 Z 4 Z 0 .

We need one more ingredient before we prove our main result; this needs some preparation.

Lemma 5.11. Suppose j ∈ N0 and w = i1 ∧ . . . ∧ iu is a u-wedge having the following property:
there is a unique x ∈ {1, . . . ,u} such that ix ≡ d (mod e), and for this value of x we have i1, . . . , ix > j.
Then, when we write w as a linear combination of ordered wedges using the commutation relations, every
ordered wedge that occurs with non-zero coefficient contains exactly one term i with i ≡ d (mod e),
and this value of i satisfies i > j.

Proof. If i1 > . . . > iu then there is nothing to prove, so we suppose iy < iy+1 for some
y, and apply the commutation relations in positions y, y + 1. This gives an expression for
i1 ∧ . . . ∧ iu as a linear combination of wedges of the form i1 ∧ . . . ∧ iy−1 ∧ ly ∧ ly+1 ∧

iy+2 ∧ . . . ∧ iu . Defining A(i1, . . . , iu) as in the proof of Lemma 5.1, it suffices to show that
A(i1, . . . , iy−1, ly, ly+1, iy+2, . . . , iu) < A(i1, . . . , iu) and that the hypotheses of the lemma hold with
i1, . . . , iu replaced by i1, . . . , iy−1, ly, ly+1, iy+2, . . . , iu. The first fact is a simple exercise as before,
and the second fact is easy to check from the commutation relations. �

Lemma 5.12. Suppose j, k1, . . . , ks ∈ N0 with j ≡ d . k1, . . . , ks (mod e) and k1 > · · · > ks > j.
Then, when the (s + 1)-wedge w = j ∧ k1 ∧ . . .∧ ks is expressed as a linear combination of ordered
wedges using the commutation relations, each wedge that occurs contains exactly one term i with
i ≡ d (mod e), and this term satisfies i > j. Moreover, the only wedge occurring that includes the term
j is the wedge

k1 ∧ . . . ∧ ks ∧ j ,

occurring with coefficient (−q)−s.
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Proof. We use induction on s, with the case s = 0 being trivial. Assuming s > 1, we apply the
commutation relations in positions 1 and 2. This yields an expression

w = −q−1w1 +
∑
v∈V

bv(q)v,

where w1 = k1 ∧ j ∧ k2 ∧ . . . ∧ ks , and V is a set of wedges each of which satisfies the
hypotheses of Lemma 5.11. Applying Lemma 5.11 to any v ∈ V, we get a linear combination
of ordered wedges in which there is one term i with i ≡ d, and this i satisfies i > j. So we can
neglect all wedges v ∈ V, and it suffices to show that the present lemma holds with w1 in place
of w and (−q)1−s in place of (−q)−s.

By induction, when we write

j ∧ k2 ∧ . . . ∧ ks =
∑

j1>···> js

c j1... js(q) j1 ∧ . . . ∧ js

we have that:

• if c j1... js(q) , 0, then there is exactly one x such that jx ≡ d (mod e), and this jx is greater
than or equal to j;

• if c j1..., js(q) , 0 and jx = j for some x, then ( j1, . . . , js) = (k2, . . . , ks, j) and c j1... js(q) = (−q)1−s.

Also, by Lemma 5.1(1), each ( j1, . . . , js) with c j1..., js(q) , 0 satisfies j1 6 k2 < k1. So we see that

w1 =
∑

j1,..., js

c j1... js(q) k1 ∧ j1 ∧ . . . ∧ js

is an expression for w1 as a linear combination of ordered wedges, and the result follows. �

Lemma 5.13. Suppose j, k1, . . . , ks ∈ N0 with j ≡ d (mod e) and k1 > · · · > ks. Suppose also that for
some z ∈ {1, . . . , s}we have kz ≡ d (mod e) and kz > j. Let w denote the (s+1)-wedge j ∧ k1 ∧. . .∧ ks .
When w is written as a linear combination of ordered wedges using the commutation relations, every
wedge that occurs with non-zero coefficient contains a term l with l ≡ d (mod e) and l > j + e.

Proof. Let y be maximal such that ky > j, and let w′ be the (y + 1)-wedge j ∧ k1 ∧ . . . ∧ ky .
Write w′ as a linear combination of ordered wedges:

w′ =
∑

l1,...,ly+1

bl1...ly+1(q) l1 ∧ . . . ∧ ly+1 .

