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Abstract

We give a fast algorithm for computing the canonical basis of an irreducible highest-weight
module for U,(sl,), generalising the LLT algorithm.

1 Introduction

Let e > 2 be an integer. In this paper we consider the integrable representation theory of the
quantised enveloping algebra U = U, (;Ig). For any dominant integral weight A for U, the irreducible
highest-weight module V(A) for U can be constructed as a submodule M?* of a Fock space ¥° (which
depends not just on A but on an ordering of the fundamental weights involved in A). Using the
standard basis of the Fock space, one can define a canonical basis (in the sense of Lusztig/Kashiwara)
for M®. There is considerable interest in computing this canonical basis (that is, computing the
transition coefficients from the canonical basis to the standard basis) because of Ariki’s theorem,
which says that these coefficients, evaluated at g4 = 1, yield decomposition numbers for certain
cyclotomic Hecke algebras. In the case where A is of level 1, there is a fast algorithm due to Lascoux,
Leclerc and Thibon [LLT] for computing the canonical basis. The purpose of this paper is to give a
generalisation of this algorithm to higher levels.

Leclerc and Thibon [LT] showed how the canonical basis could be extended to a basis for the
whole of the Fock space in the level 1 case. This was generalised to higher levels by Uglov, but using
a ‘twisted” Fock space (which is not obviously isomorphic to a tensor product of level 1 Fock spaces).
By using Uglov’s construction and taking a limit, one can define a canonical basis for the whole of the
(untwisted) Fock space, and this in principle gives an algorithm for computing the canonical basis of
M?. However, in practice this algorithm is extremely slow. We give a much faster algorithm here; the
way we do this is to compute the canonical basis for an intermediate module M®3, which is defined
to be the tensor product of level 1 highest-weight irreducibles. It is then straightforward to discard
unwanted vectors to get the canonical basis for M®.

We remark that Jacon [J] and Yvonne [Y2] have also given algorithms for computing higher-level
canonical bases. However, Yvonne’s algorithm is very slow, since it computes the canonical basis for
the whole of the Fock space, while Jacon’s algorithm works in a particular type of twisted Fock space,
whereas our algorithm remains in the more natural setting of the untwisted Fock space; although
these Fock spaces are isomorphic, so that in principle one canonical basis determines the other, in
practice it is very difficult to give an explicit isomorphism.
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2 Matthew Fayers

In the next section we give some basic combinatorial and algebraic background, and establish
notation. In Section 3, we describe in detail how the bar involution on a twisted Fock space is
computed, and prove an important property of the bar involution which lies at the heart of our
algorithm. In Section 4 we describe our algorithm, and prove that it works. In Section 5, we give
examples, and make some further remarks; these concern the generalisation to the case e = o0, and
a brief discussion of how to pass from the canonical basis for M®® to the canonical basis for M.
Appendix A consists of an index of notation.

2 Background

2.1 Some elementary notation

Throughout this paper, e denotes an integer greater than or equal to 2 (except in Section 5.2 where
we consider the generalisation to the case e = o). We write I to denote the set Z/eZ, which is used
as the indexing set for the Cartan matrix of U.

For any integers a < b, we write [[a, b] for the “integer interval’ {a,a +1,...,b}.

2.2 Partitions and multipartitions

A partition is a sequence A = (A1, A2, ...) of non-negative integers such that A; > A, > ... and the
sum [A| = Ay + Ay + ... is finite. We write P for the set of all partitions. The partition (0,0,...) is
usually written as @.

Now suppose r € IN. An r-multipartition is an ordered r-tuple A = (A, ..., A1) of partitions.
We write $" for the set of r-multipartitions. For A € ', we write [A| for the sum AD + ... 4|10,
We write @ for the r-multipartition (2, ..., @). We shall abuse notation slightly in this paper by not
distinguishing between a partition and a 1-multipartition.

We impose a partial order (the dominance order) on P" by saying that A dominates u (and writing

A = u) if we have
j k=1 j
1 k 1 k
|A()|+Z/\§)>Z|H()|+qul(')
i=1 =1 i=1

o~

-1

1

Il
—_

foreachk € [1,r]and j > 1.

Throughout this paper, we use the following notation for multipartitions. If A = (AD,..., A1)
is an r-multipartition for r > 1, then we write A_ for the (r — 1)-multipartition (A®,...,AD). If v
is an (v — 1)-multipartition, we write v, for the r-multipartition (@,v(l), .. ,v(r‘l)). Finally, if u is an
r-multipartition, we write ug for the r-multipartition (u-), = (9, y(z), cee, y(r)).

If A € P, the Young diagram of A is the set

[A] = {(i,j,k) eN*x 1,7 |j< A§k>}.

We refer to elements of the set IN? X [[1,7]] as nodes, and elements of [1] as nodes of A. A node n of A
is removable if [A] \ {n} is again the Young diagram of a multipartition (we denote this partition A,),
while a node 1 not in [A] is an addable node of A if [A] U {n} is the Young diagram of a multipartition
(which we denote A"). We impose a total order on the set of all addable and removable nodes of
a multipartition by saying that (i, j, k) is above (i’, j’, k') (or (i’, j’, k') is below (i, j, k)) if either k < k” or
(k=K and i< 7).

Given s = (s1,...,s;) € I’, we define the residue of a node (i, j, k) to be j — i + s € I; if a node has
residue | € I, we may refer to it as an [-node. We say that a partition A is e-regular if there is no i
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such that A; = Aj,—1 > 0, and that a multipartition A is e-multireqular if PAUET e-regular for each k. We
write R for the set of e-regular partitions and R” for the set of all e-multiregular r-multipartitions, if e
is understood.

