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Abstract

In [5], the author and Martin constructed embeddings of Schur algebras S (2, r) ↪→ S (2,R). Here,
we generalise to the q-Schur algebras S q(2, r).

1 Introduction

Let F be a field. The Schur algebra S (n, r) over F is a finite-dimensional which was introduced by
Schur; if F is infinite, the module category of S (n, r) is equivalent to the category of r-homogeneous
polynomial representations of GLn(F) over F. In [8] and [9], Henke observed various repeating pat-
terns in the decomposition matrices for the Schur algebras S (2, r), and proved the existence of algebra
embeddings S (2, r) ↪→ S (2,R) for various r and R depending on the characteristic of F, which explain
translational symmetry of the decomposition matrices. In [5], the author and Martin constructed these
embeddings explicitly, and also found embeddings S (2, r) ↪→ S (2, pr) (when p = char(F) is positive)
which correspond to dilations of the decomposition matrices. In [4], the author constructed yet more
embeddings and showed that these could be used to recover the decomposition matrix of S (2, r).

Now let q be any element of F. The q-Schur algebra S q(n, r) is a deformation of S (n, r), introduced
by Dipper and James [3]. In the case where q is a prime power not divisible by the characteristic of
F, the q-Schur algebra describes the unipotent representations of the finite general linear group GLn(q)
over F.

In this paper, we generalise the results of [5] to the q-Schur algebras S q(2, r). Specifically, we exhibit
embeddings S q(2, r) ↪→ S q(2,R) for various r and R depending on the characteristic of F and on the
integer

e = min{i > 0 | 1 + q + · · · + qi−1 = 0}

when the latter is finite, and we construct an embedding of the classical Schur algebra S (2, r) into the
q-Schur algebra S q(2, er). Although the construction is simply a q-analogue of the results in [5], the
proof is rather different, and a q = 1 specialisation of the proof here affords a much quicker proof of
the embedding in [5]. Additionally, by stating our results in terms of codeterminants, we are able to
conjecture a generalisation to the q-Schur algebras S q(n, r) for arbitrary n.
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2 Notation

An excellent introduction to both the classical and quantum Schur algebras can be found in the book
by Martin [11]. Following Beı̆linson et al. [2], we define a basis and structure constants for S q(n, r)
by considering n-step filtrations of vector spaces. So suppose q is a prime power, and let V be an
n-dimensional vector space over Fq.

Let F denote the set of all n-step filtrations of V; then GLn(F) acts naturally on F and F × F . We
use ∼ to denote GLn(q)-conjugacy in both sets, and we let OF,G denote the orbit of (F,G) ∈ F × F .
These orbits are in one-to-one correspondence with the set M(r) of n × n matrices with non-negative
integer entries summing to r: if

F = (0 = F0 6 F1 6 . . . 6 Fn = V)

and
G = (0 = G0 6 G1 6 . . . 6 Gn = V),

then we define the matrix AF,G by

(AF,G)i j = dim(Fi−1 + (Fi ∩G j)) − dim(Fi−1 + (Fi ∩G j−1));

AF,G clearly only depends on the GLn(q)-orbit of (F,G).
Given A, B,C ∈ M(r), we take F,G,H, I, J,K ∈ F such that

A = AF,G, B = AH,I , C = AJ,K ,

and define
ĝA,B,C,q = |{L ∈ F | (J, L) ∼ (F,G), (L,K) ∼ (H, I)}|;

this does not depend on the choice of F,G,H, I, J,K.
Now let q be an indeterminate. For A, B,C ∈ M(r), we define gA,B,C,q to be the unique polynomial

in q such that
gA,B,C,q = ĝA,B,C,q

whenever q is a prime power. We may now define the q-Schur algebra for arbitrary q ∈ F to be the
associative algebra with basis M(r) and multiplication

A ◦ B =
∑

C∈M(r)

gA,B,C,qC.

In the case q = 1, the q-Schur algebra coincides with the classical Schur algebra S (n, r).

2.1 Codeterminants

A new basis of S (n, r), whose elements are called standard codeterminants, was introduced by J.
A. Green in [6], and generalised to S q(n, r) by R. M. Green in [7]. We shall describe Schur algebra
embeddings in terms of codeterminants.

