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Abstract

Let p be a prime and F a field of characteristic p, and letHn denote the Iwahori–Hecke
algebra of the symmetric group Sn over F at q = −1. We prove that there are only finitely
many partitions λ such that both λ and λ′ are 2-singular and the Specht module Sλ forH|λ|
is irreducible.

1 Introduction

Suppose F is a field and q a non-zero element of F. The Iwahori–Hecke algebra Hn of type
A over F with parameter q is a finite-dimensional algebra which arises in various contexts,
and whose representation theory closely resembles the representation theory of the symmetric
group in prime characteristic. An important class of modules forHn is the class of Specht mod-
ules, and an interesting problem is to determine exactly which Specht modules are irreducible.
This problem has been solved in all cases except when q = −1 and the characteristic of F is
not 2. Various partial results are known for this case, together with a conjectured solution [FL,
Conjecture 2.2] for the case where F has infinite characteristic (we adopt the convention that
the characteristic of a field is the order of its prime subfield). In this note, we concentrate on
the case of finite characteristic p. Since the reducibility or not of Specht modules labelled by
2-regular partitions and their conjugates is known, we can concentrate on partitions λ such that
neither λ nor λ′ is 2-regular. Our main result is that for each p there are only finitely many such
partitions which label irreducible Specht modules. Our approach is to use a decomposition
map to relate the problem to the (known) classification of Specht modules at a 2pth root of unity
in infinite characteristic, and then to apply a recent result of the author and Lyle which proves
the reducibility of a large class of Specht modules. We complete the proof by employing some
simple combinatorics of partitions.

The next section contains the necessary background material, and a statement and proof
of the main result. In Section 3, we try to examine more precisely the reducibility of Specht
modules in prime characteristic, and give some computational results for small primes.

Acknowledgements. The author would like to thank Sinéad Lyle for helpful discussions on
this subject.
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2 The main result

Suppose F is a field, and q is a non-zero element of F; we define e = e(q) to be the
multiplicative order of q in F if q , 1, or e = char(F) if q = 1. For any n > 0, we define
Hn = HF,q(Sn) to be the Iwahori–Hecke algebra of the symmetric group Sn with parameter q.
The essential reference for the representation theory ofHn is Mathas’s book [M].

Many of the important representations of Hn are labelled by partitions of n. Recall that a
partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . . ) of non-negative integers which
sum to n. When writing partitions, we usually group equal parts with a superscript and omit
trailing zeroes.

For every partition λ of n, there is an Hn-module Sλ called the Specht module. (Note that
we refer to the Specht module defined by Dipper and James [DJ], rather than that used by
Mathas.) In the case e = ∞, the Specht modules are irreducible and afford all the irreducible
representations of Hn. In the case where e is finite, the Specht modules may be reducible,
but the irreducible Hn-modules can be obtained from them. Let us say that a partition λ is
e-regular if there is no i such that λi = · · · = λi+e−1 > 0, and e-singular otherwise. When λ is
e-regular, the Specht module Sλ has a unique irreducible quotient Dλ, and the modules Dλ

afford all the irreducible representations of Hn as λ ranges over the e-regular partitions of n.
The decomposition matrix ofHn has rows indexed by the partitions of n and columns indexed by
the e-regular partitions of n, with the (λ, µ)-entry being the composition multiplicity [Sλ : Dµ].
In the case where p = ∞, we denote this decomposition matrix D(e)

n ; it is known that (given e)
this matrix does not depend on the choice of q.

The subject of this paper is the problem of classifying the irreducible Specht modules. Let
us say that a partition λ is (e, p)-reducible if the Specht module Sλ is reducible when F has
characteristic p, or (e, p)-irreducible otherwise; this condition is known to depend only on e and
p, not on the particular choice of F and q. In the case where e > 2, the classification of (e, p)-
reducible partitions has been completed in a series of papers [JM2, L1, F1, F2, L2, JLM], but the
case e = 2 remains open. This paper is a small contribution towards completing this case.

If λ is a partition, let λ′ denote the conjugate partition, defined by

λ′j =
∣∣∣∣{i ∣∣∣ λi > j

}∣∣∣∣ .
It is known thatλ is (e, p)-reducible if and only ifλ′ is; this is because Sλ

′

is essentially the dual of
Sλ [M, Exercise 3.14(iii)]. Furthermore, if λ is e-regular, it is known whether λ is (e, p)-reducible
[JM2, Theorem 4.15]. So in order to complete the classification of irreducible Specht modules,
it suffices to consider the case e = 2, and to consider only partitions λ such that both λ and λ′

are 2-singular. Let us say that λ is doubly-singular if this is the case. Now we can state our main
result.