2.3 The quantum algebra Uq(;\le) and the Fock space

In this paper, we let U denote the quantised enveloping algebra Uq(;fe). This is a Q(g)-algebra
with generators e;, f; fori € I and qh for h € PV, where PV is a free Z-module with basis {h; | i € I} U {d}.
The relations are well known; for example, see [LLT, §4.1]. For any integer m > 0, we write fz.(m) to
denote the quantum divided power f"/[m]!. Let { A;| i € I} be a set of fundamental weights for U.

There are various choices for a comultiplication which makes U into a Hopf algebra (and hence
allows us to regard the tensor product of two U-modules as a U-module). We use the comultiplication
denoted A in [K], which is defined by

A:er— ei®q_h1’ + 1®e¢,
fir— fi®l +4d"®f,
qh — qh ® qh

forallielandallh € PV.
The Q-linear ring automorphism ~ : U — U defined by

g=e,  fi=fi G=q, q'=q"
forieIand h € PY is called the bar involution.

Now we fix s € I" for some r > 1, and define the Fock space ¥* to be the Q(g)-vector space with a
basis {s) | A € P}, which we call the standard basis. This has the structure of a U-module, which we
now describe.

Given A € #7, let add;(A) denote the set of addable i-nodes of A, and rem;(A) the set of removable
i-nodes. For each 1 € add;(1), define N(A, n) to be the number of addable i-nodes of A above 1 minus
the number of removable i-nodes of A above n. Now the action of f; is given by

fis) = Z N

neadd;(A)

Similarly, for each n € rem;(A), define M(A, n) to be the number of removable i-nodes of A below n
minus the number of addable i-nodes of A below n. The action of ¢; is then given by

M(A,
eisy = Z M)

nerem;(A)

The action of the Cartan subalgebra is given by the statement that s, is a weight vector of weight

A51 +- A —ZCZ'DCZ',
iel
where ¢; denotes the number of i-nodes of A.

The Fock space is of interest because the submodule M?® generated by sg is isomorphic to the
irreducible highest-weight module V(As, +--- + A). This submodule inherits a bar involution from
U: this is defined by sgr = sgr and um = um for all u € U and m € M®. This bar involution allows
one to define a canonical basis for M?; this consists of vectors G*(u), for u lying in some subset of "
(with our conventions, this is what Brundan and Kleshchev [BK] call the set of reqular multipartitions).
These canonical basis vectors are characterised by the following properties:



4 Matthew Fayers

o G5(u) = G(p);
o if we write G5(u) = ) 1epr d;#s;\ with d;y € Q(9), thenwe haved; , = 1 while diy € qZlqlif A # p.

In fact, more is true: the coefficient d;y is zero unless u > A and s, and s, are weight vectors of the
same weight (i.e. A and uy have the same number of i-nodes, for each i; in particular, [A| = |u]). Of
course, this means that G*(u) is a weight vector.

There is considerable interest in computing the canonical basis elements (i.e. computing the tran-
sition coefficients d;y), because of Ariki’s theorem [A], which says that the coefficients d;y specialised
at q = 1 equal decomposition numbers for appropriate cyclotomic Hecke algebras. In fact, the coeffi-
cients dfw (with g still indeterminate) can be regarded as graded decomposition numbers, thanks to
the recent work of Brundan and Kleshchev [BK].

It is possible to extend the bar involution on M?® to the whole of 7%, as we shall explain below;
this yields a canonical basis for the whole of ¥°, indexed by the set of all -multipartitions. Moreover,
there is an algorithm to compute this canonical basis, and therefore to compute the canonical basis
for M®, but in practice this is extremely slow. Our approach is to compute the canonical basis for a
module lying in between M® and #°. The way we have defined ¥° and our choice of coproduct on
U mean that there is an isomorphism

Fs L Fe)g...@F )
defined by linear extension of
Sy S(/\(l)) Q- ®S(/\(r)).

We will henceforth identify 7 and F©) ®- - -® F©) via this isomorphism. Since each ) contains a
submodule MY isomorphic to V(As,), F° contains a submodule M® = M®V) @ - - - ® M®) isomorphic
to V(As) ® - - - ® V(As,). Our algorithm will compute the canonical basis of M®®.

2.4 The LLT algorithm

In this section we restrict attention to the case r = 1, and explain the LLT algorithm for computing
canonical basis elements G¢(u). (In fact, the superscript ¢ is unnecessary here, because G©(y) is
independent of s; in general, G*(u) should be unchanged if a fixed element of I is added to s, ..., s,
simultaneously.) The LLT algorithm was first described in the paper [LLT], to which we refer the
reader for more details and examples.

In this section, we write a node (i, j, 1) of a I-multipartition (i.e. a partition) just as (i, j). For each
I € N, we define the Ith ladder in IN? to be the set

L={G)eN|i+@E-1(j-1)=1.

All the nodes in L] have the same residue (namely, s; + 1 —[), and we define the residue of £; to be
this residue. If p is a partition, we define the /th ladder .£;(u) of u to be the intersection of £; with the
Young diagram of .

The canonical basis elements for M are indexed by the e-regular partitions. To construct G©(y)
when p is e-regular, we begin by constructing an auxiliary vector A(u). Let I} < --- < [; be the values
of [ for which £(u) is non-empty. For each k, let a; denote the number of nodes in £; (1), and let i
denote the residue of .£;,. Then the vector A(u) is defined by

A = £ fi‘l”’”s@.
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A(u) is obviously bar-invariant, and a lemma due to James [JK, 6.3.54 & 6.3.55] implies that when we

expand A(u) as
Au) = Z a,Sy,
veP

we have 4, = 1, while a4, = 0 unless u & v. This means that A(u) must equal GEY(u) plus a
Q(q + g7!)-linear combination of canonical basis vectors G (v) with u > v. Assuming (by induction
on the dominance order) that these G¢V(v) have been computed, it is straightforward to subtract
the appropriate multiples of these vectors from A(u) to recover G®(u). Moreover, the fact that the
coefficients of the standard basis elements in A(u) all lie in Z[g, g7'] means that the coefficients of the
canonical basis elements in A(u) lie in Z[g + g~ ']. A more precise description of the procedure to strip
off these canonical basis elements is given in the algorithm in Section 4.