If bl1...ly+1(q) , 0, then by Lemma 5.1(1) we have ly+1 > min{ j, k1, . . . , ky} = j, and by Lemma
5.1(2) at least two of l1, . . . , ly+1 are congruent to d modulo e. Hence for some x 6 y we have
lx ≡ d (mod e) and lx > j + e. The fact that ly+1 > j > ky+1 implies that the (s + 1)-wedge

l1 ∧ . . . ∧ ly+1 ∧ ky+1 ∧ . . . ∧ ks

is ordered. So we see that

w =
∑

l1,...,ly+1

bl1...ly+1(q) l1 ∧ . . . ∧ ly+1 ∧ ky+1 ∧ . . . ∧ ks

is an expression for w as a linear combination of ordered wedges with the required properties. �
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Corollary 5.14. Suppose k1, . . . , ks ∈ N0, with k1, . . . , ks . d (mod e) and k1 > · · · > ks, and let
0 6 n1 6 . . . 6 nc 6 s be such that knx > d + (c − x)e > knx+1 for all x. Then, when the (s + c)-wedge(

d + (c − 1)e ∧ d + (c − 2)e ∧ . . . ∧ d
)
∧

(
k1 ∧ . . . ∧ ks

)
is expressed as a linear combination of ordered wedges, the only ordered wedge occurring that includes
all the terms d + (c − 1)e , d + (c − 2)e , . . . , d is the wedge(

k1 ∧. . .∧ kn1

)
∧ d + (c − 1)e ∧

(
kn1+1 ∧. . .∧ kn2

)
∧ d + (c − 2)e ∧ . . . ∧ d ∧

(
knc+1 ∧. . .∧ ks

)
,

occurring with coefficient (−q)−(n1+···+ns).

Proof. We use induction on c, with the case c = 0 being trivial. Assuming c > 1, apply the
inductive hypothesis to write(

d + (c − 2)e ∧ d + (c − 3)e ∧ . . . ∧ d
)
∧

(
k1 ∧ . . . ∧ ks

)
=

∑
u

bu(q)u,

where:

• each u is an ordered wedge;

• if we set

w′ =
(

k1 ∧. . .∧ kn2

)
∧ d + (c − 2)e ∧

(
kn2+1 ∧. . .∧ kn3

)
∧ d + (c − 3)e ∧ . . . ∧ d ∧

(
knc+1 ∧. . .∧ ks

)
,

then bw′(q) = (−q)−(n2+···+ns);

• if u , w′ and bu(q) , 0, then u does not contain all of the terms d + (c − 2)e , d + (c − 3)e , . . . , d .

Now by Lemma 5.1(2), every wedge u with bu(q) , 0 contains exactly c − 1 terms of the form
d + ze with z ∈ N0; if u , w′ then these terms are not d + (c − 2)e , . . . , d , so u contains a
term d + ze with z > c − 1. So by Lemma 5.13, when we write d + (c − 1)e ∧ u as a linear
combination of ordered wedges, each wedge that occurs contains a term d + ze with z > c, and
therefore does not contain all the terms d + (c − 1)e , d + (c − 2)e . . . , d . So we may ignore all
terms d + (c − 1)e ∧ u with u , w′, and we concentrate on the wedge d + (c − 1)e ∧ w′.

Write
w1 = d + (c − 1)e ∧ k1 ∧ . . . ∧ kn1 ,

and express w1 as a linear combination of ordered wedges:

w1 =
∑

v
cv(q)v.

By Lemma 5.12, any wedge v with cv(q) , 0 contains a term d + ze with z > c − 1, and if v
contains the term d + (c − 1)e then v = k1 ∧ . . . ∧ kn1 ∧ d + (c − 1)e and cv(q) = (−q)−n1 .
Moreover, if v = v1 ∧ . . . ∧ vn1+1 and cv(q) , 0, then by Lemma 5.1(1) we have vn1+1 >
d + (c − 1)e > kn1+1, so the wedge

v ∧
(

kn1+1 ∧ . . . ∧ kn2

)
∧ d + (c − 2)e ∧ . . . ∧ d ∧

(
knc+1 ∧ . . . ∧ ks

)
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is ordered. So an expression for d + (c − 1)e ∧w′ as a linear combination of ordered wedges is

d + (c − 1)e ∧w′ =
∑

v
cv(q)

(
v∧

(
kn1+1 ∧. . .∧ kn2

)
∧ d + (c − 2)e ∧ . . . ∧ d ∧

(
knc+1 ∧. . .∧ ks

))
,

and the result follows. �

Example. Taking e = 3, r = 6, d = 1, we have

7 ∧ 4 ∧ 1 ∧ 12 ∧ 2 ∧ 0 = q−4 12 ∧ 7 ∧ 4 ∧ 2 ∧ 1 ∧ 0

+q−4(q − q−1) 10 ∧ 9 ∧ 4 ∧ 2 ∧ 1 ∧ 0

+q−3(q − q−1) 10 ∧ 7 ∧ 6 ∧ 2 ∧ 1 ∧ 0

−q−1(q − q−1) 10 ∧ 7 ∧ 4 ∧ 3 ∧ 2 ∧ 0

and also

7 ∧ 4 ∧ 1 ∧ 11 ∧ 3 ∧ 0 = q−4 11 ∧ 7 ∧ 4 ∧ 3 ∧ 1 ∧ 0

+q−4(q − q−1) 10 ∧ 8 ∧ 4 ∧ 3 ∧ 1 ∧ 0

+q−3(q − q−1) 10 ∧ 7 ∧ 5 ∧ 3 ∧ 1 ∧ 0

+q−2(q − q−1) 10 ∧ 7 ∧ 4 ∧ 3 ∧ 2 ∧ 0 .

