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Abstract
Let λ be a partition of n. We show that the space of FSn-homomorphisms between the

Specht modules Sλ and Sλr
is one-dimensional, where F is a field of characteristic p and λr

is the ‘p-restriction’ of λ. Equivalently, our result proves the corresponding theorem for the
homomorphism space HomFSn (Sλreg

,Sλ), where λreg is the ‘p-regularisation’ of λ, as defined
by James.

1 Introduction

Let n be a non-negative integer, let Sn denote the symmetric group on n letters and let
F be a field of characteristic p > 0. For each partition λ of n, one defines a Specht module
Sλ for the group algebra FSn. When λ is p-restricted, Sλ has a simple socle Dλ, and {Dλ |

λ is a p-restricted partition of n} is a complete set of non-isomorphic, irreducibleFSn-modules.
The main problem in the modular representation theory of Sn is the calculation of the

decomposition numbers, i.e. the composition multiplicities of the simple modules Dµ in the
Specht modules Sλ, for λ and µ partitions of n with µ p-restricted. Many results concerning
this problem have been proved, but it remains very difficult in general. One of the earliest
such results was proved by James in [3]; he found, for each partition λ, the most dominant
p-restricted partition µ such that [Sλ : Dµ] > 0, and showed moreover that this decomposition
number equals 1. The partition µ is constructed in a combinatorial way from λ, via a process
we call ‘p-restriction’.

A problem of similar interest and difficulty to the decomposition number problem is the
determination of the homomorphism space HomFSn(Sλ,Sµ) for partitions λ and µ. In this
paper, we solve this problem in the case where µ is the p-restriction of λ, showing that the ho-
momorphism space is one-dimensional. Our methods are elementary, involving manipulation
of Young tableaux.
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As with many results in the representation theory of the symmetric groups, James’s decom-
position number result generalises to the representation theory of the Iwahori–Hecke algebra
HF,q(Sn); the notion of p-restriction must be replaced with e-restriction, where e is the multi-
plicative order of q. It is tempting to speculate that our result also carries over to this setting,
but this seems difficult to prove using our methods.

1.1 Background and notation

We recall the basic representation theory of the symmetric group from James’s book [4].
In particular, we use the notions of composition, partition, tableau and row and column
equivalence discussed there, as well as the permutation module Mλ and the Specht module
Sλ. We may abuse notation by identifying a partition with its Young diagram. Throughout, we
work over a field F of prime characteristic p.

1.1.1 Homomorphisms from Specht modules to permutation modules

We now recall the results we shall need on homomorphisms; most of this is taken from [4],
but we shall also need some results from [2].

If λ is a composition of n, then we write tλ for the λ-tableau (of type (1n)) formed by writing
the integers 1, . . . ,n along successive rows. If µ is another composition of n, then we define a
bijection from the set of µ-tabloids to the set T (λ, µ) of λ-tableaux of type µ: given a µ-tabloid
{s}, we define the corresponding λ-tableau S by

S(x, y) = the number of the row in which tλ(x, y) appears in {s}.

Using this bijection, we regard T (λ, µ) as a basis for Mµ.
Now suppose we have a λ-tableau T of type µ. We define a homomorphism ΘT : Mλ

→Mµ

by specifying
ΘT : {tλ} 7−→

∑
S∼rowT

S,

and extending homomorphically. The restriction of ΘT to the Specht module Sλ is written as
Θ̂T. The maps Θ̂T turn out to be very useful; our main theorem will be proved by explicitly
constructing a tableau T and using the corresponding homomorphism.

For d > 1 and 0 6 t < λd+1, there is also a homomorphism ψd,t from Mλ to a permutation
module Mν, whose importance is illustrated by the following theorem.

Theorem 1.1. The Kernel Intersection Theorem [4, Corollary 17.18] If λ is a partition of n, then

Sλ =
⋂
d>1

λd+1−1⋂
t=0

kerψd,t.

The Kernel Intersection Theorem is very useful in finding homomorphisms between Specht
modules. If λ and µ are partitions of n, and if θ is a homomorphism from Sλ to Mµ, then the
image of θ lies inside the Specht module Sµ if and only if ψd,t ◦ θ = 0 for all d, t. We shall make
use of this observation in Section 5.

Now we cite some results from [2] concerning basic manipulation of homomorphisms.
Given any tableau T, we write T j

i for the number of entries equal to i in row j.
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Lemma 1.2. [2, Lemma 7] Suppose λ is a partition of n and µ a composition, and that T ∈ T (λ, µ) is
row standard. Suppose r < s, and that i is an integer appearing a times in row s of T. LetV(T) be the
set of row standard tableaux which may be obtained from T by interchanging the entries equal to i in
row s with some a entries not equal to i in row r, and re-ordering the entries in each row. Then

Θ̂T = (−1)a
∑

V∈V(T)

∏
j>1

(
Vs

j

Ts
j

)
Θ̂V.

Lemma 1.3. Suppose T is a λ-tableau of type µ, and let U be the tableau formed from rows r+1, r+2, . . .
of T, for some r. If Θ̂U = 0, then Θ̂T = 0.