2.5 Uglov’s twisted Fock spaces

We now return to an arbitrary level r, and explain how to extend the bar involution on M?® to 3.
This is also done in [BK], and involves using Uglov’s construction [U] of twisted Fock spaces, and
then taking a limit via Yvonne’s theorem [Y3].

Given s € I" as above, define a multicharge for s to be an r-tuple § = (51,...,5,) € Z’ such that
Sk + eZ = s for each k. Uglov defines a twisted Fock space F® for each multicharge. The way this
is done is exactly as for #° above, except that the ordering on the addable and removable nodes
of a multipartition is changed: let us define the integral residue resz(i, j, k) of a node (i, j, k) to be
8k + j — i, and then say that the node (i, j, k) is above (i’, j’, k') if either resz(i, j, k) > resz(i’, j’, k") or
(resz(i, j, k) = resz(i’, j', k') and k > k’). Now the construction of the twisted Fock space ¥ Sis exactly
the same as for the Fock space 7%, except for the change of ordering of nodes. In the case r = 1, this
makes no difference at all, but for higher levels 7° is different; in particular, there is no longer an
obvious isomorphism from ¥ to a tensor product of level 1 Fock spaces.

The highest-weight vector sz in 7° still generates a submodule isomorphic to V(As, + - -+ + As,),
and there is a bar involution on this submodule. Uglov defines an extension of this bar involution to
the whole of #7¥; this bar involution is compatible with the action of U in the sense that um = um for
all u € U and m € F°. Furthermore, if we write

—_ 5
Sy = Z lesA,

Aepr

then the coefficients b5  satisfy a unitriangularity property which enables the algorithmic construction
u

of a canonical basis for the whole of 3. We will describe Uglov’s bar involution explicitly in the next
section.

It is easily seen that if we fix A € $" and choose § so that 5, — 3y, is large relative to || for each
k (certainly 5y — 341 > |A| is sufficient), then the orderings on the addable and removable nodes of A
are the same, so the action of U on s, is the same in % as in #°. So ¥° can be viewed as a limit of
twisted Fock spaces. To define the bar involution on ¥°, we need the following stability property of
the coefficients biy.

Theorem 2.1. [Y3, Theorem 5.2] Take u € P". Then there is an integer N such that if 5, — 341 > N for each
k, the transition coefficients biy are independent of 8.

This theorem allows us to define a bar involution on #°: for any p, we choose a multicharge §
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such that §; — 551 is large relative to u for each k, and set bjy =p

A
=¥ _— S
Sy = E b}ws/\.

AePr

u for each A. Then we define

Having done this for each u, we extend semi-linearly to obtain the bar involution on the whole of 7.
By the above remarks concerning the U-actions on ¥ and ¥73, this bar involution is compatible with
the action of U on #°. In particular, it agrees with the bar involution already defined on M®. We echo
the remark of Brundan and Kleshchev [BK, Remark 3.27] that it would be very interesting to find a
construction of this bar involution on #* without using twisted Fock spaces.

Once we have defined the bar involution, we can define the canonical basis {G*(u) | u € P} for
#%. In fact, the canonical basis element G%(u) will be the same as the canonical basis element G¥(u)
for any multicharge § with each 35; — 5y, large.

We shall need the following dominance property of the canonical basis elements.

Proposition 2.2. Suppose € P’, and write

G (u) = Z a5,

AePr

Then djy = Qunless u = A.

Proof. This follows from [Y1, Theorem 2.8 & Proposition 5.12]. O

3 A key property of the bar involution

In this section we give the details of the construction of the bar involution on a twisted Fock
space %, and prove an important property of the coefficients b;y. Recall that for A € " we define

A= (Ay,...,Ar); we also defines_ = (sp,...,s,) fors e I".
Our aim is to prove the following statement.

Proposition 3.1. Suppose s € I for r > 1 and A, u € P" with uV = @. Then
{bj_ b A0 =0)

0 (otherwise).

s
Au

This gives the following corollary for canonical basis coefficients.

Corollary 3.2. Suppose s € I' for r > 1 and u € P" with uV = @. If we write

G (u-)= ), s

vepr-1

then

Gw= ), dus,

vepr-1

Proof. It is straightforward to verify that the vector on the right-hand side of the second equation
is bar-invariant, using the bar-invariance of G®-(u-) and Proposition 3.1. Also, the coefficient of s,
is d;_,,_ =1, while all the other coefficients are divisible by 4. So by uniqueness of canonical basis
elements, this vector must be G*(u). |
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In order to prove Proposition 3.1, we just need to prove that it holds with s replaced by a
multicharge § for s which has 5y — 541 > 0 for each k. To do this, we need to describe in detail how
the bar involution on F*® is computed.

Let us define a wedge of length [ to be a symbol of the form

h| A Al

where ty,...,t; € Z. We also define a semi-infinite wedge of charge s to be a symbol

CIESCI

where t1,t,--- € Z are such that t; = s + 1 —i for i > 0. We say that a wedge (finite or semi-infinite)
is ordered if the integers appearing are strictly decreasing.