In our notation, a standard codeterminant is any product A ◦ B in S q(n, r), where A, B ∈ M(r) satisfy
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• a1k + · · · + ank = bk1 + · · · + bkn,

• a1 j + · · · + ak j 6 a1( j−1) + · · · + a(k−1)( j−1),

• b ji + · · · + b jk 6 b( j−1)i + · · · + b( j−1)(k−1)

for any 2 6 j 6 n and 1 6 k 6 n, where a0( j−1) and b( j−1)0 are to be treated as zero.

Theorem 2.1 (Green [6], Woodcock [12], Green [7]). The standard codeterminants form a basis for
S q(n, r).

2.2 The q-Schur algebra S q(2, r)

From now on, we assume n = 2. Since a two-step filtration of a vector space is specified simply by a
subspace of that vector space, the notation for S q(2, r) is simplified considerably. gA,B,C,q is zero unless
the row sums of A and C are the same, the column sums of B and C are the same and the column sums
of A are the same as the row sums of B, so let

A =
( a s−a

u−a r−s−u+a

)
, B =

(
b u−b

t−b r−t−u+b

)
, C =

(
k s−k

t−k r−s−t+k

)
.

Now, for a prime power q, let V be an r-dimensional vector space over Fq and let S and T be subspaces
with dim S = s, dim T = t, dim(S ∩ T ) = k. Then ĝA,B,C,q is the number of u-dimensional subspaces U
of V with dim(U ∩ S ) = a and dim(U ∩ T ) = b.

For S q(2, r), a standard codeterminant is simply a product(
s 0
t u

)
◦
( v w

0 u

)
,

where s, v > u. In the next section we shall express standard codeterminants and products of standard
codeterminants in terms of the standard basis elements for S q(2, r), which will enable us to prove our
main results.

2.3 Quantum binomial coefficients

As usual, given q, we define the quantum integer [n] = 1 + q + · · · + qn−1 for any n > 0, and the
quantum factorial [n]! = [1][2] . . . [n]. We then define the quantum binomial coefficient[ n

r

]
=

[n]!
[n − r]![r]!

for non-negative integers n > r. If r < 0 or r > n we define
[ n

r

]
= 0.

Let e be the smallest positive integer such that [e] = 0, if such an integer exists (so e is the multi-
plicative order of q if q , 1, or the characteristic of F if q = 1). We then have the following q-analogue
of Lucas’s Lemma.

Lemma 2.2. Suppose a, b, c, d are non-negative integers with b, d < e. Then[ ae+b

ce+d

]
=

( a
c

)[ b

d

]
.

In particular,
[ ae+b

ce+d

]
= 0 unless b > d.
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We also have the following standard results.

Lemma 2.3. Suppose p is a prime and m, s non-negative integers.

1. If r < eps, then [ n+meps

r

]
≡

[ n
r

]
(mod p).

2. If n − r < eps, then [ n+meps

r+meps

]
≡

[ n
r

]
(mod p).

Lemma 2.4 ([10], Theorem 3.1). Let q be a prime power and V an r-dimensional vector space over Fq.
Suppose V1 and V2 are subspaces of V with dim(V1) = a, dim(V2) = b and V1 ∩ V2 = 0. Then the
number of m-dimensional subspaces W of V with W ∩ V1 = 0 and W > V2 is

qa(m−b)
[ r−a−b

m−b

]
.

Corollary 2.5. Let q be a prime power and V an r-dimensional vector space over Fq. Suppose V1 and
V2 are subspaces of V with dim(V1) = a, dim(V2) = b and dim(V1 ∩ V2) = i. Then the number of
m-dimensional subspaces W of V with dim(W ∩ V1) = x and W > V2 is

q(a−x)(m−x−b+i)
[ a−i

x−i

][ r−a−b+i

m−x−b+i

]
.

In the next section, we shall make use of several standard properties of quantum binomial coeffi-
cients, such as the ‘q-binomial Theorem’. These can be found in the book by Andrews [1].