Theorem 2.1. Suppose p is a prime. Then there are only finitely many doubly-singular (2, p)-irreducible
partitions.

We remark that this theorem is certainly not true in the case p = ∞. For example, any
partition of the form (ab) is (2,∞)-irreducible. This was observed by Mathas, using [JM1,
Theorem 4.7].
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To prove Theorem 2.1, we use the classification of (2p,∞)-partitions and the theory of
decomposition maps. An excellent introduction to decomposition maps can be found in Geck’s
article [G]. Using the set-up in Section 3 of [G], one can obtain the following (recall that D(e)

n
denotes the decomposition matrix for an Iwahori–Hecke algebra at an eth root of unity in a
field of infinite characteristic).

Theorem 2.2. Suppose p = char(F) is a prime and e = 2, and let D be the decomposition matrix ofHn.
Then for any non-negative integer i there is a matrix A with rows indexed by (2pi)-regular partitions of
n and columns indexed by 2-regular partitions of n, with the following properties:

• the entries of A are non-negative integers;

• there is at least one non-zero entry in each row of A;

• D = D(2pi)
n A.

This result arises from a decomposition map between an Iwahori–Hecke algebra at a (2pi)th
root of unity in a field of infinite characteristic, andHn. The matrix A is simply the decompo-
sition matrix associated to this map.

As a consequence, we get the following.

Corollary 2.3. Suppose λ is a partition of n, and suppose that λ is (2pi,∞)-reducible for some i. Then
λ is (2, p)-reducible.

Proof. Since λ is (2pi,∞)-reducible, the sum of the entries in the λ-row of D(2pi)
n is at least 2.

Now the properties of A guarantee that the sum of the entries in the λ-row of D is at least 2, so
that λ is (2, p)-reducible. �

We shall use this result mainly in the case i = 1, employing the known classification of
(2p,∞)-reducible partitions. This is most easily stated in terms of hook lengths in the Young
diagram. Given a partition λ, recall that the Young diagram [λ] is the set{

(i, j) ∈N2
∣∣∣ j 6 λi

}
,

whose elements we call the nodes of λ. Given such a node (i, j), define the hook length hλ(i, j) to
be the integer 1 + λi − j + λ′j − i. If the Young diagram is drawn with the English convention,
this is the number of nodes of λ directly below or directly to the right of (i, j), including (i, j)
itself.

Now given e > 2, say that λ is an e-JM partition if the following condition holds: for every
(i, j) ∈ [λ] for which e divides hλ(i, j), we have either

• e divides hλ(i, k) for all 1 6 k 6 λi, or

• e divides hλ(k, j) for all 1 6 k 6 λ′j.

Then the following is a special case of the results in [JM2, F2, L2].

Theorem 2.4. Suppose e > 2. Then a partition λ is (e,∞)-irreducible if and only if λ is an e-JM
partition.
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So in trying to classify (2, p)-irreducible partitions, we can restrict attention to (2p)-JM
partitions. We can also make another strong restriction, thanks to a recent result of the author
and Lyle. Say that a partition λ is broken if there exist 1 < c < d such that λc−1 − λc > 1 and
λd−1 = λd > 0, and unbroken otherwise. Note that if λ is broken, then so is λ′.

Theorem 2.5. [FL, Theorem 2.1] Suppose λ is a broken partition. Then λ is (2, p)-reducible.

Applying Corollary 2.3, we find that any doubly-singular partition λ which is (2, p)-
irreducible must be an unbroken (2p)-JM partition. So in order to prove Theorem 2.1, it
suffices to show that there are only finitely many such partitions, for any p. This follows from
a few simple combinatorial results.

Given a partition λ and an integer e > 1, say that λ is an e-core if there is no (i, j) ∈ [λ] for
which e divides hλ(i, j). Obviously, if λ is an e-core, then λ is an e-JM partition.

Lemma 2.6. Suppose λ is an unbroken doubly-singular partition, and is a (2p)-JM partition. Then λ is
a 2p-core.

Proof. If not, then we have 2p | hλ(i, j) for some (i, j) ∈ [λ]. Since λ is a (2p)-JM partition, we
have either 2p | hλ(i, k) for all 1 6 k 6 λi, or 2p | hλ(k, j) for all 1 6 k 6 λ′j. By replacing λ with λ′

if necessary, we can assume the latter case.

Claim. λ1 − λ2 > 1.

Proof. First suppose λ2 < j. Then λ′j = 1, so λ1 = hλ(1, j) + j − 1. Since hλ(1, j) is divisible
by 2p, it is at least 2p, and hence λ1 > j + 2p − 1. So λ1 − λ2 > 2p.

