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Abstract

James’s Conjecture suggests that in certain cases, the decomposition numbers for the Iwahori–
Hecke algebra of the symmetric group over a field of prime characteristic (and in particular, the
decomposition numbers for the symmetric group itself) coincide with the decomposition numbers
for a corresponding Iwahori–Hecke algebra defined over C, and hence can be computed using the
LLT algorithm. We prove this conjecture for blocks of weight 4.

1 Introduction

Let F be a field and n a non-negative integer. Let Sn denote the symmetric group on n letters. The
representation theory of Sn over F has been extensively studied, often as a special case of the represen-
tation theory of the Iwahori–Hecke algebra HF,q(Sn). The most important outstanding problem in the
representation theory of these algebras is to determine the decomposition numbers, i.e. the composition
multiplicities of the simple modules Dµ in the Specht modules S λ, where λ and µ range over the set of
partitions of n. In the case where F = C, this problem has been solved, in that there is an algorithm
for computing the decomposition numbers. This result is an important step towards the general case,
since it is known that the decomposition matrix in prime characteristic may be obtained from the corre-
sponding decomposition matrix in infinite characteristic by post-multiplying by an ‘adjustment matrix’.
Very few adjustment matrices are known, but James’s Conjecture suggests that for certain blocks of the
Iwahori–Hecke algebra, the adjustment matrix should be the identity matrix. This conjecture is closely
related to the celebrated Lusztig Conjecture, and both conjectures seem to be very hard.

Some progress has been made with small cases, where ‘small’ applies not to n but to the weight of
the block in question. James’s Conjecture concerns the case where the weight of the block is less than
the characteristic of the underlying field, and a great deal of work has been done on blocks of small
weight. Blocks of weight at most 1 have been understood for some time; in fact, they are of finite type,
with blocks of weight 0 being simple. Blocks of weight 2 were systematically addressed by Scopes [19]
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and Richards [16]; the latter gave an explicit description of the decomposition numbers for weight 2
blocks in odd or infinite characteristic, from which it follows that James’s Conjecture holds for weight
2 blocks. Blocks of weight 3 presented difficulties for some years, until the present author was finally
able to prove that over fields of characteristic at least 5, the decomposition numbers for weight 3 blocks
are bounded above by 1. In the course of proving this, the author verified James’s Conjecture for blocks
of weight 3.

The task undertaken in this paper is to prove James’s Conjecture for blocks of weight 4. The tech-
niques used are similar to those used for blocks of weight 3, though an important difference is that
we do not have a guiding conjecture as to what the decomposition numbers for weight 4 blocks look
like; certainly the decomposition numbers can be bigger than 1. Accordingly, our proof involves few
calculations of decomposition numbers; instead, we work directly with the entries of the adjustment
matrix.

Of course, this leaves us a long way from a proof of James’s Conjecture in general, and we do
not expect that it could be proved using only the techniques in this paper. Our hope is that some of
the techniques and cases could be generalised to arbitrary weight, in order to prove particular cases of
James’s Conjecture and thereby shed light on what the ‘difficult’ cases look like.

In the next section, we introduce the background theory that we shall require. There is a great deal
of this, and accordingly some of it is treated very briefly. Then we outline the proof of the main theorem.
The remaining sections of the paper give the details of the proof.

2 Background and method of proof

2.1 Representations of Iwahori–Hecke algebras

An excellent introduction to the representation theory of Hn is to be found in the book [14] by
Mathas; we summarise the relevant points here. Suppose q is a non-zero element of a field F, and write
Hn for the Iwahori–Hecke algebraHF,q(Sn) ofSn over Fwith parameter q. Let e denote the least integer
such that 1 + q + · · · + qe−1 = 0 in F, assuming throughout the paper that such an integer exists. Thus, e
is an integer greater than 1; if q = 1 then e is the characteristic of F, and otherwise e is the multiplicative
order of q.