For fixed e,r > 1, we impose relations on wedges which allow us to express any wedge as a
Q(g)-linear combination of ordered wedges, as follows. For any integer t, let a(t) € [1, ]|, b(t) € [1,7]
and m(t) € Z be such that t = a(t) + e(b(t) — 1) — erm(t). Now given any t < u we define ¢, to be
the residues of a(u) — a(t) and e(b(u) — b(t)) respectively, modulo er. Then we impose the following
relations on wedges of length 2.

ifa=p=0:
[ n i = 1.
ifa>p=0:
[t A fuf == g7 [u] A [
+(q_2—1)(z q_zm’u—a—erm‘ A ’t+0c+erm‘ —qu_zm’u—erm‘ A ’t+erm‘].

m=0 m>1

iff>a=0:
Anf ==al A []
+ qz—l)(Zqzm’u—ﬁ—erm‘ A ’t+ﬁ+erm‘ —Zqzm_llu—erm‘ A ’t+erm‘).

m=0 m>1

ifa,f>0:

A fu]==lualf
2m+1

+@—-q Zq q+6]_1 ’u—ﬁ—erm\/\]t+[3+erm\

m=0

2m+1 —2m-1
Zq ;::—1 ’u—a—erm‘/\’t+a+erm‘

m=0
2m+2 _
+(@-q Zaq q+q‘1 ’u—a—ﬁ—erm‘/\’t+a+ﬁ+erm‘

Z‘qq+q‘1 ’u—erm‘ A ’t+erm‘.

m=1
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In each of these expressions, the summation continues only as long as the wedges are ordered.

For I > 2, or for semi-infinite wedges, the ordering relations are defined by imposing the above
relations in each adjacent pair of positions. Now we define the I-wedge space to be the Q(g)-vector
space spanned by all wedges of length I, modulo the ordering relations. We also define the semi-
infinite wedge space of charge s to be the Q(g)-vector space spanned by the set of all semi-infinite
wedges of charge s, modulo the ordering relations. In each of these spaces, the set of ordered wedges
is a basis.

In order to avoid ambiguity when comparing different values of , we may decorate the wedge

symbol A as A to indicate the particular value of r used in the straightening relations.

The construction of the bar involution relies on encoding a pair (A4,8) (wWhere A € " and § is a
multicharge) as an ordered wedge. We set s = 5 + - - - + 5,, and define a semi-infinite wedge of charge
s as follows.

For each k € [1,r]] and each i > 1 set

557‘) = )\f.k) +5+1—1d.
Write this integer in the form
o _
B,  =a—em
with m € Z and a € [1, ¢]], and then set

ng) =a+elk—1)—erm.

The integers ‘Bvl(.k) for k € [1,r] and i > 1 are distinct and bounded above, so we may arrange them in
strictly decreasing order as t; > t, > .... Then the ordered wedge |A, §) corresponding to A and § is

] Al A

It is easy to check that this is a semi-infinite wedge of charge s. Conversely, each ordered semi-infinite
wedge of charge s is equal to |A, §) for some r-partition A and some multicharge § with sum s.
Now we can define the bar involution on #°. Given an r-multipartition y, we write

8 =[] A 2] AL

we choose | > 0, and set

(sl =[t] A [tia] A A [B] A ] Al A

Using the ordering relations, we express (u, §| as a linear combination of ordered wedges. It is easy to
show (by considering residues modulo er) that each of the ordered wedges that occurs has the form
|A, 8) for some r-multipartition A, i.e. we have a finite sum

(w,8l= ) capld,8)
A
with each c;,, € Q(q). Moreover, the coefficient ¢, is non-zero, so we can define
_ CA
S‘u = Z —'uS;L.
T Cup

This definition is independent of I/, provided we choose [ sufficiently large. This defines the bar
involution on the basis elements s, and we extend semi-linearly to obtain the bar involution on the
whole of 5.
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Now we set about proving Proposition 3.1. The calculations used here are similar to those used
in [F3], though actually rather simpler. Since there is nothing to prove when r = 1, we assume for the
rest of this section that r > 2.

Recalling the definition of b(t) for t € Z from above, we define 1 = b~1(1). In other words, 1
consists of all integers whose residue modulo er lies in [1,e]. Now we defineamap ¢ : Z\ 1 — Z:
givent € Z \ 1, we define a(t), b(t), m(t) as above, and set

Y(t) = a(t) + e(b(t) — 2) —e(r — 1)m(t).

Then ¢ is an order-preserving bijection from Z \ 1 to Z. Furthermore, the following relationship is
easy to check from the straightening relations.

Lemma 3.3. Suppose tj; € Z\ 1 and ¢c; € Q(q) for 1 <i <mand 1 < j < 1. Then

if and only if

C; l/)(tﬂ) 17\1 ce 7‘/—\1 =0.

m
=1

Using 1, we can describe the relationship between the wedges |A,§) and [A_,5_).

Lemma 3.4. Suppose u € P" and § is a multicharge, and write

8 =[] At A

Then, if we write the elements of {t1,t,...}\ L asu; > up > ..., we have

lu=,8-) = [Puy)| A [Pu2)| A ...