Proof. This is a special case of [2, Lemma 4]. �

1.1.2 The process of p-restriction

In this section, we describe the process of p-restriction of partitions which motivates our
main theorem. We use the prime p = char(F), although the notion of p-restriction works for
any integer p > 1. For an integer i > 1, the ith ramp inN ×N is defined to be

{(x, y) | (p − 1)x + y = i + p − 1}.

If λ is a partition, then the ith ramp of λ is the intersection of this ramp with the Young diagram
of λ. We say that a ramp is full if every node of that ramp is a node of λ. The p-restriction
of λ, denoted λr, is defined to be the partition whose Young diagram is obtained by moving
all the nodes of λ as far down their ramps as they will go. It is a fairly easy exercise to show
that we actually obtain the Young diagram of a p-restricted partition by this procedure. For
example, if p = 3 and λ = (9, 7, 3, 3), then λr = (7, 6, 5, 3, 1). We may see this by comparing the
Young diagrams of these partitions; for each node we write the number of the ramp in which
it appears:

1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9
5 6 7
7 8 9

1 2 3 4 5 6 7
3 4 5 6 7 8
5 6 7 8 9
7 8 9
9

.

James [3, Theorem A] showed that every row of the decomposition matrix for the symmetric
group Sn in characteristic p contains a 1; his result may be stated as follows.

Theorem 1.4. Suppose λ and µ are partitions of n, with µ p-restricted. Then [Sλ : Dλr] = 1, while
[Sλ : Dµ] = 0 unless λr Q µ.

A quicker proof of James’s result appears in [5]. Our main theorem may be regarded as an
analogue of this theorem for homomorphisms between Specht modules.

Theorem 1.5. If λ is a partition of n, then

dimF(HomFSn(Sλ,Sλ
r
)) = 1.

To prove that this homomorphism space has dimension at most 1 is easy.
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Proposition 1.6.
dimF(HomFSn(Sλ,Sλ

r
)) 6 1.

Proof. Since the socle of Sλ
r
is a simple module Dλr which appears exactly once as a composition

factor of Sλ, the coimage of any non-zero homomorphism from Sλ to Sλ
r

must be the unique
quotient M of Sλ having Dλr as its socle. So

dimF(HomFSn(Sλ,Sλ
r
)) = dimF(HomFSn(M,Sλ

r
))

6 dimF(HomFSn(soc(M), soc(Sλ
r
)))

= dimF(HomFSn(Dλr
,Dλr

))

= 1,

since every field is a splitting field for Sn. �

In order to prove Theorem 1.5, therefore, it suffices to find a non-zero homomorphism from
Sλ to Sλ

r
. This is done in Theorem 2.2.

In some instances, our homomorphism occurs as the composition of ‘known’ homo-
morphisms between Specht modules. For example, suppose p = 3 and λ = (5, 3), so that
λr = (4, 3, 1). Then there are non-zero homomorphisms

Θ̂1 : S(5,3)
→ S(5,2,1), Θ̂2 : S(5,2,1)

→ S(4,3,1)

(these are ‘one-node Carter–Payne homomorphisms’ [1]), and it is easy to check (using the
more explicit construction in [2]) that the composition Θ̂2 ◦ Θ̂1 is non-zero. Similarly, Koppinen
[6] (working in an algebraic groups setting) described certain pairs of partitions for which the
homomorphism space between the corresponding Weyl modules is non-zero; this gives the
existence of homomorphisms between the corresponding Specht modules, which can be used
to construct homomorphisms Sλ → Sλ

r
in certain cases.

In general, however, our homomorphism cannot be constructed in this way. Consider
the case where p = 3 and λ = (6), so that λr = (23). Then λ and λr are not close (in the
sense of Koppinen), nor is there a Carter–Payne homomorphism between them. Nor can our
homomorphism be written as a composition of homomorphisms between Specht modules:
the only partition µ such that (6) B µ B (23) and HomFS6(S(6),Sµ) , 0 is µ = (5, 1), and it is
easy to check (by writing out all possible maps in terms of semistandard homomorphisms, or
otherwise) that HomFS6(S(5,1),S(23)) = 0.

1.1.3 p-regularisation

Before proceeding with the proof of Theorem 1.5, we briefly discuss p-regularisation of
partitions. Write λ′ for the partition conjugate to λ, and define the p-regularisation λreg of
λ to be (λ′)r′. p-regularisation is perhaps a more familiar concept than p-restriction, and
is more appropriate when using James’s parameterisation {Dλ

| λ a p-regular partition} of
the irreducible FSn-modules; indeed, Theorem 1.4 was originally stated in these terms. An
equivalent version of our main theorem, stated in terms of p-regularisation, is as follows.
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Theorem 1.7. If λ is a partition of n, then

dimF(HomFSn(Sλ
reg
,Sλ)) = 1.

That this is equivalent to Theorem 1.5 is easy to see using the fact [4, Theorem 8.15] that
Sλ
′

� (Sλ)∗ ⊗ sgn, where sgn denotes the signature representation of Sn. From this it follows
that for any λ and µ we have

dimF(HomFSn(Sλ,Sµ)) = dimF(HomFSn(Sµ
′

,Sλ
′

)),

which immediately gives the equivalence of Theorems 1.5 and 1.7. We have chosen to work
with p-restriction in this paper simply because it is easier to construct homomorphisms from
Sλ to Sλ

r
.

