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Abstract

We prove a minor result on Kostka numbers, following a question from Mark Wildon
on MathOverflow [MO]. We show that given partitions λ, µ, ν of n with µ Q ν, we have
Kλν > Kλµ. No attempt has been made to check for originality, and none is claimed.

1 Introduction

Recall that a composition of n is a sequence λ = (λ1, λ2, . . . ) of non-negative integers which
sum to n. Given compositions λ and µ of n, we say that λ dominates µ (written λ Q µ) if
λ1 + · · ·+λr > µ1 + · · ·+µr for every r.

A composition is a partition if it is weakly decreasing. The Young diagram of a partition λ is
the set

[λ] =
{
(r, c) ∈ N2

∣∣∣ c 6 λr
}
,

which we draw as an array of boxes with the English convention (so that r increases down the
page, and c from left to right). A λ-tableau is a function from [λ] to N, and we depict a tableau
T by drawing [λ] and filling each box with its image under T. The type of T is the composition
µ, where µi is the number of is appearing in the diagram.

A λ-tableau is semistandard if the entries weakly increase from left to right along rows, and
strictly increase down the columns. Given a partition λ of n and a composition µ of n, the
Kostka number Kλµ is the number of different λ-tableaux of type µ.

This note concerns the following well-known result.

Theorem 1.1. Suppose λ and µ are partitions of n. Then Kλµ > 0 if and only if λ Q µ.

The ‘only if’ part of Theorem 1.1 is easy to see: if T is a semistandard λ-tableau of type µ,
then all the numbers less than or equal to r in T must occur in the first r rows, so λ1 + · · ·+λr >
µ1 + · · ·+µr. The converse is trickier to prove combinatorially, though a construction is given
by the author in [MO]. The objective here is to prove the following result.

Proposition 1.2. Suppose λ, µ, ν are partitions of n with µ Q ν. Then Kλµ 6 Kλν.

Since obviously Kλλ = 1, this proves the ‘if’ part of Theorem 1.1. We remark in passing that
our Proposition 1.2 works when λ is a skew Young diagram.
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2 The proof of Proposition 1.2

First we require an elementary lemma. Given non-negative integers x1, . . . , xr, a, let S(x1, . . . , xr; a)
be the number of ways choosing integers y1, . . . , yr such that 0 6 yi 6 xi for each i and
y1 + · · ·+ yr = a. Now we have the following.

Lemma 2.1. Suppose x1, . . . , xr, a, b are non-negative integers, and let m = x1 + · · ·+ xr. If |a− m
2 | >

|b− m
2 |, then S(x1, . . . , xr; a) 6 S(x1, . . . , xr; b).

Proof. Note first that S(x1, . . . , xr; a) = S(x1, . . . , xr; m − a), since we have a bijection defined
by yi 7→ xi − yi. So (replacing a with m− a if necessary, and similarly for b) we can assume
a 6 b 6 m

2 . Assuming r > 1 and x1 > 1, we write

S(x1, . . . , xr; a) = T(x1, . . . , xr; a) + U(x1, . . . , xr; a),

where T(x1, . . . , xr; a) is the number of ways of choosing the yi with y1 = x1, and U(x1, . . . , xr; a)
is the number of ways of choosing the yi with y1 < x1. Obviously we have

T(x1, . . . , xr; a) = S(x2, . . . , xr; a− x1), U(x1, . . . , xr; a) = S(x1 − 1, x2, . . . , xr; a)

so it suffices to show that

S(x2, . . . , xr; a− x1) 6 S(x2, . . . , xr; b− x1), S(x1 − 1, x2, . . . , xr; a) 6 S(x1 − 1, x2, . . . , xr; b).

The first of these follows by induction, since b− x1 is at least as close to (m− x1)/2 as a− x1
is. And the second also follows, since b is at least as close to (m− 1)/2 as a is. So we can use
induction on m. �

Using this, we can prove the following result which is the main ingredient in the proof of
Proposition 1.2.

Lemma 2.2. Suppose i ∈ N, λ is a partition of n, and µ is a composition of n with µi > µi+1. Define a
composition ν by

νi = µi − 1, νi+1 = µi+1 + 1, ν j = µ j for all other j.

Then Kλµ 6 Kλν.

Proof. We define an equivalence relation ∼ on semistandard λ-tableaux by setting S ∼ T if all
the entries different from i and i + 1 are the same in S as they are in T. We show that within any
one equivalence class there are at least as many semistandard tableaux of type ν as of type µ.

So fix an equivalence class C, and consider how to construct semistandard tableaux in C.
The positions of the entries different from i and i + 1 are determined, and we may as well
assume there are µ j entries equal to j for each j , i, i + 1 (otherwise C contains no tableaux of
type µ or ν). We are left with some positions in which to put is and (i + 1)s – call these available
positions. There are at most two available positions in each column, and if there are two, then
these must be filled with i and i + 1. So we need only consider columns having exactly one
available position. Given j > 1, let x j be the number of columns having an available position
in row j only; these columns are consecutive, and can be filled in any way with is and (i + 1)s
as long as the i are to the left of the (i + 1)s, to produce a semistandard tableau.

So choosing a semistandard tableau in C amounts to choosing integers y1, y2, . . . such that
0 6 x j 6 y j for each j: y j is just the number of is placed in available positions in row j. In

2



order for this semistandard tableau to have type µ, we must have y1 + y2 + · · · = a, where
a = 1

2 (µi − µi+1 + x1 + x2 + . . . ). Similarly, to obtain a semistandard tableau of type ν we must
have y1 + y2 + · · · = b, where b = 1

2 (µi −µi+1 − 2 + x1 + x2 + . . . ). Since µi > µi+1, b is at least as
close to 1

2 (x1 + x2 + . . . ) as a is, so by Lemma 2.1 there are at least as many tableaux of type ν in
C as there are of type µ. �

In order to use Lemma 2.2 we need to describe the covers in the dominance order on
partitions. We leave the proof of the following results as an easy exercise.

Proposition 2.3. Suppose µ and ν are partitions of n with µ B ν. Then µ covers µ in the dominance
order on partitions (i.e. there is no partition ξwith µ B ξ B ν) if and only if one of the following occurs:

• for some i ∈ N we have

νi = µi − 1, νi+1 = µi+1 + 1, ν j = µ j for all other j;

• for some i, j ∈ N with i < j we have

µi+1 = · · · = µ j = µi − 1, νi = µi − 1, ν j = µ j + 1, νk = µk for all other k.

Informally, µ covers ν if and only if ν is obtained by moving one box down and to the right,
either to an adjacent row or to an adjacent column.

Proof of Proposition 1.2. We may assume µ covers ν in the dominance order, and consider the
two cases in Proposition 2.3. In the first case it is immediate from Lemma 2.2 that Kλµ 6 Kλν.
In the second case, define compositions ξi+1, . . . , ξ j−1 by

ξk
i = µi − 1, ξk

k = µk + 1, , ξk
l = µl for all other l.

Then by Lemma 2.2 we have

Kλµ 6 Kλξi+1 6 · · · 6 Kλξ j−1 6 Kλν . �
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