Furthermore, if V) = @ and §; > & for each k € [2, 7], then there is an integer d > t; such that
{t1,tp,...} N1 = ZiN 1.
Proof. This is easy to check from the definition of |y, 5). O

Lemma 3.4 allows us to compare the computations of s, and 5;,_ (in the twisted Fock spaces Fs
and F5-, respectively) when u) = @ and §; > --- > §,. The idea is that we write

8 =[h] A ] AL,

and then straighten the finite wedge
Ao A

for suitably large . We do this by first moving the terms |{;| with ¢; € 1 to the beginning; then we
order these terms, and we separately order the remaining terms (employing Lemma 3.3). Finally, we
recombine terms to obtain a linear combination of ordered wedges. In the next few results, we check
the details of this procedure.
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Lemma 3.5. Suppose ¢ < d are integers and t1,. .., t; € [c,d]], and let

W=t A A

When we express W as a linear combination or ordered wedges using the straightening relations, each ordered
wedge A A that occurs satisfies

uy, ..., u €lc,d]

and

|{je [, u; e ]1}| - |{je [1,1] ¢t e n}l
Proof. This is easy to check from the straightening relations. m|

Corollary 3.6. Suppose t1, ..., t; € [c,d]l. Suppose that
{jemm]tet)>ledrnal

Then the wedge W = A ... N\ |t equals zero.

Proof. W can be written as a linear combination of ordered wedges using the straightening relations,
and each ordered wedge AN occurring must satisfy the conditions in Lemma 3.5. But the
hypotheses on t4, ..., t; mean that there are no such ordered wedges, and so w must equal zero. O

Lemma 3.7. Suppose c < d are integers, and write the elements of the set [c,d]| N 1 as uqy > --- > u,. Suppose
vy > -+ > vy, are elements of [[c,d] \ 1, and label the elements of the set {vy, ..., U, U1, ..., u,} in decreasing
order as ty > -+ > tyy. Then the wedge

W = [tuen] A [bmena1] Ao A

is equal to a scalar multiple of the wedge

W = [ug| A A [ur] A o] AL A 01

Proof. If t;4+, = u,, then W and W’ have the same first term; by induction on n (replacing c with
tm+n +1) the wedge obtained by removing the first term from W is proportional to the wedge obtained
by removing the first term from W’, so W and W’ are proportional too. So we may assume that
tm+n = Up. We also assume that m = 1; the general case follows by induction on m. So by assumption

we have
W = [o1] A [un] Ao A ], W = [un] Ao A Jur] A o).

Using induction on n again (replacing d with u; — 1) W is equal to a multiple of

Wi =[] Ao A Jug] A Jor] A

applying the straightening relations to A , we find that Wy equals a scalar multiple of W’ plus
a linear combination of wedges of the form

un] A A [un] A ] A 0]

in which w, w’ lie strictly between v; and 11, and one of w, w’ lies in 1. Now by Corollary 3.6 (with
u1 — 1 in place of d) each such wedge is equal to zero, so W is proportional to W’. O
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Lemma 3.8. Suppose ¢ < d are integers, and write the elements of the set [[c,d] N 1 as u; > --- > u,. Then

the wedge
W = [un| A A

is equal to a scalar multiple of
W =[] Ao A (gl

Proof. When we write W as a linear combination of ordered wedges using the straightening relations,
each ordered wedge that occurs satisfies the conditions in Lemma 3.5. But the only such ordered
wedge is W'. O

Now given integers ¢ < v, define

Xc(v) = |[c,ol N 1

, Y@ =|lcoln1n@+ez)|

Lemma 3.9. Suppose c < d and vy, ...,vy € [c,d] \ 1. When the wedge

01| A A [On]

is written as a linear combination of ordered wedges using the straightening relations, each wedge A A
that occurs with non-zero coefficient satisfies

m m m m
Y Xew) =) Xew), Y Yelw) =) Ye(o).
i=1 i=1 i=1 i=1
Proof. Consider the case m = 2. In this case, A is equal to a linear combination of ordered
wedges A for which (recalling the functions a, b from above):
o wy,ws € [c,d];
® W1+ Wy =701+ 0y,
o {a(w1),a(w2)} = {a(v1),a(v2)};
o {b(w1), b(w2)} = {b(v1), b(v2)}.

From these properties, it follows easily that X (w;) + Xc(w2) = Xc(v1) + Xc(v2) and Y (w1) + Ye(w2) =
Ye(01) + Ye(02).
The case m > 2 follows by applying the above case each time a straightening rule is applied. O

Lemma 3.10. Suppose ¢ < d, and write the elements of [[c,d]] N 1 as uy > --+ > u,. Suppose vy > -+ > Uy,
are elements of [c,d] \ 1, and label the elements of the set {v1,...,Up, U1, ..., Up}asty > -+ > tyyy. Then the

wedge
W= [ug] Ao A fun] Ao AL A o]

equals

m
[H<_1>Xc<vf>qyc<vf>] Ao A [l
i=1
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Proof. We may assume that t; = v;; otherwise, the result follows by induction on n (replacing d with
u1 — 1). We can also assume (using induction on m) that m = 1. So we assume that

W= [ug]| A A [ A o]

with v; > 17, and we want to show that

W = (=1)"q"[or] A [ur] A A [ua],
where Y = |{uq,...,u,} N (v +eZ)|.
Applying the straightening rules to A , we find that

W=—q ] Ao A [unca] A Jor] A ]

where g’ equals g if u, and v; are congruent modulo ¢, and 1 otherwise. (The other terms arising from
applying the straightening relation vanish by Corollary 3.6.)
Now induction on 7 (replacing ¢ with u,, + 1) gives the result. m|

Proof. Proof of Proposition 3.1 It suffices to prove the result with s replaced by a multicharge § for s
such that § — §x1 > 0 for each k. So we choose such a multicharge, and write

8 =[] At A

We write the elements of {t1,fp,...} N1 as u; > up, > ..., and the elements of {t1,f,...} \ 1 as
U1 > vy > .... By Lemma 3.4, the set {uy,u, ...} consists of all elements of 1 which are less than or
equal to u;.