Now we can prove Proposition 5.4; the reader should combine the last three examples in
this section to follow the proof for the case e = 3, µ = (7, 3, 1), λ = (6, 3, 12).

Proof of Proposition 5.4. Choose a large r, and let c and d be as defined in §2.5. For any
k-empty partition ξ with the same e-core and e-weight as µ, we know that the r-beta-set Br(ξ)
contains the integers d, d + e, . . . , d + (c − 1)e, together with r − c integers not congruent to d
modulo e, which we write as h1(ξ) > · · · > hr−c(ξ). Then the (r − c)-beta-set Br−c(ξ−k) equals
{φd(h1(ξ)), . . . , φd(hr−c(ξ))}.

In the particular case ξ = µ, we have

|̂µ〉 =
(

hr−c(µ) ∧ . . . ∧ hmc+1(µ)
)
∧ d ∧

(
hmc(µ) ∧ . . . ∧ hmc−1+1(µ)

)
∧ d + e ∧

(
hmc−1(µ) ∧ . . . ∧ hmc−2+1(µ)

)
...

∧ d + (c − 1)e ∧
(

hm1(µ) ∧ . . . ∧ h1(µ)
)
,

for appropriate 1 6 m1 6 . . . 6 mc 6 r. By Corollary 5.9, this equals a non-zero multiple of the
wedge (

d ∧ d + e ∧ . . . ∧ d + (c − 1)e
)
∧

(
hr−c(µ) ∧ . . . ∧ h1(µ)

)
.

Now we examine µ−k. Using (r − c)-wedges, we have

|̂µ−k〉 = φd(hr−c(µ)) Z . . . Z φd(h1(µ)) ,
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so (from the definition of the constants ae−1
πµ−k(q))

φd(hr−c(µ)) Z . . . Z φd(h1(µ)) = C
∑
π

ae−1
πµ−k(q)|π〉

in the Fock space F e−1
r−c , for some non-zero C. Each π occurring has the same (e − 1)-core and

(e − 1)-weight as µ−k, and so can be written as ξ−k for some k-empty partition ξ with the same
e-core and e-weight as µ. So by Lemma 5.10, we get

hr−c(µ) ∧ . . . ∧ h1(µ) = C
∑
ξ

ae−1
ξ−kµ−k(q). h1(ξ) ∧ . . . ∧ hr−c(ξ)

in the Fock space F e
r−c. Combining this with the expression for |̂µ〉 above and the fact that

d ∧ . . . ∧ d + (c − 1)e = (−1)(
c
2) d + (c − 1)e ∧ . . . ∧ d ,

we find that |̂µ〉 equals a non-zero multiple of∑
ξ

ae−1
ξ−kµ−k(q).

(
d + (c − 1)e ∧ . . . ∧ d

)
∧

(
h1(ξ) ∧ . . . ∧ hr−c(ξ)

)
,

summing over all k-empty partitions ξ with the same e-core and e-weight as µ. Choose such a
partition ξ, let wξ denote the wedge(

d + (c − 1)e ∧ . . . ∧ d
)
∧

(
h1(ξ) ∧ . . . ∧ hr−c(ξ)

)
,

and let 0 6 n1 6 . . . 6 nc 6 r − c be such that hnx(ξ) > d + (c − x)e > hnx+1(ξ) for each x. Note
that n1 + · · ·+ nc is the integer nr,k(ξ) defined in §4.4. By Corollary 5.14, wξ equals (−q)−(n1+···+nc)

times (
h1(ξ) ∧ . . . ∧ hn1(ξ)

)
∧ d + (c − 1)e ∧

(
hn1+1(ξ) ∧ . . . ∧ hn2(ξ)

)
∧ d + (c − 2)e ∧

(
hn2+1(ξ) ∧ . . . ∧ hn3(ξ)

)
...

∧ d ∧
(

hnc+1(ξ) ∧ . . . ∧ hr−c(ξ)
)

= |ξ〉

plus a linear combination of other wedges, none of which includes all the terms d + (c − 1)e , . . . , d .
Summing over ξ, we see that

|̂µ〉 = D

∑
ξ∈N

ae−1
ξ−kµ−k(q)(−q)−nr,k(ξ)

|ξ〉

 +
∑

ρ∈P\N

fρ(q)|ρ〉

where D is a non-zero constant, N is the set of k-empty partitions with the same e-core and
e-weight as µ, and fρ(q) ∈ Q(q) for ρ ∈ P \ N . Normalising, we see that

ae
λµ(q) =

Dae−1
λ−kµ−k(q)(−q)−nr,k(λ)

Dae−1
µ−kµ−k(q)(−q)−nr,k(µ)

= (−q)nr,k(µ)−nr,k(λ)ae−1
λ−kµ−k(q).
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But by Corollary 4.11, Lk(λ) = Lk(µ) implies that nr,k(λ) = nr,k(µ), and the proposition is proved.
�

5.3 Proof of Theorem 3.4

Now we can complete the proof of Theorem 3.4. We fix µ, and proceed by induction on λ
with respect to the dominance order. If λ = µ then the result is immediate, so assume λ , µ.
Comparing coefficients of |λ〉 in the expression G(µ) = G(µ), we find that

de
λµ(q) − de

λµ(q−1) =
∑
ξ,λ

de
ξµ(q−1)ae

λξ(q).