3 Change of basis and structure constants for S q(2, r)

In this section, we work out how to express a standard codeterminant or a product of two standard
codeterminants for S q(2, r) in terms of the standard basis elements. We fix s, u 6 r; then the matrix

βi =
(

i s−i
u−i r−s−u+i

)
lies in M(r) provided

max(0, s + u − r) 6 i 6 min(s, u),

while the product
γx =

(
s 0

x−s r−x

)
◦
( u x−u

0 r−x

)
is a standard codeterminant provided

max(s, u, r − s, r − u) 6 x 6 r.

From now on, we assume that i, x lie in these ranges.

Lemma 3.1. (
s 0

x−s r−x

)
◦
( u x−u

0 r−x

)
=

∑
i

[ r−s−u+i
r−x

] (
i s−i

u−i r−s−u+i

)
.
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Proof. Since
[ r−s−u+i

r−x

]
is a polynomial in q, we need only prove this in the case where q is a prime

power not divisible by char(F). Suppose that V is an r-dimensional vector space over Fq and S and U
subspaces of V with dim(S ) = s, dim(U) = u and dim(S ∩ U) = i. Then the coefficient of βi in γx is the
number of x-dimensional subspaces of V containing both S and U. By Lemma 2.4, this is

[ r−s−u+i
r−x

]
. �

Now we calculate the product of two standard codeterminants. Note that the structure constants
gA,B,C for S q(2, r) in terms of the standard basis may be easily calculated, but these are rather more
unwieldy than in the case q = 1, essentially because the identity

dim(W ∩ (S + U)) = dim(W ∩ S ) + dim(W ∩ U) − dim(W ∩ S ∩ U)

does not hold for vector spaces in general. However, the standard basis elements involved in a product
of standard codeterminants do not present this problem, and so we find that the formula we obtain is
more manageable; in particular, it does not involve powers of q − 1.

Proposition 3.2. Suppose that (
s 0

v−s r−v

)
◦
( t v−t

0 r−v

)
and (

t 0
w−t r−w

)
◦
( u w−u

0 r−w

)
are standard codeterminants in S q(2, r). Then the product(

s 0
v−s r−v

)
◦
( t v−t

0 r−v

)
◦
(

t 0
w−t r−w

)
◦
( u w−u

0 r−w

)
equals

min(s,u)∑
i=max(0,s+u−r)

∑
j,k

(
q(w−k+ j−u)(v−k)+(v−s− j+i)(u− j)

×
[ k

t

][ v− j

k− j

][ r−v−u+ j

w−u−k+ j

][ u−i
j−i

][ r−s−u+i

v−s− j+i

] (
i s−i

u−i r−s−u+i

) )
.

Proof. We may assume that q is a prime power not divisible by char(F), and use Corollary 2.5. We have( t v−t
0 r−v

)
◦
(

t 0
w−t r−w

)
=

∑
k

[ k
t

] (
k v−k

w−k r−w−v+k

)
,

(
k v−k

w−k r−w−v+k

)
◦
( u w−u

0 r−w

)
=

∑
j

q(w−k+ j−u)(v−k)
[ v− j

k− j

][ r−v−u+ j

w−u−k+ j

] ( j v− j
u− j r−v−u+ j

)
and (

s 0
v−s r−v

)
◦

(
j v− j

u− j r−v−u+ j

)
=

∑
i

q(v−s− j+i)(u− j)
[ u−i

j−i

][ r−s−u+i

v−s− j+i

] (
i s−i

u−i r−s−u+i

)
,

whence the result. �

If we wish, we can easily invert the change-of-basis matrix given by Lemma 3.1, and then combine
this with Proposition 3.2 to obtain the structure constants for S q(2, r) in terms of the basis of standard
codeterminants. However, this will not be necessary in this paper.
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4 The main results

Our first result is a q-analogue of [5, Theorem 3.2], which we prove in an entirely similar way.
Note that we use the word ‘embedding’ to mean a linear injection preserving the multiplication rule; our
embeddings do not preserve the identity element.

Theorem 4.1. Let p = char(F), and let s be any non-negative integer. If r < R are non-negative integers
with r < 2eps and m = R − r ≡ 0 (mod eps), then the linear map φ : S q(2, r) ↪→ S q(2,R) given by

(
e f
g h

)
7−→



(
e+m f

g h

)
(e + f , e + g > r

2 )(
e f +m
g h

)
(e + f > r

2 > e + g)(
e f

g+m h

)
(e + g > r

2 > e + f )(
e f
g h+m

)
( r

2 > e + f , e + g)

is an algebra embedding.