To compute the effect of the bar involution on s, we straighten the wedge

W=t A A 4],

where [ > 0 is fixed. Let m, n be such that
{tll"'/tl} = {vll"'lvm} U {ull"'lun};

if weputc =t;,d = t;, then we have {uy,...,u,} = [[c,dlNTand vy,...,vy € [[c,d] \ 1, so by Lemma
3.7 and Lemma 3.8 W is equal to a scalar multiple of

| A A [un] A Jow] AN o]

Now write the wedge A A as a linear combination of ordered wedges:

/\.../\:Zai/\.../\ o |. (*)

N
i=1

For each i, let tli, ceey t; be the sequence obtained by putting the integers vil, e, Uy, .y in de-
creasing order. Then by Lemma 3.9 and Lemma 3.10 we find that W is equal to a scalar multiple

of
N
Zai/\"‘/\‘ *)

i=1

Now we consider how to compute 5,_ in F $-. From Lemma 3.4, we have

lu-,3-) = [P@D] A [P@)] A
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By Lemma 3.3 and () we have

N
P A R 9] = Y @) A A [pEh)].

i=1

Since I (and hence m) is large, we therefore find that for each i there is a multipartition v(i) € P! such
that

v(i),5-) = A [P @i)] A [P@us1)] A [POme2)] A

Hence there is @ € Q(g) (independent of i) such that a; = abizi)y for each i; moreover, each v for which

b?,;l # 0 occurs as some V(i).
Now by Lemma 3.4 we have

E] A A A (] A ] A= (0)4,8),

and the result follows from (). O

4 An LLT-type algorithm

Now we can give our algorithm which generalises the LLT algorithm. As mentioned above, our
algorithm actually computes the canonical basis of M® = M®) ® - -- @ M®".

Since the canonical basis elements G(sk)(y) indexed by e-regular partitions u form a basis for MG,
the tensor product M) ® --- ® M) has a basis consisting of all vectors GtV (M) ® --- ® GE(u™),
where u@, ..., u") are e-regular partitions. Translating this to the Fock space ¥°, we find that M®*
has a basis consisting of vectors

51) (Sr)
H3(u) = Z d! 11>“<1> A(r)y 57
Aepr

for all e-multiregular multipartitions u. In fact, we want to show that the canonical basis vectors G*(u)
for e-multiregular p form a basis for M®®; this implies in particular that the span of these vectors is a
U-submodule of 7%, which will enable our recursive algorithm to work.

Lemma4.1. Suppose G = Y yepr g25) € M®5. If A € PTissuchthat gy ¢ qQlq], then there is an e-multireqular
multipartition v such that v = A, v®| = |A®)| for all k and g, ¢ qQ[q].

Proof. We may write G as
G= Z h, HS(v)
veRr
with h, € Q(g) for each v; then we have
_ (s1) (s)
8N = Z od ey -+ 60

veRrr

Since d* ’;{)) «» can be non-zero only if IAB] = p®land v® = A®), we may restrict the range of summation
to only those v which have IA®] = p®] and v® = A® for all k (and hence v &= A).

Since g, ¢ qQ[g] but each d® "k)) « is a polynomial in g, we must have h, ¢ gQ[4] for some v. If we

choose such a v which is max1ma1 with respect to the dominance ordering, then we have
v —hy = Z héd(s(i))gm dfj:))g(r) € qQlq]-
v<€eR”
Now the fact that i, ¢ qQ[gq] implies that g, ¢ qQ[g]. O
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Now we can deduce the following.

Proposition 4.2. The canonical basis vectors G*(u) indexed by e-multiregular u form a basis for the module
M®s.

Proof. All we need to do is show that G°(u) lies in M®® for each e-multiregular y; since the canonical
basis vectors are linearly independent and G°(u) and H®(u) are both weight vectors of the same weight,
the result follows by considering the dimensions of weight spaces in M®s.

We prove that G(u) lies in M®® for each u € R’ by induction on r and, for fixed r, by induction on
|uD|. When r = 1 there is nothing to prove, since then G*(u) = H5(u).

Suppose r > 1 and uV = @. By induction on r, G5~ (i) can be written as a linear combination

GS- () = Z o, HS-(v).

veRr-1

By Corollary 3.2 and the fact that GE)(@) = s, we therefore have

G = ), aH W),
veRr-1
so GS(u) € M*®s.

Now consider the case where r > 1 and |u(!)| > 0. Using the LLT algorithm, we can write G®)(u®)
as usy in the Fock space ¥ ¢V, for some u € U. Moreover, we can choose u to be a Z[q + g~']-linear
combination of products of divided powers fl.(a).

Recall that we write po to mean (@, u?, ..., u™). By induction on |uV|, we have G%(ug) € M®5. So
if we define G = uG®(uo), then since M®® is a U-submodule of F°, we have G € M®®. Furthermore,
because G%(ip) is bar-invariant and because of the properties of the element u, G is also bar-invariant.
If we write G = })cpr $151, then, using the rule for the actions of the f;, we find that

: 1 1
&1 = df\s(ll))p(l)daollo if |/\( )l - |‘U( )l,

while
=0 if [AD] > [u®].

In particular, if AD] > Iy(l)l and A # u, then g | gy (}). Furthermore, each g, lies in Z|[g, q‘l].

Now consider the expansion of G as a linear combination of canonical basis elements. Since g, = 1
and g, = 0 for any v > u, Proposition 2.2 implies that G equals G*(u) plus a linear combination of
canonical basis elements G%(v) with v 2 u; because G®(u) is bar-invariant, the coefficients of these
canonical basis elements all lie in Z[g + g7]. This means that one can apply the same procedure as in
the LLT algorithm to “strip off” the terms G*(v) with v # u and recover G*(u). This is done as follows:

e if thereis no v # u such that g, ¢ gZ[q], then stop.

e otherwise, choose such a v which is maximal with respect to the dominance ordering, and let
be the unique element of Z[g + g7!] such that g, — @ € gZ[q]. Replace G with G — aG3(v), and
repeat.

