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Abstract

We classify normal subgroups of the affine symmetric group, by elementary means. As far as
we can tell, these results are new.

1 The affine symmetric group

We write S̃n for the affine symmetric group of degree n. This can be defined in several ways.
We will focus on S̃n as the semidirect product T ⋊Sn, where T is the root lattice. To write our
group multiplicatively, we’ll write the root lattice as the group

{
ta1
1 . . . tan

n
∣∣ a1 + · · ·+ an = 0

}
, where

t1, . . . , tn are commuting elements of infinite order. Then our group operation is given by tiπ =
πtπ−1(i).

2 The main results

If N P S̃n, then we write

N+ = {π ∈ Sn | tπ ∈ N for some t ∈ T} .

It is then an easy exercise to show that N+ P Sn.
If N+ is trivial, then N is simply an Sn-invariant subgroup of T. These can be classified as follows.

Take a, b ∈ N0 with a | b, and let

Tb
a =

{
ta1
1 . . . tan

n
∣∣ a1 + · · ·+ an = 0, ai ∈ aZ for all i, ai − aj ∈ bZ for all i, j

}
.

Proposition 2.1. Suppose U is a non-trivial Sn-invariant subgroup of T. Then U = Tb
a for some a, b.

Proof. For each u ∈ U define u1, . . . , un by u = tu1
1 . . . tun

n . Now let

a = Gcd{ui | u ∈ U, 1 ⩽ i ⩽ n} , b = Gcd
{

ui − uj
∣∣ u ∈ U, 1 ⩽ i < j ⩽ n

}
.

Then we claim that U = Tb
a . First note that Sn-invariance means that

b = Gcd{u1 − u2 | u ∈ U} .

Now we can find a finite subset V ⊂ U such that b = ∑u∈V u1 − u2. So if we let v = ∏u∈V u, then
v1 − v2 = b, with the result that U ∋ v(1 2)v−1(1 2) = tb

1t−b
2 . Invariance under Sn then means that

tb
i t−b

j ∈ U for all i, j, and it is clear that these elements generate Tb
b . So Tb

b ⩽ u.
We can also find a finite subset W ⊂ U such that a = ∑u∈W u1. So if we let w = ∏u∈W u, then

w1 = a, and therefore (from the definition of b) wi ≡ a (mod b) for all i. Now any element of Tb
a can

be written as the product of a power of w and an element of Tb
b , so that Tb

a ⩽ U.
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In view of this, we can restrict attention to normal subgroups N P S̃n for which N+ is non-trivial.
The main result that restricts possible normal subgroups is the following.

Proposition 2.2. Suppose N P S̃n and that N+ contains a non-trivial element π with at least one fixed
point. Then T ⩽ N, so N = T ⋊ N+.

Proof. Let k be a fixed point of π and i a non-fixed point, and let j = π(i). Take t ∈ T such that
tπ ∈ N. Then N ∋ tit−1

k tπt−1
i tk = tit−1

j tπ, with the result that tit−1
j ∈ N. But now normality gives

tlt−1
m ∈ N for all l, m, so that T ⩽ N. Hence Tρ ⊆ N for every ρ ∈ N+, so N = T ⋊ N+.

This means that our classification is complete for n ⩾ 5, since if n ⩾ 5 then every non-trivial normal
subgroup of Sn has a non-trivial element with a fixed point. For n = 2, 3, 4 we have a little more work
to do.

n = 2

In this case S̃n is just a dihedral group, so we can classify normal subgroups by direct inspection.
But let’s follow the above approach. Assume N P S̃2 with N+ = S2 and T ⩽̸ N. Take t ∈ T such
that t(1 2) ∈ N. Then N ∋ t1t−1

