Normal subgroups of the affine symmetric group

Matthew Fayers

Queen Mary University of London, Mile End Road, London E1 4NS, U.K. m.fayers@qmul.ac.uk

Abstract

We classify normal subgroups of the affine symmetric group, by elementary means. As far as we can tell, these results are new.

1 The affine symmetric group

We write $\tilde{\mathfrak{S}}_n$ for the affine symmetric group of degree n. This can be defined in several ways. We will focus on $\tilde{\mathfrak{S}}_n$ as the semidirect product $T \rtimes \mathfrak{S}_n$, where T is the root lattice. To write our group multiplicatively, we'll write the root lattice as the group $\{t_1^{a_1} \dots t_n^{a_n} \mid a_1 + \dots + a_n = 0\}$, where t_1, \dots, t_n are commuting elements of infinite order. Then our group operation is given by $t_i \pi = \pi t_{\pi^{-1}(i)}$.

2 The main results

If $N \leq \tilde{\mathfrak{S}}_n$, then we write

$$N^+ = \{ \pi \in \mathfrak{S}_n \mid t\pi \in N \text{ for some } t \in T \}.$$

It is then an easy exercise to show that $N^+ \leq \mathfrak{S}_n$.

If N^+ is trivial, then N is simply an \mathfrak{S}_n -invariant subgroup of T. These can be classified as follows. Take $a, b \in \mathbb{N}_0$ with $a \mid b$, and let

$$T_a^b = \left\{ t_1^{a_1} \dots t_n^{a_n} \mid a_1 + \dots + a_n = 0, a_i \in a\mathbb{Z} \text{ for all } i, a_i - a_j \in b\mathbb{Z} \text{ for all } i, j \right\}.$$

Proposition 2.1. Suppose U is a non-trivial \mathfrak{S}_n -invariant subgroup of T. Then $U = T_a^b$ for some a, b.

Proof. For each $u \in U$ define u_1, \ldots, u_n by $u = t_1^{u_1} \ldots t_n^{u_n}$. Now let

$$a = \operatorname{Gcd} \{ u_i \mid u \in U, 1 \leqslant i \leqslant n \}, \qquad b = \operatorname{Gcd} \{ u_i - u_j \mid u \in U, 1 \leqslant i < j \leqslant n \}.$$

Then we claim that $U = T_a^b$. First note that \mathfrak{S}_n -invariance means that

$$b = Gcd \{ u_1 - u_2 \mid u \in U \}.$$

Now we can find a finite subset $V \subset U$ such that $b = \sum_{u \in V} u_1 - u_2$. So if we let $v = \prod_{u \in V} u$, then $v_1 - v_2 = b$, with the result that $U \ni v(12)v^{-1}(12) = t_1^b t_2^{-b}$. Invariance under \mathfrak{S}_n then means that $t_i^b t_i^{-b} \in U$ for all i, j, and it is clear that these elements generate T_b^b . So $T_b^b \leqslant u$.

We can also find a finite subset $W \subset U$ such that $a = \sum_{u \in W} u_1$. So if we let $w = \prod_{u \in W} u_n$, then $w_1 = a$, and therefore (from the definition of b) $w_i \equiv a \pmod{b}$ for all i. Now any element of T_a^b can be written as the product of a power of w and an element of T_b^b , so that $T_a^b \leq U$.

In view of this, we can restrict attention to normal subgroups $N \leq \tilde{\mathfrak{S}}_n$ for which N^+ is non-trivial. The main result that restricts possible normal subgroups is the following.

Proposition 2.2. Suppose $N \leq \tilde{\mathfrak{S}}_n$ and that N^+ contains a non-trivial element π with at least one fixed point. Then $T \leq N$, so $N = T \times N^+$.

Proof. Let k be a fixed point of π and i a non-fixed point, and let $j = \pi(i)$. Take $t \in T$ such that $t\pi \in N$. Then $N \ni t_i t_k^{-1} t\pi t_i^{-1} t_k = t_i t_j^{-1} t\pi$, with the result that $t_i t_j^{-1} \in N$. But now normality gives $t_l t_m^{-1} \in N$ for all l, m, so that $T \le N$. Hence $T\rho \subseteq N$ for every $\rho \in N^+$, so $N = T \times N^+$.