1.1.4 Miscellaneous notation

• We frequently use row and column removal operations on partitions, and we use ¯ and
| to denote these: so if λ = (λ1, λ2, . . . ), then

λ̄ = (λ2, λ3, . . . )

and

|λ = (max(λ1 − 1, 0),max(λ2 − 1, 0), . . . ).

• We write 1(S) for the indicator function of the truth of a statement S.

• We use a circumflex accent to denote the omission of an item from a list.

2 Magic tableaux

The advantage of working with the partitions λ and λr is that we shall be able to express
our homomorphism Sλ → Sλ

r
in terms of a single λ-tableau (of type Sλ

r
), which we shall call a

magic tableau. Our construction begins with the following lemma.

Lemma 2.1. Suppose λ = (λ1, λ2, . . .) is a partition, and j is a positive integer with λr
j > 0. The

following are equivalent.

1.
(λ̄)r

i =

λr
i − p + 1 (i < j)

λr
i+1 (i > j).

2. λr
j + (p − 1)( j − 1) = λ1.

Furthermore, there exists at least one j for which these conditions hold.

We call a j for which the conditions of Lemma 2.1 hold a magic value.
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Proof. (1)⇒(2) is easy, since |λr
| = |λ̄r

| + λ1. So we suppose that (2) holds.
We write misλ(l) for the number of nodes in ramp l which are not nodes of λ. Then we have

λr
i = |{l > (i − 1)(p − 1) | misλ(l) < i}|

while
λ̄r

i = |{l > i(p − 1) | misλ(l) < i + 1(l > λ1)}|.

In other words,

λ̄r
i = |{i(p − 1) < l 6 λ1 | misλ(l) < i}| + |{l > max(λ1, i(p − 1)) | misλ(l) < i + 1}|.

Suppose first that i < j. By (2), the last node in row j of λr lies in ramp λ1, which means
that misλ(l) > j for l > λ1. Hence misλ(l) > i + 1 for l > λ1, so the second part of the above sum
is zero. So we have

λ̄r
i = |{i(p − 1) < l 6 λ1 | misλ(l) < i}|.

Now if (i− 1)(p− 1) < l 6 i(p− 1), then ramp l contains exactly i nodes. If l 6 λ1 then misλ(l) < i
for (i − 1)(p − 1) < l 6 i(p − 1), and we deduce that

λ̄r
i = |{(i − 1)(p − 1) < l 6 λ1 | misλ(l) < i}| − p + 1

= |{(i − 1)(p − 1) < l | misλ(l) < i}| − p + 1

= λr
i − p + 1.

Now suppose i > j. Every l with i(p − 1) < l 6 λ1 satisfies misλ(l) < j, and so certainly
misλ(l) < i. So

λ̄r
i = (λ1 − i(p − 1))1(i(p − 1) 6 λ1) + |{l > max(λ1, i(p − 1)) | misλ(l) < i + 1}|

= |{l > i(p − 1) | misλ(l) < i + 1}|

= λr
i+1.

To show that a magic value exists, we must find j such that the last node in row j of λr lies
in ramp λ1. Consider j = misλ(λ1) + 1. Certainly row j contains a node of ramp λ1; we must
show that it does not contain a node of ramp λ1 + 1. Letting rp(l) denote the number of nodes
in ramp l of λ, we must show that rp(λ1 + 1) < rp(λ1) + 1((p − 1) | λ1). But every node in ramp
λ1 + 1 of λ (except the node in column 1, if (p − 1) | λ1) has a node of ramp λ1 immediately to
the left of it; furthermore the node (1, λ1) in ramp λ1 does not lie immediately to the left of a
node of λ, and the inequality follows. �

Note that the magic value j constructed at the end of the above proof is the smallest magic
value, since it corresponds to the row containing the highest node of ramp λ1 of λr.

Now suppose we have a sequence i1 < i2 < . . . of integers. We define a magic λ-tableau on
i1, i2, . . . to be any λ-tableau obtained using the following recursive procedure:

1. choose some a magic value j for λ;

2. fill in the first row of λ (in increasing order) with p − 1 entries equal to i1, p − 1 entries
equal to i2, and so on up to i j−1, and then λr

j entries equal to i j;

3. fill in the remaining rows with a magic λ̄-tableau on i1, i2, . . . , î j, . . . .
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Remarks.
1. There are often several choices of j in Lemma 2.1. For example, if p = 2 and λ is the 2-core

(r, r−1, . . . , 2, 1), then any j ∈ {1, 2, . . . , r}will do. Hence there are usually several different
magic tableaux; in fact, if we let λ(s) denote the partition (λs+1, λs+2, . . . ), then the number
of magic λ-tableaux is the product over all s of the number of magic values for λ(s). We
also note that set of magic values for λ is a set of consecutive integers – this follows easily
using characterisation (1) of magic values in Lemma 2.1.

2. It is easy to find the content of a magic tableau using Lemma 2.1. A magic λ-tableau on
i1, i2, . . . contains λr

k entries equal to ik, for each k.