We assume that the reader is familiar with the combinatorics of partitions, e-regular partitions, Young
diagrams and addable and removable nodes and their residues. To each partition λ of n is associated a
Specht module S λ for Hn. (Note that we use the Dipper–James version [3] of Specht modules, rather
than that of Mathas.) If λ is e-regular, then S λ has an irreducible cosocle Dλ, and the Dλ give all the
irreducible Hn-modules as λ ranges over the set of e-regular partitions of n. The point of this paper is
to compare different Iwahori–Hecke algebras, and we may write S λ

F,q and Dλ
F,q if there is a danger of

ambiguity.
The central problem in the representation theory of Hn is to determine the decomposition numbers

[S λ : Dµ] for all pairs (λ, µ) of partitions of n with µ e-regular. These are conventionally recorded
in the decomposition matrix, which has rows indexed by partitions, and columns indexed by e-regular
partitions, with the (λ, µ)-entry being [S λ : Dµ].

2.2 Canonical bases and v-decomposition numbers

When F has infinite characteristic (we adopt the convention in this paper that the characteristic of a
field is the order of its prime subfield) and q is a primitive eth root of unity in F, there is an algorithm
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for computing the decomposition numbers forHn. The Fock space representation of the quantum group
Uv(ŝle) contains a submodule isomorphic to the irreducible integrable highest weight module L(Λ0),
and this submodule possesses a canonical basis {G(µ) | µ an e-regular partition}. Expanding each G(µ)
with respect to the natural basis {λ | λ a partition} for the Fock space, one obtains

G(µ) =
∑
λ

d(e)
λµ (v)λ,

where each d(e)
λµ (v) is a polynomial with non-negative integer coefficients, which is zero unless |λ| = |µ|.

This is known as a ‘v-decomposition number’, in view of the following theorem, due to Ariki.

Theorem 2.1. [1, Theorem 4.4] Suppose char(F) = ∞, and λ and µ are partitions of n with µ e-regular.
Then

[S λ
F,q : Dµ

F,q] = d(e)
λµ (1).

More details of the Fock space, and the important properties of the canonical basis, can be found
in the paper by Lascoux, Leclerc and Thibon [13], in which the ‘LLT algorithm’ for computing the
canonical basis is also given.

2.3 Blocks ofHn and the abacus

The abacus is a combinatorial device frequently used in the representation theory of symmetric
groups and Iwahori–Hecke algebras. Since the choice of notation can vary, we make explicit the version
we use here.

With e as above, take an abacus with e vertical runners, numbered 0, . . . , e − 1 from left to right,
and mark positions 0, 1, . . . on the runners, increasing from left to right along successive ‘rows’ (so that
on runner i, the non-negative integers congruent to i modulo e appear in increasing order from the top
down). Given a partition λ, take an integer r > λ′1, and define βi = λi + r− i for i = 1, . . . , r. Now place a
bead on the abacus at position βi, for each i. The resulting configuration is the abacus display for λ with
r beads.

From an abacus display for λ, we can read of the e-quotient of λ as follows: for each i, we regard
runner i on its own as an abacus with only one runner, and read off the corresponding partition, which
we denote λ(i); thus λ(i) j is the number of empty spaces above the jth lowest bead on runner i. The
(e-)quotient of λ is then simply the e-tuple (λ(0), . . . , λ(e − 1)). Of course, taking an abacus display
with a different number of beads changes the quotient; specifically, if we increase the number of beads
by 1, then the components of the quotient are permuted cyclically, so that (λ(0), . . . , λ(e − 1)) becomes
(λ(e − 1), λ(0), . . . , λ(e − 2)).

It is easy to see that a partition λ is determined by its quotient and the number of beads on each
runner of the abacus. Accordingly, we may write λ as 〈0λ(0), . . . , e−1λ(e−1) | b0, . . . , be−1〉, where bi is the
number of beads on runner i, for each i. We omit iλ(i) if λ(i) = ∅, and write iλ(i) simply as i if λ(i) = (1).
We may also group together equal bis, or omit the bis altogether if they are understood.