On the other hand, suppose λ2 > j. Then hλ(1, j) and hλ(2, j) are both divisible by 2p, and
hλ(1, j)− hλ(2, j) = λ1 − λ2 + 1. So λ1 − λ2 is congruent to −1 modulo 2p, and in particular
is at least 2p − 1.

But if λ is a 2-singular partition with λ1 − λ2 > 1, then λ is broken; contradiction. �

Lemma 2.7. Suppose λ is a 2-singular partition, and let a be maximal such that λa−1 = λa > 0. If λ is
a 2p-core, then λa 6 2p − 2.

Proof. Suppose for a contradiction that λa > 2p − 1, and consider the hook lengths hλ(a − 1, j)
and hλ(a, j) for 1 6 j 6 λa. Note that for any j we have hλ(a − 1, j) = hλ(a, j) + 1. Furthermore,
since a is maximal such that λa−1 = λa, we have λ′j − λ

′

j+1 = 0 or 1 for any 1 6 j 6 λa − 1, and
hence either hλ(a, j) = hλ(a, j + 1) + 1 or hλ(a, j) = hλ(a − 1, j + 1) + 1. This implies that for any
1 6 k 6 λa, the set {

hλ(a − 1, j)
∣∣∣ k 6 j 6 λa

}
∪

{
hλ(a, j)

∣∣∣ k 6 j 6 λa
}

equals the interval {1, 2, . . . , l} for some l > λa−k+2. Taking k = 1, we find that the hook lengths
of λ include 2p, a contradiction. �

Corollary 2.8. Suppose λ is an unbroken doubly-singular partition, and is a 2p-core. Then λ1, λ′1 6
4p − 6. Hence there are only finitely many unbroken doubly-singular 2p-cores.
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Proof. Let a be maximal such that λa−1 = λa > 0, and let b be maximal such that λ′b−1 = λ′b > 0.
Applying Lemma 2.7 to λ and λ′, we have λa, λ′b 6 2p − 2.

The fact that λ is unbroken implies that λi − λi+1 6 1 for i = 1, . . . , a − 1; in particular, since
we have λλ′b − λλ′b+1 > 1, we must have a 6 λ′b. We also deduce that λ1 6 λa + a − 2.

So

λ1 6 λa + a − 2

6 2p − 2 + λ′b − 2

6 2p − 2 + 2p − 2 − 2

= 4p − 6;

replacingλwithλ′, we also getλ′1 6 4p−6. It is clear that boundingλ1 andλ′1 above leaves only
finitely many partitions, so there are only finitely many unbroken doubly-singular 2p-cores. �

This completes the proof of Theorem 2.1.

3 Some small values of p

We have shown that every doubly-singular (2, p)-irreducible partition must be an unbroken
2p-core, and that there are only finitely many such partitions. But not every such partition
is (2, p)-irreducible: there are doubly-singular unbroken partitions which are (2,∞)-reducible
(for example, the partition (42, 1), which is a 2p-core provided p > 3), and these partitions
are (2, p)-reducible by Corollary 2.3 with i = 0. But it seems reasonable to conjecture that
every doubly-singular unbroken 2p-core which is (2,∞)-irreducible is also (2, p)-irreducible.
However, the author has very little evidence for this. We end this paper by summarising the
information we have for small values of p.

p = 2

In the case e = p = 2, Hn is actually the group algebra of the symmetric group, and the
irreducible Specht modules in this case have been classified by James and Mathas [JM3]. And
our results verify this classification: there is only one unbroken doubly-singular 4-core, namely
the partition (22), and this is indeed the only doubly-singular (2, 2)-irreducible partition.

p = 3

There are ten unbroken doubly-singular 6-cores, namely the partitions

(22), (32), (23), (32, 1), (3, 22), (42), (32, 2), (24), (33), (4, 32, 1).

It is not difficult to verify that these partitions are all (2, 3)-irreducible; the tables in [M,
Appendix B] deal with all except (4, 32, 1), for which one may use the fact that (33) is (2, 3)-
irreducible together with the Branching Rule. So we have completed the classification of
(2, 3)-irreducible partitions.
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p = 5

There are 227 unbroken doubly-singular 10-cores, of which 115 are (2,∞)-irreducible. (Note
that even though a general classification of (2,∞)-partitions is still unknown, any single par-
tition can be checked using the LLT algorithm [LLT] and Ariki’s Theorem [A].) The author
has been unable to determine whether these partitions are all (2, 5)-irreducible. The first case
where the (2, 5)-irreducibility is difficult to determine is the partition (62, 5, 4).
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