We define the first magic λ-tableau Tλ = Tλ(i1, i2, . . . ) on i1, i2, . . . to be the magic tableau in
which we choose the smallest possible magic value at each stage. Note that this tableau is
straightforward to write down: the smallest possible magic value for λ will be i j, where j is
the highest row of λr which contains a node in ramp λ1. Subsequent magic values are chosen
similarly.

Example. Take p = 3 and λ = (10, 10, 9, 3, 3, 3). Then λr = (9, 8, 7, 6, 4, 3, 1) and the first magic
λ-tableau on 1, 2, . . . is

1 1 2 2 2 2 2 2 2 2
1 1 3 3 4 4 4 4 4 4
1 1 3 3 5 5 6 6 6
1 1 1
3 3 3
5 5 7

.

In view of Proposition 1.6, Theorem 1.5 will follow from the following result.

Theorem 2.2. Suppose λ is a partition, and T is a magic λ-tableau on 1, 2, . . . . Then Θ̂T : Sλ → Mλr

is a non-zero homomorphism whose image lies inside the Specht module Sλ
r
.

Remark. Given Theorem 2.2, it is therefore easy to write down a non-zero homomorphism
Θ : Sλ → Sλ

r
: we take Θ = Θ̂T where T is the first magic tableau on 1, 2, . . . . As noted above, it

is a simple matter to construct T.

2.1 Alternative characterisations of magic tableaux

It will be useful in the proofs in later sections to have two more descriptions of magic
tableaux.

Lemma 2.3. Suppose T is a λ-tableau on i1, i2, . . . . Define f : {1, . . . , λ′1} → {i1, i2, . . . } by k 7→ T(k, λk).
Then T is a magic tableau on i1, i2, . . . if and only if the following all hold.

1. For each k, the number of entries of T equal to ik is λr
k.

2. The entries in each row of T are weakly increasing.

3. f is injective.

4. If f (r) = ik and s > r, then ik does not appear in row s.
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5. If f (r) = ik, s < r and f (s) > ik, then ik appears exactly p − 1 times in row s.

6. If ik does not lie in the image of f , then ik appears exactly p − 1 times in row s if f (s) > ik, and
does not appear in row s otherwise.

Proof. Suppose first that T is magic, and that j is the magic value chosen for the first row. Write
T̄ for the λ̄-tableau formed by removing the first row of T. Then T̄ is magic on i1, i2, . . . , î j, . . . ,

while row 1 has entries ip−1
1 , ip−1

2 , . . . , ip−1
j−1 , i

λr
j

j ; in particular, all the i js in T occur in the first row.
The content of T is correct by our earlier remarks, and Conditions (2–6) follow by induction.

Conversely, suppose that (1–6) hold, and that f (1) = i j. The conditions imply that the first

row of T has entries ip−1
1 , ip−1

2 , . . . , ip−1
j−1 , i

λr
j

j , and that i j does not appear anywhere else in T. Since
the number of i js in T is λr

j, this means that λr
j + ( j − 1)(p − 1) = λ1, so that j is a magic value

for λ. So T is magic on i1, i2, . . . if and only if T̄ is magic on i1, i2, . . . , î j, . . . , which is true by
induction: the content of T̄ is correct because j is a magic value for λ, and conditions (2–6) are
true for T̄ because they are true for T. �

Our next characterisation of magic tableaux requires some additional notation. Suppose T
is a λ-tableau on i1, i2, . . . . Say that T is pre-magic if and only if there is an integer m such that
T(x, y) = i1 if and only if either (x < m, y 6 p − 1) or x = m. We allow the possibility m > λ′1,
which means that the entries in the first p − 1 columns of T are the entries equal to i1. If T is
pre-magic, we define the composition λ◦ by

λ◦k =

λk − p + 1 (k < m)

λk+1 (k > m),

and define the λ◦-tableau T◦ by

T◦(x, y) =

T(x, y + p − 1) (x < m)

T(x + 1, y) (x > m).

Then T◦ is a λ◦-tableau on i2, i3, . . . . We call the procedure by which T◦ is obtained from T
L-removal.

Example. Let T be the magic (10, 10, 9, 3, 3, 3)-tableau of the last example. Then we have

T◦ = 2 2 2 2 2 2 2 2
3 3 4 4 4 4 4 4
3 3 5 5 6 6 6
3 3 3
5 5 7

.

Lemma 2.4. Suppose T is a λ-tableau with values from the set {i1, i2, . . . }. Then T is magic on i1, i2, . . .
if and only if the following hold.

1. For each k, the number of entries equal to ik in T is λr
k.

2. T is pre-magic.
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3. λ◦ is a partition.

4. T◦ is magic on i2, i3, . . . .

Proof. Suppose first that T is magic. Then (1) is certainly true. Define f as above.
If f (m) = i1 for some m, then the conditions in Lemma 2.3 imply that T is pre-magic (with

this value of m). The number of i1s in T equals λr
1, which is the number of full ramps in λ. So

the node (m, λm) of λ lies in a full ramp. This means that either m = 1 or λm−1 − λm > p− 1, and
either way λ◦ is a partition. Furthermore, by counting nodes in ramps, we find that (λ◦)r = λ̄r.
This implies that the conditions of Lemma 2.3 hold for T◦, and so T◦ is magic.