Similarly, we have

de−1
λ−kµ−k(q) − de−1

λ−kµ−k(q
−1) =

∑
π,λ−k

de−1
πµ−k(q

−1)ae−1
λ−kπ

(q).

Now de
ξµ(q−1) = 0 unless µ Qe ξ, while ae

λξ(q) = 0 unless ξ Qe λ, so we may restrict the range
of summation in the first equation above to those ξ such that µ Qe ξ Be λ. Similarly, we may
restrict the range of summation in the second equation to µ−k Qe−1 π Be−1 λ−k. Now since
Lk(λ) = Lk(µ), the set of π with µ−k Qe−1 π Be−1 λ−k is precisely the set of ξ−k for ξ ∈ P with
µ Qe ξ Be λ (Lemma 4.6). Moreover, we know that for any such ξwe have Lk(ξ) = Lk(µ), so we
have

ae
λξ(q) = ae−1

λ−kξ−k(q)

by Proposition 5.4, and
de
ξµ(q−1) = de−1

ξ−kµ−k(q
−1)

by induction. We deduce that

de
λµ(q) − de

λµ(q−1) = de−1
λ−kµ−k(q) − de−1

λ−kµ−k(q
−1),

and since de
λµ(q), de−1

λ−kµ−k(q) are polynomials divisible by q, the result follows.

6 The Mullineux map

In this section, we examine the Mullineux map in detail and prove Theorem 3.5.

6.1 Definition of the Mullineux map

The description of the Mullineux map that we use is based on the abacus, and largely taken
from [FM].

Definition 6.1. Suppose µ is an e-regular partition, and take an abacus display for µ with r
beads, for some r > µ′1. Let β, γ be the positions of the last bead and the first empty space on
the abacus, respectively; so β is the beta-number β1 = µ1 + r − 1, while γ equals r − µ′1.

Assuming µ , ∅, there is a unique sequence b1 > c1 > · · · > bt > ct of non-negative integers
satisfying the following conditions.
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1. For each 1 6 i 6 t, position bi is occupied and position ci is empty.

2. b1 = β.

3. For 1 6 i < t, we have

• bi ≡ ci (mod e), and all the positions bi − e, bi − 2e, . . . , ci + e are occupied;

• all the positions ci − 1, ci − 2, . . . , bi+1 + 1 are empty.

4. Either:

(a) bt ≡ ct (mod e), all the positions bt − e, . . . , ct + e are occupied, and all the positions
ct − 1, ct − 2, . . . , γ are empty; or

(b) all the positions bt − e, bt − 2e, . . . are occupied and ct = γ.

We define µ4 to be the partition whose abacus display is obtained by moving the beads
at positions b1, . . . , bt to positions c1, . . . , ct, and we define the e-rim length of µ to be rim(µ) =

|µ| − |µ4| =
∑t

i=1(bi − ci). It is straightforward to see that neither µ4 nor rim(µ) depends on the
choice of r.

Example. Suppose e = 3, and µ = (12, 112, 7, 6, 5, 32, 2). The abacus display for µ with r = 15 is
as follows. u u uu u uuu uuuu uu u
We see that β = 26 and γ = 6. We find that t = 3 and

(b1, c1, b2, c2, b3, c3) = (26, 20, 18, 15, 14, 6).

So rim(µ) = 17, and

µ4 =

u u uu u uu uu uu u uuu
= (102, 8, 52, 22, 1).

Now we can describe the Mullineux map. We define m(µ) recursively in |µ|, setting m(∅) =

∅. If µ , ∅, then we compute rim(µ) and µ4 as in Definition 6.1. Obviously |µ4| < |µ|, and we
assume m(µ4) is defined. Now set

l =

rim(µ) − µ′1 (e | rim(µ))

rim(µ) − µ′1 + 1 (e - rim(µ)),

and define m(µ) to be the unique e-regular partition such that (m(µ))′1 = l, rim(m(µ)) = rim(µ)
and (m(µ))4 = m(µ4). That this procedure always works (i.e. there is always a unique e-regular
m(µ) with the required properties) is proved by Mullineux in [M].
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6.2 The Mullineux map and conjugation

Given the statement of Theorem 3.5, it will be helpful for us to study the map µ 7→ m(µ)′

rather than m itself. To this end, we give a ‘conjugate’ definition to Definition 6.1.

Definition 6.2. Suppose ν is an e-restricted partition, and take an abacus display for ν with
r beads. Let δ, ε be the position of the last bead and the first empty space on the abacus,
respectively. Assuming ν , ∅, there is a unique sequence f1 > g1 > · · · > fu > gu of non-
negative integers satisfying the following conditions.

1. For each 1 6 i 6 u, position fi is occupied and position gi is empty.

2. gu = ε.