At each stage, the vector G lies in M®, and so by Lemma 4.1 and (), the multipartition v involved
must be e-multiregular and must satisfy @] < | y(l)l. Therefore by induction we have G5(v) € M*®,
and so the new vector G — aG3(v) lies in M®5.

At the end of this procedure, we are left with the canonical basis vector G°(u), and this lies in
M®s, O
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Proposition 4.2 enables us to construct canonical basis vectors labelled by e-multiregular multi-
partitions recursively. As in the LLT algorithm, the idea is that to construct the canonical basis vector
G®(u), we construct an auxiliary vector A(u) which is bar-invariant, and which we know equals G*(u)
plus a linear combination of “lower” canonical basis vectors; the bar-invariance of A(u), together with
dominance properties, allows these lower terms to be stripped off. In our algorithm, we take addi-
tional care to make sure that A(u) lies in M®S; then we know by Proposition 4.2 that all the canonical
basis vectors occurring in A(u) are labelled by e-multiregular multipartitions, and therefore we can
assume that these have already been constructed.

In fact, the proof of Proposition 4.2, combined with the construction in the LLT algorithm, gives
us our algorithm. We formalise this as follows.

Our algorithm is recursive, using a partial order on multipartitions which is finer than the dom-
inance order: define u > v if either |uV| > p®] or u® = vV, We assume when computing G*(y) for
u € R that we have already computed the vector G*-(u-), and that we have computed G*(v) for all
veR with u >v.

1. If u = @, then G*(u) = sgr.

2. If u # @" but u® = @, then compute the canonical basis vector G*-(u-). Then G(u) is given by

G*(u) = Z Aoy Sv, -

yepr-1

3. If uM # @, then apply the following procedure.

(a) Let up = (2, y(z), ..l ‘u(r)), and compute G*(uo).

(b) Letay, ..., a;bethesizes of the non-empty ladders of y(l), and iy, ..., i their residues. Define
A= " fG (o). Write A = ¥yepr v,

1
(c) If there is no v # u for which a, ¢ gZ[q], then stop. Otherwise, take such a v which is
maximal with respect to the dominance order, let a be the unique element of Z[g +g~'] for
which a, — a € qZ]|q], replace A by A — aG®(v), and repeat. The remaining vector will be

G3(w).

The vector A computed in step 3 is a bar-invariant element of M®%, because G®(uo) is. Hence
by Proposition 4.2 A is a Q(q + g~!)-linear combination of canonical basis vectors G$(v) with v € R'.
Furthermore, the rule for applying f; to a multipartition and the combinatorial results used in the LLT
algorithm imply that 2, = 1, and that if ay # 0, then u > A. In particular, the partition v appearing in
step 3(c) satisfies p > v; moreover, when aG®(v) is subtracted from A, the condition thata, = 1 and a,
is non-zero only for p > A remains true (because of Proposition 2.2 and the fact that the dominance
order refines the order >). So we can repeat, and complete step 3(c).

5 An example and further remarks

51 An example
Let us take e = r = 2, and write the set I = Z /27 as {0, 1}. Take s = (0, 0).

e Tirst let us compute the canonical basis element G%(((2, 1), (1))). In the level 1 Fock space ¥©,
we have GO((1)) = sa) (where the partition (1) really stands for the 1-multipartition ((1))).
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The non-empty ladders of the partition (2,1) are £; and L, of lengths 1,2 and residues 0, 1
respectively. So we compute

2 2
A= fl( )fos(@,u)) =521,0) T 452),2) T q25<(2>,<12>> TA5@2),) t ’735((12>,<12>> +q*s(),@.1)-

Since the coefficients in A (apart from the leading one) are divisible by g, we have A =

G*(((2, 1), (1))

e Next we compute G*(((4), @)). This time our auxiliary vector is

A = fifofifos@,0) = S@,2) + 45G1,2) + 05@12),0) T TS@,0) + (1 +0)s2,1),1)
+245(2,2)) + 24°5(@,12) + 205,20 + 20°S@2,a2) + @ +4)35@),21)

2 3 3 4
T 97°52,4) T 9 52,61) T 9 50,0212) T 9 S@,04):

And so we have

G (((4),2)) = A= G*(((2,1), (1)) = sy, 0) + 95(3,1),0) + 95((2,12),0) + qzs((14),<z>) + 4752 1),(1)
2 2 3 2
T45(2),) T 975(2),12) +97512),2) T 95(12),12) T 9 5(1),21)

2 3 3 4
T 475(2,4) T 9 52,61) T 9 52,212) T4 5@,14)-

5.2 The casee =

In this section, we indicate very briefly how our results can be extended to the case ¢ = co.
Normally in this subject, this extension is straightforward: llq(;fe) must be replaced with U,(slw),
Z./eZ. is replaced with Z, the set of e-regular partitions is replaced with the set of all partitions, and
other definitions and results are modified appropriately. However, for the subject matter of this
paper, the situation is more complicated, because the definition of Uglov’s twisted Fock spaces does
not work in the case e = oo; so a little more discussion is merited.

To get around the difficulty of not having a twisted Fock space, one can ‘approximate” the case
e = oo using a value of e which is large relative to the partitions in question. Formally, one restricts
attention to multipartitions of size at most n, by regarding the Fock space just as a module for the
negative part U~ of U and then passing to the quotient ¥, by the submodule spanned by all s,
with [A] > n. Now given s € Z’, one can take a value of ¢ which is large relative to n and s, and
define the bar involution on s, for |A| < n by using the bar involution on F5*+Z (where s + ¢Z means
(s1 +eZ,...,s, + eZ)). Because e is large, the actions of Uq‘(gfg) and U~ “agree’ on F;, so this bar
involution is compatible with the action of U~.