If i1 does not lie in the image of f , then i1 appears p − 1 times in each row of T. We put
m = λ′1 + 1, and essentially repeat the above argument (without the proof that λ◦ is a partition,
which is trivial in this case).

Conversely, suppose that (1–4) hold. Then conditions (1–6) of Lemma 2.3 hold for T◦, and
so they hold for T. So T is magic. �

Recall that Tλ = Tλ(i1, i2, . . . ) denotes the first magic λ-tableau. We can characterise this as
follows.

Lemma 2.5. Suppose T is a magic λ-tableau on i1, i2, . . . . Then T = Tλ if and only if there do not exist
j, k, r such that:

• ik appears at the end of row r of T;

• the last entry in row r of T not equal to ik is equal to i j;

• the number of entries in row r equal to ik equals the number of entries strictly below row r which
equal i j.

Proof. Suppose such j, k, r exist. Form the tableau T̂ by replacing each ik in row r of T with i j,
and replacing each i j below row r with ik. We claim that T̂ is magic. By assumption, T̂ has the
same content as T, so condition (1) of Lemma 2.3 is satisfied. Conditions (2–6) are easy to verify
from the corresponding conditions for T, and so the claim is true. T̂ has an earlier magic value
in row r than T, so T is not the first magic λ-tableau.

Conversely, suppose T , Tλ. If the first row of T agrees with the first row of Tλ, then we
may remove this row from both and use induction on the number of rows. So we suppose that
T and Tλ differ in the first row. Let k be the magic value for λ chosen in the construction of
T, namely, k is such that the last entry of the first row of T equals ik. The magic value chosen
for Tλ must be strictly less than k, since Tλ is the first magic λ-tableau. Since the set of magic
values of λ is a set of consecutive integers, k − 1 is a magic value for λ. If we construct a magic
λ-tableau Ť by choosing the magic value k − 1 in the first row, and in subsequent rows making
the same choice of magic value as in T, then Ť may be obtained from T by replacing all the
entries equal to ik in row 1 with ik−1s, and replacing all the entries equal to ik−1 below row 1
with iks. The fact that T and Ť have the same content then means that T satisfies the conditions
of the lemma, with j − k = 1 and r = 1. �

Now we show that the L-removal procedure described above preserves the property of
being the first magic tableau.
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Lemma 2.6. Let T = Tλ(i1, i2, . . . ), and define T◦ as above. Then T◦ = Tλ◦(i2, i3, . . . ).

Proof. T◦ is magic on i2, i3, . . . by Lemma 2.4. The fact that T◦ is the first magic λ◦-tableau
follows easily from Lemma 2.5. �

3 An important lemma

We begin this section with the following well-known result about binomial coefficients.

Lemma 3.1. [4, Corollary 22.5] Suppose that a ≡ −1 mod p. Then(
a + 1

1

)
,

(
a + 2

2

)
, . . . ,

(
a + p − 1

p − 1

)
≡ 0 mod p.

This will be used to prove the following important lemma, which will help us to show both
that the image of a ‘magic homomorphism’ lies in the Specht module Sλ

r
, and that if one magic

homomorphism is non-zero then they all are.

Lemma 3.2. Suppose R is a magic λ-tableau. Suppose t > 1, and that (x1, y1), . . . , (xt, yt) are nodes of
λ and m1, . . . ,mt,m are integers such that for each 1 6 i 6 t:

• R(xi, yi) = m;

• mi < m;

• mi appears at the end of row ri of R, for some ri < xi.

Define the λ-tableau S by

S(x, y) =

mi ((x, y) = (xi, yi) for some i)

R(x, y) (otherwise).

Then Θ̂S = 0.

Proof. By re-ordering, we may assume that r1 6 · · · 6 rt, and we let g be maximal such that
r1 = rg. Then m1 = · · · = mg , mi for i > g. We want to use Lemma 1.2 to move the entries equal
to m1 in positions (x1, y1), . . . , (xg, yg) of S up to row r1. Lemma 1.2 tells us that Θ̂S is a linear
combination of maps Θ̂U, where each U is obtained by interchanging these entries with entries
not equal to m1 in row r1. We will show that for each such U either the map Θ̂U is zero or the
coefficient of Θ̂U given by Lemma 1.2 is divisible by p. Write ai = U(xi, yi) for i = 1, . . . , g.

Suppose first that for some j, a j does not appear the end of any of rows r1 + 1, . . . , x j − 1.
Then there are p − 1 entries equal to a j in row x j of R, and by Lemma 1.2 the coefficient of Θ̂U

in Θ̂T includes a factor
(p−1+a

p−1
)
, where a is the number of 1 6 k 6 g such that xk = x j and ak = a j.

Since there are p − 1 entries equal to a j in row r1 of R, we have a 6 p − 1, and so the binomial
coefficient

(p−1+a
p−1

)
is divisible by p, by Lemma 3.1.