3. For 1 < i 6 u, we have

• fi ≡ gi (mod e), and all the positions fi − e, fi − 2e, . . . , gi + e are empty;

• all the positions fi + 1, fi + 2, . . . , gi−1 − 1 are occupied.

4. Either:

(a) f1 ≡ g1 (mod e), all the positions f1 − e, . . . , g1 + e are empty, and all the positions
δ, δ − 1, . . . , f1 + 1 are occupied; or

(b) all the positions g1 + e, g1 + 2e, . . . are empty and f1 = δ.

We define νO to be the partition whose abacus display is obtained by moving the beads at
positions f1, . . . , fu to positions g1, . . . , gu, and we define the conjugate e-rim length of ν to be
rim′(ν) =

∑t
i=1( fi − gi). It is straightforward to see that neither νO nor rim′(ν) depends on the

choice of r.

Definition 6.2 is the result of applying Definition 6.1 to the e-regular partition ν′, and then
exploiting Lemma 4.1. This yields

rim′(ν) = rim(ν′)

and
νO = ((ν′)4)′.

Hence we can describe the map µ 7→ m(µ)′, as follows.

Lemma 6.3. Suppose µ is an e-regular partition. If µ = ∅, then m(µ)′ = ∅. Otherwise, set

l =

rim(µ) − µ′1 (e | rim(µ))

rim(µ) − µ′1 + 1 (e - rim(µ)).

Then m(µ)′ is the unique e-restricted partition such that (m(µ)′)1 = l, rim′(m(µ)′) = rim(µ) and
(m(µ)′)O = m(µ4)′.

We use Lemma 6.3 as our definition of the map µ 7→ m(µ)′.

Examples. Suppose e = 3, and take r = 6.
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1. Suppose µ = (3) and ν = (2, 1). These partitions have the following abacus displays.

µu u uu u u
νu u uu uu

Applying Definition 6.1 to µ, we see that β = 8 and γ = 5. We have t = 1, with b1 = 8 and
c1 = 5. So µ4 = ∅, rim(µ) = 3 and l = 2.

Applying Definition 6.2 to ν, we have u = 1, with f1 = δ = 7, g1 = ε = 4. So νO = ∅,
rim′(ν) = 3 and ν1 = 2, and we see that m(µ)′ = ν.

2. Now suppose µ = (6, 3, 1) and ν = (5, 3, 2).

µu u uuu u
νu u uuuu

Applying Definition 6.1 to µ, we have β = 11, γ = 3, t = 2, and (b1, c1, b2, c2) = (11, 8, 7, 3).
So µ4 = (3), rim(µ) = 7, and l = 5.

Applying Definition 6.2 to ν, we have δ = 10, ε = 3, u = 1, and ( f1, g1) = (10, 3). So
νO = (2, 1) and rim′(ν) = 7. By (1) above we have m(µ4)′ = νO, and since ν1 = 5 we have
m(µ)′ = ν.

6.3 Proof of Theorem 3.5

Now we proceed with the proof of Theorem 3.5; we begin with the following lemma.

Lemma 6.4. Suppose µ is an e-regular partition. Then µ Q m(µ)′.

Proof. This is immediate from Propositions 2.3 and 5.3. �

Now we fix some notation which will be in force for the remainder of Section 6. We fix an
e-regular partition µ , ∅ and set ν = m(µ)′. We fix a large integer r, and let β, γ, b1, c1, . . . , bt, ct be
as in Definition 6.1, and δ, ε, f1, g1, . . . , fu, gu as in Definition 6.2. Let y denote rim(µ) (= rim′(ν)).
Fix k such that µ and ν are both k-empty, and let c, d be as defined in §2.5. Let x = d + (c − 1)e
be the position of the last bead on runner d of the abacus display for µ; since µ and ν have the
same e-core (which is implicit in Lemma 6.4), x is also the position of the last bead on runner d
of the abacus display for ν.

Lemma 6.5.
1. We have

y =

δ − γ + 1 (e | y)

δ − γ (e - y).

2. None of b1, c1, . . . , bt−1, ct−1 or f2, g2, . . . , fu, gu is congruent to d modulo e.
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3. bt − ct is divisible by e if and only if f1 − g1 is. If neither is divisible by e, then

γ = ct ≡ g1 (mod e) and δ = f1 ≡ bt (mod e).

Proof.
1. This follows from the statements γ = µ′1 − r, δ = ν1 + r − 1 and

ν1 = l =

y − µ′1 (e | y)

y − µ′1 + 1 (e - y).

2. Suppose 1 6 i < t. Then bi ≡ ci (mod e) and bi > ci. But there is no bead on runner d of
the abacus display for µ with an empty space above it, so we cannot have bi ≡ d (mod e).
Similarly fi, gi . d if 1 < i 6 u.