For example, if e = 3 and λ = (6, 23, 13), then (taking r = 13) λ has an abacus display

u u uu u uu uu uu uu ,
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and we may write λ as 〈02,12 , 1 | 5, 42〉.
If λ has e-quotient (λ(0), . . . , λ(e−1)), then the (e-)weight of λ is defined as |λ(0)|+· · ·+|λ(e−1)|. The

(e-)core of λ is the partition whose abacus display is obtained from an abacus display for λ by moving
all the beads as high as possible on their runners; if λ is a partition of n, then its core is a partition of
n − ew, where w is the weight of λ. The definition of the e-core of a partition is vital to the following
theorem, which is still called the ‘Nakayama Conjecture’.

Theorem 2.2. [14, Corollary 5.38] Suppose λ and µ are partitions of n. Then the Specht modules S λ

and S µ lie in the same block ofHn if and only if λ and µ have the same e-core.

Given Theorem 2.2, we abuse notation by saying that two partitions λ and µ of n lie in the same block
of Hn to mean that λ and µ have the same e-core. Theorem 2.2 allows us to define the weight and core
of any block ofHn, meaning the e-weight and e-core of any partition lying in that block. Note that if we
have an abacus display for a partition λ, then the e-core of λ is determined by the numbers b0, . . . , be−1 of
beads on the runners, and so we may define an abacus for a block by specifying the number of beads on
each runner, without specifying their positions. A block is then determined by its weight and its abacus,
so we may speak of the weight w block with the 〈b0, . . . , be−1〉 notation. For example, if e = 3 then the
partition λ above lies in the weight 5 block with the 〈5, 42〉 notation.

We note that we can also easily read addable and removable nodes from an abacus display. Take
an abacus display for λ, with r beads, say, and choose i ∈ Z/eZ. Let j ∈ {0, . . . , e − 1} be given by
j ≡ i + r (mod e). Then removable nodes of λ of residue i correspond to beads on runner j of the abacus
with no bead immediately to the left, while addable nodes of residue i correspond to unoccupied spaces
on runner j with beads immediately to the left. Here we adopt the convention that position x − 1 is
immediately to the left of position x even when x ≡ 0 (mod e), and that position 0 always has a bead
immediately to the left. Removing a removable node corresponds to moving the corresponding bead one
space to the left, while adding a node corresponds to moving the corresponding bead one space to the
right.

2.4 Adjustment matrices and James’s Conjecture

James’s Conjecture concerns the comparison of the decomposition matrix for Hn with that of an
Iwahori–Hecke algebra defined over C. Fix a primitive eth root of unity ζ in C, and write H0

n for the
Iwahori–Hecke algebra HC,ζ(Sn). Many of the theorems that we state involving modules for Hn we
shall use with Hn replaced by H0

n (that is, in the special case where F = C and q = ζ). For example,
applying Theorem 2.2 with F, q replaced by C, ζ, one sees that two partitions λ and µ lie in the same
block of Hn if and only if they lie in the same block of H0

n . Therefore, given a block B of Hn, we may
define the block of H0

n corresponding to B to be the block B0 with same e-core as B. Now we have the
following theorem, due to Geck.

Theorem 2.3. [14, Theorem 6.35] Let B be a block ofHn, and B0 the corresponding block ofH0
n . Let

D and D0 be the decomposition matrices for these blocks, each with rows indexed by partitions in B and
columns indexed by e-regular partitions in B. Then there exists a square matrix A, with non-negative
integer entries, such that D = D0A.

The matrix A in this theorem is called the adjustment matrix for B, and is the main object of study
in this paper. It arises from a ‘decomposition map’ from the category ofH0

n -modules to the category of
Hn-modules. The (λ, µ)-entry of A gives the composition multiplicity of Dµ

F,q in the image under this
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map of the simple module Dλ
C,ζ

. An excellent introduction to decomposition maps can be found in the
article by Geck [7]. Since the decomposition numbers for H0

n can be computed by the LLT algorithm,
determining the decomposition matrices in arbitrary characteristic is equivalent to computing adjustment
matrices. However, not a great deal is known about adjustment matrices; our motivating conjecture is
the following.