So we may assume that for each j, the integer a j appears at the end of some row between r1

and x j. Now if we let R̄ be the tableau formed by rows r1 + 1, r1 + 2, . . . of U, then by induction
on λ′1 (replacing m1, . . . ,mg with a1, . . . , ag) we find that Θ̂R̄ = 0. Hence Θ̂U = 0 by Lemma
1.3. �
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4 Θ̂T is non-zero when T is magic

To prove that Θ̂T is non-zero when T is a magic tableau, we consider the image of a chosen
polytabloid under Θ̂T, and try to isolate a particular tabloid such that we can find the coefficient
of this tabloid in the image. Suppose S ∼row T and that the entries in each column of S are
distinct. Let U(S) be the set of λ-tableaux U such that U ∼row T and U ∼col S. For U ∈ U(S),
define εUS to be the sign of the column permutation taking U to S (this is well-defined, since the
entries in each column of S are distinct). Say that S is special for T if

∑
U∈U(S) εUS is not divisible

by p. Then we have the following.

Lemma 4.1. Θ̂T is non-zero if and only if there is a tableau S which is special for T.

Proof. Let Ctλ denote the column stabiliser of the tableau tλ and set κtλ =
∑

w∈C
tλ

sgn(w)w.

Consider the image of the polytabloid etλ = {tλ}κtλ (which generates Sλ) under the map Θ̂T.
Recall that

Θ̂T : {tλ}κtλ 7−→

 ∑
U∼rowT

U

κtλ
where we regard T (λ, λr) as a basis for Mλr

. Each w ∈ Ctλ acts on U ∼row T by permuting the
entries in its columns. If S ∈ T (λ, λr) has repeated entries in some column then the coefficient
of S in Θ̂T(etλ) is zero ([3, Lemma 13.12]); otherwise S has coefficient in Θ̂T(etλ) equal to∑

U∼rowT
U∼colS

εUS1F.

Suppose S is special for T. Then the coefficient of S in Θ̂T(etλ) is
∑

U∈U(S) εUS1F, which is
non-zero.

Conversely, suppose R is a λ-tableau of type λr such that the coefficient of R in Θ̂T(etλ) is
non-zero. This implies that the entries in each column of R are distinct, and that there is a
tableau S such that T ∼row S ∼col R, with the coefficient of S in Θ̂T(etλ) being εRS times the
coefficient of R, and hence non-zero. Since this coefficient equals

∑
U∈U(S) εUS1F, we find that S

is special for T. �

Our proof that Θ̂T , 0 will be by induction, and we shall often need to switch between
different magic tableaux for the same λ. So we need the following result.

Lemma 4.2. If T1 and T2 are magic λ-tableaux on i1, i2, . . . , then Θ̂T1 = ±Θ̂T2 . Hence Θ̂T1 is non-zero
if and only if Θ̂T2 is non-zero.

Proof. The magic tableau T1 is specified by choosing a magic value j1 for λ, choosing a magic
value j2 for λ̄, and so on. Similarly, T2 is specified by a magic value j′1 for λ, a magic value j′2
for λ̄, and so on. We say that T1 and T2 are adjacent if for some r we have

j′i =

 ji ± 1 (i = r)

ji (i , r).
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Since the set of magic values for a partition is a set of consecutive integers, and since the relation
Θ̂T1 = ±Θ̂T2 on the set of magic λ-tableaux is an equivalence relation, it suffices to consider the
case where T1 and T2 are adjacent. So we suppose that the integers ji and j′i are as above, with
j′r = jr + 1.

Let l be the last entry in row r of T1, and let m be the last entry in row r of T2. Then for any
node n of λ below row r, we have T1(n) = m if and only if T2(n) = l, and T2 may be obtained
from T1 by replacing all the entries equal to m below row r with ls, and replacing all but p − 1
of the entries equal to l in row r with ms. We shall apply Lemma 1.2 to T1, to move the entries
equal to m below row r up to row r. Lemma 1.2 tells us that Θ̂T1 is equal to a linear combination
of homomorphisms Θ̂U, where U is a row standard tableau obtained from T1 by interchanging
the entries equal to m below row r with entries not equal to m in row r. Of course, T2 is such a
tableau, and we wish to show that the coefficient of Θ̂T2 in this linear combination is ±1, while
for any U , T2 either the coefficient of Θ̂U is zero, or the map Θ̂U equals zero.

If all the entries that we bring down from row r are equal to l then, since T1 does not contain
any entries equal to l below row r, the binomial coefficients occurring in Lemma 1.2 are all equal
to 1, and so we find that the coefficient of Θ̂T2 is ±1. Now we suppose that U is a row standard
tableau obtained as above, different from T2. Suppose the entries equal to m below row r in T1

appear in positions (x1, y1), . . . , (xu, yu), and set ai = U(xi, yi) for each i. By re-ordering, we may
find t such that ai = l if and only if i > t. The fact that U , T2 means that t > 1.

Suppose that for some j 6 t the integer a j does not appear at the end of any of rows
r + 1, . . . , x j − 1 of T1. Then a j appears exactly p − 1 times in row x j of T1, and so the coefficient
of Θ̂U in Θ̂T1 includes the binomial coefficient

(p−1+a
p−1

)
, where a is the number of k such that

ak = a j and xk = x j. Since row r of T1 contains p − 1 entries equal to a j, we have a 6 p − 1, so the
coefficient

(p−1+a
p−1

)
is divisible by p.