3. Since y =
∑

i(bi − ci) and bi − ci is divisible by e for i < t, we have bt − ct ≡ y (mod e).
Similarly f1 − g1 ≡ y (mod e). Now suppose neither bt − ct nor f1 − g1 is divisible by
e. Then in condition (4) of Definition 6.1 we must be in case (b), and in condition (4) of
Definition 6.2 we must in be case (b). So ct = γ and f1 = δ. Let h, i, h′, i′ be the residues of
bt, ct, f1, g1 modulo e. Since µ and ν have the same e-core, there must be the same numbers
of beads on corresponding runners of the abacus displays for µ and ν. Similarly, there
are the same numbers of beads on corresponding runners of the abacus displays for µ4

and νO. To get from the abacus display of µ to the abacus display for µ4, we move some
beads up their runners, and then move a bead from runner h to runner i. Similarly, to get
from ν to νO, we move some beads up their runners and then move a bead from runner
h′ to runner i′. Combining these statements, we see that h = h′ and i = i′.

�

The proof of Theorem 3.5 is is by induction on |µ|; the inductive step is to assume that the
theorem holds with µ replaced by µ4, and to compare Lk(µ) with Lk(µ4) and Lk(ν) with Lk(νO).
The calculation required for this inductive step is broken into several parts.

Lemma 6.6. Suppose neither f1 nor g1 is congruent to d modulo e. Then νO is k-empty, and

Lk(ν) = Lk(νO) +
⌊
δ − x

e

⌋
.

Proof. We obtain an abacus display for νO by moving a bead from position fi to position gi for
each i. Since none of f1, g1, . . . , fu, gu is congruent to d modulo e, this has no effect on runner d
of the abacus display, and so νO is k-empty. Now we compute Lk(ν) − Lk(νO).

Suppose first that δ < x + e; then we must show that Lk(ν) − Lk(νO) = 0. For each i we have
fi 6 δ < x + e, so that (by Lemma 4.7) moving a bead from position fi to position gi does not
alter the value of Lk, and we are done.

So we assume that δ > x + e. gu = ε is the first empty position on the abacus display for
ν, and there is an empty space at position x + e, so we have gu 6 x + e; but gu . d (mod e) by
assumption, so gu < x + e. Let l be minimal such that gl < x + e, and for i = 1, . . . , l write

gi = d + aie + ji
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with 0 < ji < e. Also write
δ = d + a0e + j0

with 0 < j0 < e.

Claim. For 1 6 i 6 l we have

d + ai−1e < fi < d + (ai−1 + 1)e.

Proof. Suppose first that i > 2. Recall that every position between fi and gi−1 in the
abacus display for ν is occupied. Since gi−1 > x + e, position d + ai−1e is unoccupied, so
d + ai−1e does not lie between fi and gi−1. Hence

d + ai−1e < fi < gi−1 < d + (ai−1 + 1)e,

as required.

Now consider i = 1. Either f1 = δ (in which case the result is immediate) or f1 < δ and
every position between f1 and δ in the abacus display for ν is occupied. Assuming the
latter and arguing as above, we get

d + a0e < f1 < δ < d + (a0 + 1)e.

The claim, together with Lemma 4.7, implies that if 1 6 i < l then moving a bead from
position fi to position gi reduces the value of Lk by ai−1 − ai. Since gl < x + e, moving the bead
from position fl to position gl reduces the value of Lk by al−1 − (c − 1). For l < i 6 t, we have
fi < gl < x + e, so moving a bead from position fi to position gi does not affect the value of Lk.
Summing, we get

Lk(ν) − Lk(νO) =

l−1∑
i=1

(ai−1 − ai) + (al − c + 1)

= a0 − c + 1.

On the other hand, ⌊
δ − x

e

⌋
=

⌊
d + a0e + j0 − d − (c − 1)e

e

⌋
= a0 − c + 1

(since 0 < j0 < e), and we are done. �

Lemma 6.7. Suppose ct > x + e. Then y is divisible by e, µ4 and νO are both k-empty, and we have

Lk(µ) − Lk(µ4) =
y
e
, Lk(ν) − Lk(νO) >

y
e
.
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Proof. Since there is an empty space at position x + e on the abacus display for µ, we must
have γ 6 x + e < ct. So in Definition 6.2(4) we must be in case (a), and hence e | y. Since bi ≡ ci

and fi ≡ gi (mod e) for each i and since it not possible to slide a bead up runner d in the abacus
display for either µ or ν, we have bi, ci, fi, gi . d (mod e) for all i, so µ4 and νO are k-empty.

Now we examine µ. Since for each i we have x < ci ≡ bi (mod e), Lemma 4.7 implies that
moving the bead at position bi to position ci reduces the value of Lk by (bi − ci)/e. So

Lk(µ) − Lk(µ4) =
(b1 − c1) + · · · + (bt − ct)

e
=

y
e

as required.
Next we examine ν. First we note that γ > x. Indeed, Definition 6.1 tells us that every

position between ct and γ in the abacus for µ is empty; but position x is occupied, so does not
lie in this range. Since ct > x, we therefore have γ > x.

Now we have

Lk(ν) − Lk(νO) =
⌊
δ − x

e

⌋
by Lemma 6.6

=

⌊
y + γ − x + 1

e

⌋
by Lemma 6.5(1)

>
⌊ y

e

⌋
=

y
e

as required. �

Lemma 6.8. Suppose ct < x + e, and bt, ct . d (mod e). Then µ4 and νO are k-empty, and we have

Lk(µ) − Lk(µ4) = Lk(ν) − Lk(νO).