Conjecture 2.4. (James’s Conjecture) Suppose B is a block ofHn, and that the weight of B is less than
char(F). Then the adjustment matrix for B is the identity matrix.

We remark that we have recently extended this conjecture to give a necessary and sufficient condition
for the adjustment matrix of a block B to be the identity matrix [6]; however, in this paper we restrict
attention to the version above. Some progress has been made in proving this for blocks of small weight.
We shall use the following result.

Theorem 2.5. [16, 4] Suppose char(F) > 5, and that B is a block ofHn of weight at most 3. Then James’s
Conjecture holds for B, and if λ, µ are partitions in B with µ e-regular, then [S λ : Dµ] 6 1.

If λ and µ are e-regular partitions lying in a block B ofHn, we write adjλµ for the (λ, µ)-entry of the
adjustment matrix for B. Our main theorem is as follows.

Theorem 2.6. James’s Conjecture holds for blocks of weight 4. That is, if char(F) > 5 and λ, µ are
e-regular partitions lying in a block B ofHn of weight 4, then adjλµ = δλµ.

2.5 The dominance order, the Jantzen–Schaper formula and Ryom-Hansen’s theorem

The following is one of the simplest results in the representation theory ofHn; it arises from the fact
thatHn is cellular.

Theorem 2.7. Suppose λ and µ are partitions of n, with µ e-regular. Then:

• [S µ : Dµ] = 1;

• if [S λ : Dµ] > 0, then µ Q λ.

Of course, this theorem also applies in the special case (F, q) = (C, ζ), and comparing the two
statements yields the following consequence for adjustment matrices.

Corollary 2.8. Suppose λ and µ are e-regular partitions lying in a block B ofHn. Then:

• adjµµ = 1;

• if adjλµ > 0, then µ Q λ.

The order Q in these results is the usual dominance order, but the results can be strengthened by
using the Jantzen–Schaper formula (of which the version for Iwahori–Hecke algebras is proved in [10]).
This is described in detail elsewhere, so we give just the details relevant to the discussion. For any
ordered pair (λ, ν) of partitions of n, one defines an integer JF,q(λ, ν), which we call a Jantzen–Schaper
coefficient. The Jantzen–Schaper formula states that for any λ , µ we have

[S λ : Dµ] 6
∑
ν

JF,q(λ, ν)[S ν : Dµ],
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and that the left-hand side of the above inequality is zero if and only if the right-hand side is zero. The
crucial property of the Jantzen–Schaper coefficients is that JF,q(λ, ν) is zero unless λ and ν lie in the
same block and λ C ν. This means that the Jantzen–Schaper formula is a useful tool for calculating
decomposition numbers for a particular block ofHn recursively.

We can use the Jantzen–Schaper formula to refine Theorem 2.7. If we redefine the dominance order
by putting λ P ν whenever JF,q(λ, ν) , 0 and extending transitively and reflexively, then we get a partial
order, which is a refinement of the usual dominance order, and which we call the Jantzen–Schaper
dominance order. It is an immediate consequence of the Jantzen–Schaper formula that Theorem 2.7 and
Corollary 2.8 hold with this new dominance order. For the rest of this paper, we use P to denote the
Jantzen–Schaper dominance order. Although the order in depends in general on F and q, the following
lemma (which underpins James’s Conjecture) shows that for our purposes we need only consider e
(which will always be implicit).

Lemma 2.9. Suppose λ and ν are partitions lying in a block B ofHn of weight w < char(F). Then

JF,q(λ, ν) = JC,ζ(λ, ν).

Proof. This is a straightforward consequence of the definition of JF,q(λ, ν); it rests on the fact that be-
cause w < char(F), the Young diagram of a partition in B cannot have a rim hook of length divisible by
e char(F). �

Since in this paper we shall be concerned entirely with blocks of weight less than char(F), we write
J(λ, ν) in place of JF,q(λ, ν) or JC,ζ(λ, ν) without fear of ambiguity. We shall use the Jantzen–Schaper for-
mula to calculate decomposition numbers via the following result, which is an immediate consequence
of the formula and Theorem 2.7.