2 t(1 2)t−1
1 t2 = t2

1t−2
2 t(1 2), so t2

1t−2
2 ∈ N. So N contains the group T4

2
generated by t2

1t−2
2 , which has index 2 in T. So (from our assumptions) N ∩ T = T4

2 . Now there are
two possibilities: N can be T4

2 ⋊S2, or T4
2 ∪ t1t−1

2 T4
2 (1 2). Both of these give normal subgroups. (If we

let s0, s1 be a pair of Coxeter generators for S̃2, then one of these subgroups is the normal subgroup
generated by s1, and the other is the normal subgroup generated by s0.)

n = 3

If we assume that N+ is a non-trivial normal subgroup of S3 and that no non-trivial element of
N has any fixed points, then N = A3. So suppose N P S̃3 with N+ = A3 and T ⩽̸ N. Now if we
take t ∈ T such that t(1 2 3) ∈ N and conjugate by t1t−1

2 , we obtain t1t−2
2 t3 ∈ N. So N contains the

group T3
1 , which has index 3 in T. So our assumptions mean that N ∩ T = T3

1 . Now there are three
possibilities:

N = T3
1 ⋊A3,

N = T3
1 ∪ t1t−1

2 T3
1 (1 2 3) ∪ t−1

1 t2T3
1 (1 3 2),

N = T3
1 ∪ t−1

1 t2T3
1 (1 2 3) ∪ t1t−1

2 T3
1 (1 3 2).

These are all normal subgroups of S̃3; if s0, s1, s2 are Coxeter generators of S̃3, then these normal
subgroups are the normal subgroups generated by the elements s1s2, s0s1 and s0s2.

n = 4

Finally assume N P S̃4 with T ⩽̸ N and N+ the normal subgroup V4 of S4 generated by (1 2)(3 4).
Choosing t ∈ T such that t(1 2)(3 4) ∈ N and conjugating by t2t−1

3 , we find that t1t2t−1
3 t−1

4 ∈ N. So
N contains the group T2

1 , which has index 4 in T. Because N ∩ T < T and N ∩ T is S4-invariant, we
obtain N ∩ T = T2

1 . This means that { t ∈ T | t(1 2)(3 4) ∈ N} is a single coset of T2
1 in T. The four

cosets of T2
1 in T are

T2
1 , T2

1 t1t−1
2 , T2

1 t1t−1
3 , T2

1 t1t−1
4 .

But the last two of these don’t work, because if t1t−1
k (1 2)(3 4) with k = 3 or 4, then conjugating by

(1 2) gives t2t−1
k (1 2)(3 4) and therefore t1t−1

2 ∈ N, a contradiction. So there are only two possible
cosets that can appear with (1 2)(3 4). This leads to two possibilities for N:

N = T2
1 ⋊ V4,

N = T2
1 ∪ t1t−1

2 T2
1 (1 2)(3 4) ∪ t1t−1

3 T2
1 (1 3)(2 4) ∪ t1t−1

4 T2
1 (1 4)(2 3).
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Both of these possibilities give normal subgroups; if s0, s1, s2, s3 are Coxeter generators, then these
normal subgroups are the normal subgroups of S̃4 generated by s1s3 and s0s2 respectively.

We have proved the following theorem.

Theorem 2.3. Suppose N is a non-trivial normal subgroup of S̃n. Then one of the following occurs.

1. N = Tb
a for some a, b ∈ N0 with a | b.

2. N = T ⋊ N+ for some normal subgroup N+ P Sn.

3. n = 2 and N = T4
2 ∪ t1t−1

2 T4
2 π for some π ∈ S2.

4. n = 3 and N = T3
1 ∪ t1t−1

2 T3
1 π ∪ t−1

1 t2T3
1 π2 for some π ∈ A3.

5. n = 4 and N = T2
1 ⋊ V4.

6. n = 4 and N = T2
1 ∪ t1t−1

2 T2
1 (1 2)(3 4) ∪ t1t−1

3 T2
1 (1 3)(2 4) ∪ t1t−1

4 T2
1 (1 4)(2 3).
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