Proof. By Lemma 6.6, we must show that

Lk(µ) − Lk(µ4) =
⌊
δ − x

e

⌋
.

We use a calculation very similar to that used in the proof of Lemma 6.6. Let l be maximal such
that bl > x; note that there is such an l, since b1 = β > x and b1 . x (mod e). For l 6 i 6 t, write

bi = d + aie + ji,

where 0 < ji < e.

Claim. cl < x + e.

Proof. If l = t then this is true by assumption, so suppose l < t. There is no bead on the
abacus display for µ in any position between cl and bl+1. But there is a bead at position x,
so x does not lie between cl and bl+1. Since bl+1 < x, we have cl < x < x + e.
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The claim implies that moving a bead from position bl to position cl reduces the value of Lk by
al − (c − 1). For 1 6 i < l, we have ci > bl > x, so moving a bead from position bi to position
ci reduces the value of Lk by (bi − ci)/e. For l < i 6 t, we have bi < x, so moving a bead from
position bi to position ci does not affect the value of Lk. So we have

Lk(µ) − Lk(µ4) =
1
e

l−1∑
i=1

(bi − ci) + al − (c − 1)

=
y
e
−

1
e

t∑
i=l

(bi − ci) + al − (c − 1).

Claim. If l 6 i < t, then ci = d + ai+1e + ji.

Proof. There are no beads in the abacus display for µ in any position between ci and bi+1;
since bi+1 < x, there is a bead at position d + (ai+1 + 1)e, and therefore d + (ai+1 + 1)e does
not lie between ci and bi+1. So we have

d + ai+1e + ji+1 = bi+1 < ci < d + (ai+1 + 1)e;

since we know that ci ≡ bi (mod e), this implies that ji > ji+1 and ci = d + ai+1e + ji.

Combining the claim with the expression above, we get

Lk(µ) − Lk(µ4) =
y
e
−

t−1∑
i=l

(ai − ai+1) −
1
e

(d + ate + jt − ct) + al − (c − 1)

=
y
e
− (c − 1) −

1
e

(d + jt − ct).

Now we consider two cases, according to whether or not e divides y.

e - y Here we have ct = γ and y = δ − γ, by Lemma 6.5. So

Lk(µ) − Lk(µ4) =
δ − γ − e(c − 1) − d − jt + γ

e

=
δ − x − jt

e

=
⌊
δ − x

e

⌋
,

since 0 < jt < e.

e | y In this case, we write

γ = d + a∗e + j∗, ct = d + a∗e + j∗

with 0 < j∗, j∗ < e. Since none of the positions γ, γ+1, . . . , ct is occupied but position d+a∗e
is occupied, we must have a∗ = a∗, so that ct = d + a∗e + jt. Now the fact that y = δ − γ + 1



General runner removal and the Mullineux map 37

gives

Lk(µ) − Lk(µ4) =
δ − γ + 1 − e(c − 1) + a∗e

e

=
δ − j∗ + 1 − d − e(c − 1)

e

=
δ − x − ( j∗ − 1)

e

=
⌊
δ − x

e

⌋
,

since 0 < j∗ < e. �

Lemma 6.9. Suppose bt ≡ d (mod e). Then Lk(µ) = 0.

Proof. First we note that, since it is impossible to move a bead up runner d, ct . d (mod e),
and this implies that e - y. So by Lemma 6.5(1) we have y = δ − γ. But δ = f1 is congruent to d
modulo e (by Lemma 6.5(3)) and is the last occupied position on the abacus for ν, and so must
equal x. So y = x − γ.

By Lemma 4.7, the conclusion Lk(µ) = 0 is the same as saying that β < x + e, so we prove the
latter statement. If bi < x for all i, then certainly β = b1 < x + e, so we assume otherwise, and let
l be maximal such that bl > x.

For l 6 i 6 t we write
bi = d + aie + ji,

with 0 6 ji < e. Since bl, . . . , bt−1 . d ≡ bt (mod e), we actually have jt = 0 and 0 < ji < e for
l 6 i < t. Arguing as in the proof of Lemma 6.8, we have ji > ji+1 and ci = d + ai+1e + ji for
l 6 i < t. So

y =

t∑
i=1

(bi − ci)

=

l−1∑
i=1

(bi − ci) +

t−1∑
i=l

(ai − ai+1)e + d + ate − γ

=

l−1∑
i=1

(bi − ci) + ale + d − γ.

Combining this with the equality y = x − γ from above, we get

x =

l−1∑
i=1

(bi − ci) + ale + d,

or
l−1∑
i=1

(bi − ci) + bl = x + jl.
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Now by assumption bl > x, and so
∑l−1

i=1(bi − ci) 6 jl < e, which forces l = 1. And now we have

b1 = x + j1 < x + e,

as required. �

Proof of Theorem 3.5. Proceed by induction on |µ|. We consider several cases.