Proof. We must show that φ preserves the multiplication rule in S q(2, r). We shall calculate the image of
a standard codeterminant under φ, and then use Proposition 3.2 to show that multiplication is preserved.
Suppose that (

s 0
x−s r−x

)
◦
( u x−u

0 r−x

)
is a standard codeterminant. Given that we want φ to preserve the multiplication rule, we should like

φ
((

s 0
x−s r−x

)
◦
( u x−u

0 r−x

))
=



(
s+m 0
x−s r−x

)
◦
( u+m x−u

0 r−x

)
(s, u > r

2 )(
s+m 0
x−s r−x

)
◦
( u x−u+m

0 r−x

)
(s > r

2 > u)(
s 0

x−s+m r−x

)
◦
( u+m x−u

0 r−x

)
(u > r

2 > s)(
s 0

x−s+m r−x

)
◦
( u x−u+m

0 r−x

)
( r

2 > s, u).

This follows easily from Lemma 3.1; in the case where
r
2
> s, u, we have s + u − r < 0, and so we get

φ
((

s 0
x−s r−x

)
◦
( u x−u

0 r−x

))
= φ

min(s,u)∑
i=0

[ r−s−u+i
r−x

] (
i s−i

u−i r−s−u+i

)
=

min(s,u)∑
i=0

[ r−s−u+i
r−x

] (
i s−i

u−i r−s−u+i+m

)
=

min(s,u)∑
i=0

[ r−s−u+i+m
r−x

] (
i s−i

u−i r−s−u+i+m

)
(by Lemma 2.3, since r − x < eps)

= φ
((

s 0
x−s r−x

))
◦ φ

(( u x−u
0 r−x

))
,

as required. The other cases are easier.
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Given this, we may check that φ preserves multiplication by multiplying standard codeterminants.
Suppose that (

s 0
v−s r−v

)
◦
( t v−t

0 r−v

)
,

(
t 0

w−t r−w

)
◦
( u w−u

0 r−w

)
are standard codeterminants. There are several cases, depending on whether each of s, t and u is at least
r
2 . We treat only the case s, t, u >

r
2

; the other cases are very similar. The product

φ
((

s 0
v−s r−v

)
◦
( t v−t

0 r−v

))
◦ φ

((
t 0

w−t r−w

)
◦
( u w−u

0 r−w

))
equals

min(s,u)∑
i=s+u−r

∑
j,k

(
q(w−k+ j−u)(v+m−k)+(v−s− j+i+m)(u+m− j)

×
[ k

t+m

][ v+m− j

k− j

][ r−v−u−m+ j

w−u−k+ j

][ u−i
j−i−m

][ r−s−u+i

v−s− j+i

] (
i+m s−i
u−i r−s−u+i

) )
;

replacing j and k with j + m and k + m respectively, we get
min(s,u)∑
i=s+u−r

∑
j,k

(
q(w−k+ j−u)(v−k)+(v−s− j+i)(u− j)

×
[ k+m

t+m

][ v− j

k− j

][ r−v−u+ j

w−u−k+ j

][ u−i
j−i

][ r−s−u+i

v−s− j+i

] (
i+m s−i
u−i r−s−u+i

) )
.

The summand is zero unless k 6 v 6 r, but this gives k − t 6
r
2
< eps, so that

[ k+m
t+m

]
=

[ k
t

]
, and so we

get

φ
((

s 0
v−s r−v

)
◦
( t v−t

0 r−v

))
◦ φ

((
t 0

w−t r−w

)
◦
( u w−u

0 r−w

))
= φ

((
s 0

v−s r−v

)
◦
( t v−t

0 r−v

)
◦
(

t 0
w−t r−w

)
◦
( u w−u

0 r−w

))
,

as required. �

Our second main result is the existence of an embedding of S 1(2, r) in S q(2, er).

Theorem 4.2. For any r, the linear map ψ : S 1(2, r) ↪→ S q(2, er) given by

ψ :
(

s 0
x−s r−x

)
◦
( u x−u

0 r−x

)
7−→

( es 0
e(x−s) e(r−x)

)
◦

(
eu e(x−u)
0 e(r−x)

)
for s, u > r − x is an embedding of algebras.