Proposition 2.10. Suppose λ and µ are partitions of n with µ e-regular. If we have∑
λCνPµ

JF,q(λ, ν)[S ν : Dµ] 6 1,

then
[S λ : Dµ] =

∑
λCνPµ

JF,q(λ, ν)[S ν : Dµ].

We use Proposition 2.10 several times later, to show that certain decomposition numbers [S λ : Dµ]
are independent of the underlying characteristic. In each case, we give a table of all the coefficients
J(ν, ξ) for λ P ν C ξ P µ; we then use Proposition 2.10 recursively to show that the Jantzen–Schaper
formula determines the decomposition numbers [S ν

F,q : Dµ
F,q] and [S λ

C,ζ
: Dµ
C,ζ

], and that they are equal.
(In one case, the bound we get for each of these decomposition numbers is 2, and we use an independent
argument to show that both decomposition numbers equal 1.)

Ryom-Hansen [17] demonstrated an important connection between the Jantzen–Schaper formula
and v-decomposition numbers. (In fact, his paper contains a slight error, which is corrected by Yvonne
in [20].) His result may be stated using our notation as follows.

Theorem 2.11. [17, Theorem 1] Suppose λ and µ are partitions of n, with µ e-regular, and let d(e)
λµ

′
(v)

denote the derivative with respect to v of the v-decomposition number d(e)
λµ (v). Then∑

λCνPµ

JC,ζ(λ, ν)d
(e)
νµ (1) = d(e)

λµ

′
(1).
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This result will prove useful to us in estimating decomposition numbers [S λ : Dµ] when we know
that adjνµ = 0 for λ C ν C µ but we do not know the decomposition numbers [S ν : Dµ]. We use the
following corollary.

Corollary 2.12. Suppose λ and µ are e-regular partitions lying in a block B ofHn of weight w < char(F).
Suppose that adjνµ = 0 for all e-regular partitions ν such that λ C ν C µ, and that the v-decomposition
number d(e)

λµ (v) equals 0 or v. Then adjλµ = 0.

Proof. Since adjνµ = 0 for all e-regular partitions ν satisfying λ C ν C µ, we have [S ν
F,q : Dµ

F,q] =

[S ν
C,ζ

: Dµ
C,ζ

] for all partitions ν such that λ C ν P µ. Hence by Lemma 2.9 the bound b given by the
Jantzen–Schaper formula for [S λ

F,q : Dµ
F,q] is the same as the bound for [S λ

C,ζ
: Dµ
C,ζ

]. By Theorem 2.1

and Theorem 2.11 b equals either 0 or 1 (as d(e)
λµ (v) equals 0 or v, respectively), so by Proposition 2.10

we have
[S λ
F,q : Dµ

F,q] = b = [S λ
C,q; : Dµ

C,ζ
],

and hence adjλµ = 0. �

2.6 The row removal theorem

The following is a very useful theorem in the representation theory ofHn.

Theorem 2.13. [8, Corollary 6.18] Suppose λ and µ are partitions of n, with µ e-regular, and that for
some r we have

λ1 + · · · + λr = µ1 + · · · + µr.

Define

λ1 = (λ1, . . . , λr), µ1 = (µ1, . . . , µr),

λ2 = (λr+1, λr+2, . . . ), µ2 = (µr+1, µr+2, . . . ).

Then
[S λ : Dµ] = [S λ1

: Dµ1
].[S λ2

: Dµ2
].

The case r = 1 of this theorem is known as the ‘row removal theorem’, and has the following
consequence for adjustment matrices.

Corollary 2.14. Suppose λ and µ are e-regular partitions of n of weight w < char(F) and that λ1 = µ1.
Define

λ2 = (λ2, λ3, . . . ), µ2 = (µ2, µ3, . . . ),

and suppose that James’s Conjecture holds for the block containing λ2 and µ2. Then adjλµ = δλµ.