1. First suppose ct > x + e. Then by Lemma 6.7 µ4 and νO are k-empty, and

Lk(µ) − Lk(µ4) =
y
e
, Lk(ν) − Lk(νO) >

y
e
.

By induction we have Lk(µ4) = Lk(νO), and so we get Lk(µ) 6 Lk(ν). By Lemmata 6.4 and
4.5 we have Lk(µ) > Lk(ν), and the result follows.

2. Next suppose that ct < x + e, and that neither bt nor ct is congruent to d modulo e. Then
by Lemma 6.8 µ4 and νO are k-empty, and

Lk(µ) − Lk(µ4) = Lk(ν) − Lk(νO),

and the result follows by induction.

3. Next, suppose that bt ≡ f1 ≡ d (mod e). Then by Lemma 6.9 we have Lk(µ) = 0. Since
µ Q ν we have Lk(µ) > Lk(ν), so Lk(ν) = 0 too.

4. Finally, consider the case where ct ≡ g1 ≡ d (mod e). Here, we replace the pair (µ, ν)
with (ν′, µ′). If we choose a large integer s and let b̃1, c̃1, . . . , b̃t̃, c̃t̃ be the integers given by
Definition 6.1 with ν′ in place of µ and s in place of r, then by Lemma 4.1 we have t̃ = u
and

b̃i = r + s − 1 − gu+1−i, c̃i = r + s − 1 − fu+1−i

for each i. If we set d̃ = (s + (e− 1− k)) Mod e, then we can compute b̃t̃ ≡ d̃ (mod e); hence
by case 3 above, we have Le−1−k(ν′) = Le−1−k(µ′). Now Corollary 4.9 gives the result.

�

References

[A] S. Ariki, ‘On the decomposition numbers of the Hecke algebra of G(m, 1,n)’, J. Math. Kyoto
Univ. 36 (1996), 789–808.

[B] J. Brundan, ‘Modular branching rules and the Mullineux map for Hecke algebras of type
A’, Proc. London Math. Soc. 77 (1998), 551–81.

[CM] J. Chuang & H. Miyachi, ‘Runner removal Morita equivalences’, preprint.

[F1] M. Fayers, ‘Decomposition numbers for weight three blocks of symmetric groups and
Iwahori–Hecke algebras’, Trans. Amer. Math. Soc. 360 (2008), 1341–76.



General runner removal and the Mullineux map 39

[F2] M. Fayers, ‘Another runner removal theorem for v-decomposition numbers of Iwahori–
Hecke algebras and q-Schur algebras’, J. Algebra 310 (2007), 396–404.

[FM] M. Fayers & S. Martin, ‘General vertices in ordinary quivers of symmetric group algebras’,
J. Algebra 263 (2003), 88–118.

[FK] B. Ford & A. Kleshchev, ‘A proof of the Mullineux conjecture’, Math. Z. 226 (1997), 267–
308.

[GW] F. Goodman & H. Wenzl, ‘Crystal bases of quantum affine algebras and affine Kazhdan–
Lusztig polynomials’, Int. Math. Res. Notices 5 (1999), 251–75.

[H] T. Hayashi, ‘q-analogues of Clifford and Weyl algebras – spinor and oscillator representa-
tions of quantum enveloping algebras’, Commun. Math. Phys. 127 (1990), 129–44.

[JM] G. James & A. Mathas, ‘Equating decomposition numbers for different primes’, J. Algebra
258 (2002), 599–614.

[Ka] M. Kashiwara, ‘Global crystal bases of quantum groups’, Duke Math. J. 69 (1993), 455–84.

[KMS] M. Kashiwara, T. Miwa & E. Stern, ‘Decomposition of q-deformed Fock spaces’, Selecta
Math. (N. S.) 1 (1995), 787–805.

[Kl] A. Kleshchev, ‘Branching rules for modular representations of symmetric groups, III: some
corollaries and a problem of Mullineux’, J. London Math. Soc. (2) 54 (1996), 25–38.

[LM] B. Leclerc & H. Miyachi, ‘Some closed formulas for canonical bases of Fock spaces’,
Represent. Theory 6 (2002), 290–312.

[LLT] A. Lascoux, B. Leclerc & J.–Y. Thibon, ‘Hecke algebras at roots of unity and crystal bases
of quantum affine algebras’, Comm. Math. Phys. 181 (1996), 205–63.

[LT] B. Leclerc & J.–Y. Thibon, ‘Canonical bases of q-deformed Fock spaces’, Internat. Math. Res.
Notices (1996), 447–56.

[M] G. Mullineux, ‘Bijections on p-regular partitions and p-modular irreducibles of the sym-
metric groups’, J. London Math. Soc. (2) 20 (1979), 60–6.

[S] J. Scopes, ‘Cartan matrices and Morita equivalence for blocks of the symmetric groups’, J.
Algebra 142 (1991), 441–55.

[VV] M. Varagnolo & E. Vasserot, ‘On the decomposition matrices of the quantized Schur
algebra’, Duke J. Math. 100 (1999), 267–97.