So we may assume that for each j 6 t the integer a j appears at the end of some row of
T1 above row x j. Now we may apply Lemma 3.2, letting R be the tableau formed from rows
r + 1, r + 2, . . . of T2, and S the tableau formed from rows r + 1, r + 2, . . . of U, with mi = ai for
i = 1, . . . , t. We find that Θ̂S = 0, which means that Θ̂U = 0 by Lemma 1.3. �

Now we describe the inductive step in our proof. Given a λ-tableau T, write |T for the
|λ-tableau with |T(x, y) = T(x, y) for all x, y. (So |T is T with the last entry deleted from each
row.)

Lemma 4.3. Let T = Tλ(i1, i2, . . . ). Then |T is a magic |λ-tableau on i1, i2, . . . .

This relies on the following comparison between λr and (|λ)r.

Lemma 4.4.

(|λ)r
k =

λr
k − 1 (if k appears at the end of some row of Tλ(i1, i2, . . . ))

λr
k (otherwise).

Proof. We work by induction on λ′1, the case where λ has no non-zero parts being trivial. We
assume the lemma holds for λ̄, that is

(|λ̄)r
k =

(λ̄)r
k − 1 (if k appears at the end of some row of Tλ̄(i1, i2, . . . ))

(λ̄)r
k (otherwise).
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Let j be the first magic value for λ and j∗ the first magic value for |λ so that j = misλ(λ1) + 1 and
j∗ = mis|λ(|λ1) + 1. Therefore either j = j∗ or j = j∗ + 1.

Let M̄ be the set of numbers which appear at the ends of the rows of Tλ̄(i1, i2, . . .) and M be
the set of numbers appearing at the ends of the rows of Tλ(i1, i2, . . .). By construction,

M = {ik | ik ∈ M̄ and k < j} ∪ {i j} ∪ {ik | ik−1 ∈ M̄ and k > j}.

Now, from Lemma 2.1

(λ̄)r
k =

λr
k − p + 1 (k < j)

λr
k+1 (k > j)

and

(|λ̄)r
k =

(|λ)r
k − p + 1 (k < j∗)

(|λ)r
k+1 (k > j∗).

Therefore (omitting the case k = j∗ for the moment)

(|λ)r
k =

(|λ̄)r
k + p − 1 (k < j∗)

(|λ̄)r
k−1 (k > j∗)

=


(λ̄)r

k + p − 2 (k < j∗, ik ∈ M̄)

(λ̄)r
k−1 − 1 (k > j∗, ik−1 ∈ M̄)

(λ̄)r
k + p − 1 (k < j∗, ik < M̄)

(λ̄)r
k−1 (k > j∗, ik−1 < M̄).

Now note that since either j = j∗ or j = j∗ + 1, a situation where k > j and k < j∗ cannot arise;
and a situation where k − 1 < j and k > j∗ can only arise if j = j∗ + 1 and k = j. Therefore for
k , j, j∗,

(|λ)r
k =


λr

k − 1 (k < j, k < j∗, ik ∈ M̄)

λr
k (k < j, k < j∗, ik < M̄)

λr
k − 1 (k − 1 > j, k > j∗, ik−1 ∈ M̄)

λr
k (k − 1 > j, k > j∗, ik−1 < M̄).

Comparing this with the expression for M above, we find that for k , j, j∗,

(|λ)r
k =

λr
k − 1 (ik ∈M)

λr
k (otherwise).

It is also clear that (|λ)r
j = λr

j − 1 since the node at the end of row j of λr is the highest node on
ramp λ1. If λ is a partition of n, then |λ is a partition of n − |M|; hence the result must also hold
for k = j∗. �
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Proof of Lemma 4.3. Since T is magic, we may construct the tableau T◦ as defined before
Lemma 2.4. We define the tableau |T◦ by removing the last entry from each row of T◦, or
equivalently by using the L-removal procedure on |T (which is certainly pre-magic). Since
T◦ = Tλ◦(i2, i3, . . . ) by Lemma 2.6, we find by induction that |T◦ is magic. So we find that
conditions (2–4) of Lemma 2.4 hold for |T; condition (1) follows from Lemma 4.4, and so |T is
magic. �

Proposition 4.5. Suppose T is a magic λ-tableau on 1, 2, . . . . Then Θ̂T , 0.

Proof. By Lemma 4.2, we may assume that T = Tλ(1, 2, . . . ). If we construct |T as above, then
|T is magic, so by induction Θ̂|T is non-zero. So there exists a |λ-tableau S which is special for
|T. Let f (r) denote the entry at the end of row r of T, and then for any |λ-tableau R define the
λ-tableau R+ by

R+(x, y) =

R(x, y − 1) (y > 1)

f (x) (y = 1).