Proof. We prove that ψ preserves the multiplication using Proposition 3.2. Consider the product( es 0
e(v−s) e(r−v)

)
◦

(
et e(v−t)
0 e(r−v)

)
◦
( et 0

e(w−t) e(r−w)

)
◦

(
eu e(w−u)
0 e(r−w)

)
;

this involves the product [ ev− j

k− j

][ e(r−v−u)+ j

e(w−u)−k+ j

]
,

which is zero unless k − j ≡ 0 or k ≡ 0 (mod e), by Lemma 2.2. Similarly, the product[ eu−i
j−i

][ e(r−s−u)+i

e(v−s)− j+i

]
is zero unless either j − i ≡ 0 or j ≡ 0 (mod e). So in order to reduce the product using Lemma 2.2, we
have four cases to consider:
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• i ≡ j ≡ k ≡ 0 (mod e);

• i . j ≡ k ≡ 0 (mod e);

• i ≡ j . k ≡ 0 (mod e);

• i ≡ j ≡ k . 0 (mod e).

replacing i with ei + ι where 0 6 ι < e, and similarly for j and k, the above product becomes∑
i

∑
j,k

(( k
t

)( v− j

k− j

)( r−v−u+ j

w−u−k+ j

)( u−i
j−i

)( r−s−u+i

r−s− j+i

) ( ei e(s−i)
e(u−i) e(r−s−u+i)

)

+

e−1∑
ι=1

(( k
t

)( v− j

k− j

)( r−v−u+ j

w−u−k+ j

)( u−i−1
j−i−1

)( r−s−u+i

r−s− j+i

)
+

( k
t

)( v− j−1

k− j−1

)( r−v−u+ j

w−u−k+ j

)( u−i−1
j−i

)( r−s−u+i

r−s− j+i

)
+

( k
t

)( v− j−1

k− j

)( r−v−u+ j

w−u−k+ j

)( u−i−1
j−i

)( r−s−u+i

r−s− j+i

)) ( ei+ι e(s−i)−ι
e(u−i)−ι e(r−s−u+i)+ι

) )
(since the exponent of q is divisible by e in all cases). This equals

∑
i, j,k

( k
t

)( v− j

k− j

)( r−v−u+ j

w−u−k+ j

)( u−i
j−i

)( r−s−u+i

r−s− j+i

) ( ei e(s−i)
e(u−i) e(r−s−u+i)

) e−1∑
ι=0

(
ei+ι e(s−i)−ι

e(u−i)−ι e(r−s−u+i)+ι

)
,

where we treat any matrix with a negative entry as zero.
The theorem will now follow if we show that

ψ
((

i s−i
u−i r−s−u+i

))
=


∑e−1
ι=0

(
ei+ι e(s−i)−ι

e(s−u)−ι e(r−s−u+i)+ι

)
(su > 0)(

ei e(s−i)
e(u−i) e(r−s−u+i)

)
(su = 0).

But note that we have

ψ
( min(s,u)∑

i=max(0,s+u−r)

( r−s−u+i
r−x

) (
i s−i

u−i r−s−u+i

) )
= ψ

((
s 0

x−s r−x

)
◦
( u x−u

0 r−x

))
=

( es 0
e(x−s) e(r−x)

)
◦

(
eu e(x−u)
0 e(r−x)

)
=

min(s,u)∑
i=max(0,s+u−r)

e−1∑
ι=0

[ e(r−s−u+i)+ι

e(r−x)

] ( ei+ι e(s−i)−ι
e(u−i)−ι e(r−s−u+i)+ι

)

=

min(s,u)∑
i=max(0,s+u−r)

( r−s−u+i
r−x

) e−1∑
ι=0

(
i s−i

u−i r−s−u+i

)
,

which gives the result. �
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4.1 A generalisation to n > 2

We conjecture that the embedding of Theorem 4.2 embedding works for all n. Given A ∈ M(r),
write eA for the matrix with (eA)i j = e(Ai j). Then we propose the following.

Conjecture 4.3. For any n, r, there is an embedding ψ : S (n, r) ↪→ S q(n, er) given by mapping the
standard codeterminant A ◦ B to (eA) ◦ (eB).
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