One does this for all #, and then defines a bar involution on the whole of #° by taking a limit.
Of course, one needs to check that this construction of the bar involution on 7‘2’” is independent of
the choice of e > 0. This is not too difficult to show using the straightening relations, but in fact we
can show this using our algorithm for computing canonical basis elements. Consider applying our
algorithm to compute the canonical basis elements G***#(y) for all e-multiregular multipartitions u
with |u| < n. The crucial point is that when e is very large,

o the implementation of the algorithm doesn’t actually involve the integer e in a non-trivial way,
and

o cvery multipartition of size at most n is e-multiregular.
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Hence one can actually compute the canonical basis for the whole of the truncated Fock space 2, by
this algorithm, and this basis is independent of e; since one can recover the bar involution from the
canonical basis, this means that the bar involution on 2, is independent of the choice of large e.

Example. Letr = 3and s = (0,1,0), and take u = ((2,1), @, (1)). We shall compute G*(u) by computing
G¥(u) for e > 4; for this example write 1 + eZ as 7, for any n € Z. Starting with the level 1 Fock space
FO itis easy to compute G(O)((l)) = 5(1y. Hence by Corollary 3.2 we have G ((2,2,(1))) = S(2,2,(1))-

Now the non-empty ladders of (2,1) are L3, £, L. of residues 0,41,1 respectively, each containing
one node, so we compute

A = fifafos@e.0)
2 2 3
= 5,20 T 9512),1),0) T 97512),2,2) T 95(2),2,(12) T 97 5(1),1),(12)) T 9 5((1),2,21))

and we see that G%(u) = A, independently of the choice of e.

5.3 The canonical basis for M?

The main interest in this paper is in computing the canonical basis for the irreducible highest-
weight module M®; we have computed the canonical basis for the larger module M®® simply in order
to allow a recursive construction to work. In order to obtain the canonical basis for M®, one simply
discards the unneeded vectors. Here we comment briefly on how to identify these vectors.

The canonical basis for M® consists of the canonical basis vectors labelled by a certain set of
multipartitions called reqular multipartitions in [BK] or conjugate Kleshchev multipartitions in [F2]; this
result follows from [AM, Corollary 2.11]. (The latter uses a different U/-action on ¥° and a different
tensor product on U-modules, and is therefore stated in terms of Kleshchev multipartitions, but the
translation between the two conventions is straightforward.) We do not define (conjugate) Kleshchev
multipartitions here, because the definition can be found in several places; but we note that the
definition is recursive (though there has been some recent progress [AKT] towards giving a non-
recursive definition).

Therefore one can obtain the canonical basis for M® from that for M®® by computing the list of
regular multipartitions and discarding canonical basis vectors not labelled by these. However, we
conjecture that there is a way to do this without computing the list of regular multipartitions. In [F1],
the author defined the notion of the weight of a multipartition; this is a non-negative integer which
depends on the multipartition and on s (and should not be confused with the Lie-theoretic notion
of weight). In [F2], we then proved a theorem which shows how this weight function is manifested
in canonical bases. Specifically (writing w(u) for the weight of u, and translating from Kleshchev to
regular multipartitions), we have the following.

Proposition 5.1. [F2, Corollary 2.4] If u is a reqular multipartition, then there is a multipartition A such
that d5 = g, while dS,, has degree less than w(u) for any other multipartition v.
u IS

We conjecture that a converse to this statement is true: namely that if y is a multipartition which
is not regular, then the degree of d}, is less than w(y) for all v. This statement is proved in the
case r = 1 in [F3, Proposition 3.7]. If this conjecture is true, then it leads to faster way to compute
the canonical basis for M®: one computes the canonical basis for M®, computes the weight of each
multipartition (which is quicker in general than checking whether a multipartition is regular), and
then discards those canonical basis vectors G*(u) in which all the coefficients have degree less than
w(u). We note in passing that this would yield a new (though relatively slow) recursive definition of
regular multipartitions.
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A Index of notation

Matthew Fayers

Since there is a great deal of notation involved in this paper, we include an index here for the
reader’s convenience.

[a, b1

§=(51,...,5)
resz(i, j, k)
jcs
MS
M®s
SA
f\y
G(w)
TS
@,
1A, 8)
1

H(u)

{a,a+1,...,b}

Z/eZ

the set of all partitions

the set of all e-regular partitions

the partition (0,0,...)

the dominance order on multipartitions

the Young diagram of A

the multipartition obtained by adding the node 1 to [A]
the multipartition obtained by removing the node n from [A]
the (r — 1)-multipartition (u®, ..., u®), for u € P’
the r-multipartition (@, v vy forv e 1
(b-),

the set of addable i-nodes of A

the set of removable i-nodes of A

Ith ladder in IN?

LNyl _

the quantum group U,(sl.)

generators of U

fundamental weights

irreducible highest-weight /-module with highest weight A
element of I

(s2,-+-,5¢)

element of Z" such that s; = §; + eZ for each k
integral residue of a node (i, j, k) (depending on 8)
the Fock space associated with s € I

submodule of 7° generated by s¢r

M6 ®...0 M6

standard basis element of #°

coefficient of s, in s,

canonical basis element

twisted Fock space associated with §

coefficient of s; in G®(u)

ordered wedge corresponding to A and §

set of integers whose residue modulo er lies in [[1, ]
basis element for M®s
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