We claim that S+ is special for T. First we need to show that

U(S+) = {U+
| U ∈ U(S)},

i.e. that if V is a λ-tableau such that V ∼row S+ and V ∼col S+, then V(x, 1) = f (x) for all x. We
prove this by induction on x. There is exactly one entry equal to f (x) in the first column of V.
Now f (x) appears at the end of row x of T, and so by the construction of magic tableaux, all the
entries of T equal to f (x) occur in or above row x. We have V ∼row S+

∼row T, so the entry f (x)
in the first column of V appears in one of the positions (1, 1), (2, 1), . . . (x, 1); but by induction
we know that V(z, 1) = f (z) , f (x) for 1 6 z < x, and so we have V(x, 1) = f (x). So the above
description ofU(S+) follows. It is clear that εU+S+ = εUS for U ∈ U(S), and hence we find that
S+ is special for T. �

5 The image of a magic homomorphism lies in the Specht module
Sλr

In this section, we show that if T is a magic λ-tableau, then the image of Θ̂T lies in the Specht
module Sλ

r
, which will complete the proof of Theorem 2.2. Following the discussion in Section

1.1.1, we wish to show that the compositions ψd,t ◦ Θ̂T are all equal to zero.
Fortunately, it is easy to calculateψd,t ◦ Θ̂T. Let Ψd,t(T) be the set of row standard λ-tableaux

which may be obtained by replacing λr
d+1 − t of the entries equal to d + 1 in T with ds. Recall

the notation Ud
i from Section 1.1.1, and for each U ∈ Ψd,t(T) define

cU =
∏
i>1

(
Ud

i

Td
i

)
,

Then we have the following.

Lemma 5.1. [2, Lemma 5]
ψd,t ◦ Θ̂T =

∑
U∈Ψd,t(T)

cU1FΘ̂U.
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Our task is to show that if T is a magic λ-tableau, then for each U ∈ Ψd,t(T) either cU is
divisible by p or Θ̂U = 0.

Lemma 5.2. Suppose that U ∈ Ψd,t(T) is such that, for some i, Td
i = p − 1 and Ud

i = b + p − 1, where
1 6 b 6 p − 1. Then p | cU.

Proof. cU contains a factor
(b+p−1

b
)
≡ 0 mod p. �

Lemma 5.3. If U ∈ Ψd,t(T) then either cU is divisible by p or Θ̂U = 0.

Proof. Let M be the set of numbers that appear at the ends of the rows of T. We consider four
separate cases.

1. d, d + 1 < M.

Let U ∈ Ψd,t(T). Then U satisfies the conditions of Lemma 5.2 and hence cU is divisible
by p.

2. d ∈M, d + 1 < M.

Suppose that d appears at the end of row md of T. If for some i < md we have that Ud
i > Td

i
then U satisfies the conditions of Lemma 5.2 and p | cU. Otherwise, all nodes on which T
and U differ must be in rows below md, and by Lemma 3.2 we find that that Θ̂U = 0.

3. d < M, d + 1 ∈M.

Suppose that d + 1 appears at the end of row md+1 of T. If for some i < md+1 row i of U
contains more entries equal to d then T does then U satisfies the conditions of Lemma 5.2
and p | cU. Similarly if row md+1 of U contains b more entries equal to d in row md+1 than
T does, with 1 6 b 6 p − 1, Lemma 5.2 shows that p | cU. We are left with the situation
where U is formed from T by changing b > p entries equal to d + 1 into d in row md+1, and
we claim that in this situation we have Θ̂U = 0. Note that

Umd+1
d+1 < Tmd+1

d+1 − p + 1

6
∑
i>md

Ti
d

(since λr is a partition)

=
∑
i>md

Ui
d.

We now apply Lemma 1.2 to U to bring the entries equal to d below row md+1 into row
md+1. We find that Θ̂U is a linear combination of maps Θ̂V, where V is a row standard
tableau obtained from U by interchanging all the entries equal to d below row md+1 with
some entries not equal to d in row md+1. Suppose (x1, y1), . . . , (xu, yu) are the nodes below
row md+1 such that U(xi, yi) = d. Given a tableau V as described above, write ai = V(xi, yi)
for i = 1, . . . ,u. By re-ordering, we may find t such that ai = d + 1 if and only if i > t. By
the above inequality, we have t > 1.
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Suppose first that for some j 6 t the integer ai does not appear at the end of any of rows
md+1 + 1, . . . , xi − 1 of U. As in the proof of Lemma 4.2, we find that the coefficient of Θ̂V

in the expression for Θ̂U given by Lemma 1.2 is zero. So we suppose that for each j 6 t
the integer a j does appear at the end of one of rows md+1, . . . , x j − 1. Let R′ be the tableau
formed by rows md+1 + 1,md+1 + 2, . . . of U (or equivalently, of T), and let S be the tableau
formed from the corresponding rows of V. Then R′ is a magic tableau on some set I of
integers which includes d but not d + 1. If we form the tableau R by changing all the ds
in R′ into d + 1s, then R is magic on (I \ {d}) ∪ {d + 1}. Now we may apply Lemma 3.2,
with mi = ai for i = 1, . . . , t, and we get Θ̂S = 0, and hence Θ̂V = 0, by Lemma 1.3. Hence
Θ̂U = 0.

4. d, d + 1 ∈M.

Suppose that d appears at the end of row md and d + 1 appears at the end of row md+1.
If md < md+1 then we may repeat the argument of Case 2 above. If md > md+1, we may
repeat the argument of Case 3.

�

This completes the proof of Theorem 2.2, and hence of Theorem 1.5.
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