This means that our classification is complete for $n \ge 5$, since if $n \ge 5$ then every non-trivial normal subgroup of \mathfrak{S}_n has a non-trivial element with a fixed point. For n = 2, 3, 4 we have a little more work to do.

n=2

In this case $\tilde{\mathfrak{S}}_n$ is just a dihedral group, so we can classify normal subgroups by direct inspection. But let's follow the above approach. Assume $N \leqslant \tilde{\mathfrak{S}}_2$ with $N^+ = \mathfrak{S}_2$ and $T \nleq N$. Take $t \in T$ such that $t(12) \in N$. Then $N \ni t_1t_2^{-1}t(12)t_1^{-1}t_2 = t_1^2t_2^{-2}t(12)$, so $t_1^2t_2^{-2} \in N$. So N contains the group T_2^4 generated by $t_1^2t_2^{-2}$, which has index 2 in T. So (from our assumptions) $N \cap T = T_2^4$. Now there are two possibilities: N can be $T_2^4 \rtimes \mathfrak{S}_2$, or $T_2^4 \cup t_1t_2^{-1}T_2^4(12)$. Both of these give normal subgroups. (If we let s_0, s_1 be a pair of Coxeter generators for $\tilde{\mathfrak{S}}_2$, then one of these subgroups is the normal subgroup generated by s_1 , and the other is the normal subgroup generated by s_0 .)

$$n = 3$$

If we assume that N^+ is a non-trivial normal subgroup of \mathfrak{S}_3 and that no non-trivial element of N has any fixed points, then $N=\mathfrak{A}_3$. So suppose $N \leqslant \tilde{\mathfrak{S}}_3$ with $N^+=\mathfrak{A}_3$ and $T \not\leqslant N$. Now if we take $t \in T$ such that $t(123) \in N$ and conjugate by $t_1t_2^{-1}$, we obtain $t_1t_2^{-2}t_3 \in N$. So N contains the group T_1^3 , which has index 3 in T. So our assumptions mean that $N \cap T = T_1^3$. Now there are three possibilities:

$$\begin{split} N &= T_1^3 \rtimes \mathfrak{A}_3, \\ N &= T_1^3 \cup t_1 t_2^{-1} T_1^3 (123) \cup t_1^{-1} t_2 T_1^3 (132), \\ N &= T_1^3 \cup t_1^{-1} t_2 T_1^3 (123) \cup t_1 t_2^{-1} T_1^3 (132). \end{split}$$

These are all normal subgroups of $\tilde{\mathfrak{S}}_3$; if s_0, s_1, s_2 are Coxeter generators of $\tilde{\mathfrak{S}}_3$, then these normal subgroups are the normal subgroups generated by the elements s_1s_2, s_0s_1 and s_0s_2 .

n = 4

Finally assume $N \leq \tilde{\mathfrak{S}}_4$ with $T \nleq N$ and N^+ the normal subgroup V_4 of \mathfrak{S}_4 generated by (12)(34). Choosing $t \in T$ such that $t(12)(34) \in N$ and conjugating by $t_2t_3^{-1}$, we find that $t_1t_2t_3^{-1}t_4^{-1} \in N$. So N contains the group T_1^2 , which has index 4 in T. Because $N \cap T < T$ and $N \cap T$ is \mathfrak{S}_4 -invariant, we obtain $N \cap T = T_1^2$. This means that $\{t \in T \mid t(12)(34) \in N\}$ is a single coset of T_1^2 in T. The four cosets of T_1^2 in T are

$$T_1^2$$
, $T_1^2t_1t_2^{-1}$, $T_1^2t_1t_3^{-1}$, $T_1^2t_1t_4^{-1}$.

But the last two of these don't work, because if $t_1t_k^{-1}(12)(34)$ with k = 3 or 4, then conjugating by (12) gives $t_2t_k^{-1}(12)(34)$ and therefore $t_1t_2^{-1} \in N$, a contradiction. So there are only two possible cosets that can appear with (12)(34). This leads to two possibilities for N:

$$\begin{split} N &= T_1^2 \rtimes V_4, \\ N &= T_1^2 \cup t_1 t_2^{-1} T_1^2 (12) (34) \cup t_1 t_3^{-1} T_1^2 (13) (24) \cup t_1 t_4^{-1} T_1^2 (14) (23). \end{split}$$

Both of these possibilities give normal subgroups; if s_0, s_1, s_2, s_3 are Coxeter generators, then these normal subgroups are the normal subgroups of $\tilde{\mathfrak{S}}_4$ generated by s_1s_3 and s_0s_2 respectively.

We have proved the following theorem.

Theorem 2.3. Suppose N is a non-trivial normal subgroup of $\tilde{\mathfrak{S}}_n$. Then one of the following occurs.

- 1. $N = T_a^b$ for some $a, b \in \mathbb{N}_0$ with $a \mid b$.
- 2. $N = T \times N^+$ for some normal subgroup $N^+ \leq \mathfrak{S}_n$.
- 3. n = 2 and $N = T_2^4 \cup t_1 t_2^{-1} T_2^4 \pi$ for some $\pi \in \mathfrak{S}_2$.
- 4. n = 3 and $N = T_1^3 \cup t_1 t_2^{-1} T_1^3 \pi \cup t_1^{-1} t_2 T_1^3 \pi^2$ for some $\pi \in \mathfrak{A}_3$.
- 5. n = 4 and $N = T_1^2 \times V_4$.
- 6. n = 4 and $N = T_1^2 \cup t_1 t_2^{-1} T_1^2 (12)(34) \cup t_1 t_3^{-1} T_1^2 (13)(24) \cup t_1 t_4^{-1} T_1^2 (14)(23)$.