Proof. By Theorems 2.13 and 2.7 we have

[S λ
F,q : Dµ

F,q] = [S λ2

F,q : Dµ2

F,q], [S λ
C,ζ : Dµ

C,ζ
] = [S λ2

C,ζ : Dµ2

C,ζ
].

Since James’s Conjecture holds for the block containing λ2 and µ2, we have

[S λ2

F,q : Dµ2

F,q] = [S λ2

C,ζ : Dµ2

C,ζ
],
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and we deduce
[S λ
F,q : Dµ

F,q] = [S λ
C,ζ : Dµ

C,ζ
],

from which the result follows. �

We shall use this corollary frequently in the rest of the paper. Typically, we shall be considering a
pair of e-regular partitions λ and µ of weight 4 for which we wish to show that adjλµ = 0, and it will
happen that in the abacus display for λ the bead corresponding to its largest part has s > 1 empty spaces
above it on the same runner. Constructing the partition λ2 = (λ2, λ3, . . . ) corresponds to replacing this
bead with an empty space, and this means that the weight of λ2 is 4 − s 6 3; so if µ1 = λ1 we can apply
Corollary 2.14 and Theorem 2.5 to get adjλµ = 0.

2.7 The runner removal theorems

Here we note two theorems which will help us to compute v-decomposition numbers more efficiently
by relating v-decomposition numbers for different values of e.

Theorem 2.15. [11, Theorem 3.2] Suppose that e > 3, and that λ and µ are partitions of n with µ

e-regular, and take abacus displays for λ and µ with r beads. Suppose that there is some i such that
in both displays the last bead on runner i occurs before every unoccupied space on the abacus. Define
two abacus displays with e − 1 runners by deleting runner i from each display, and let λ− and µ− be the
partitions defined by these displays. If µ− is (e − 1)-regular, then

d(e)
λµ (v) = d(e−1)

λ−µ−
(v).

Theorem 2.16. [5, Theorem 4.1] Suppose that e > 3, and that λ and µ are partitions of n with µ e-
regular, and take abacus displays for λ and µ with r beads. Suppose that there is some i such that in
both displays the first unoccupied space on runner i occurs after every bead on the abacus. Define two
abacus displays with e − 1 runners by deleting runner i from each display, and let λ− and µ− be the
partitions defined by these displays. If µ− is (e − 1)-regular, then

d(e)
λµ (v) = d(e−1)

λ−µ−
(v).

We refer to these theorems as the ‘runner removal theorems’.

2.8 The modular branching rules

For any κ > 0, Hn is naturally a subalgebra of Hn+κ, and there are well-behaved induction and
restriction functors between the module categories of these algebras. Given blocks B,C ofHn andHn+κ

respectively, and given anHn-module M and anHn+κ-module N, we write M ↑C for the projection onto
C of M ↑Hn+1 , and we write N↓B for the projection onto B of N↓Hn .

We are most interested in the effect of these functors on the simple modules Dµ. This is to some
extent well-understood, through the ‘modular branching rules’ of Brundan and Kleshchev [2]. We shall
not describe these in detail here, but we note that the modular branching rules tells us precisely when
Dµ ↑C is non-zero and when it is semi-simple, and the isomorphism type of its socle, and that this
information depends only on µ, e and C, not F and q. A similar statement applies to restricted simple
modules. The particular cases of the modular branching rules that we need will be summarised in the
next two sections, and Appendix A.
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2.9 Lowerable pairs of simple modules

In this section, we consider restricting and inducing simple modules from blocks of weight 4 to
blocks of weight less than 4.

Proposition 2.17. Suppose char(F) > 5, B is a block of Hn of weight 4, and C is a block of Hn−1 or
Hn+1 of weight less than 4. Suppose λ and µ are distinct e-regular partitions lying in B such that Dµ↓C

(or Dµ ↑C , respectively) is non-zero, while Dλ↓C (or Dλ ↑C , respectively) is either zero or simple. Then
adjλµ = 0.

Proof. This is very similar to [4, Lemma 4.4]. We assume that C is a block of Hn−1; the proof in the
other case is essentially identical. Recalling the notation of Section 2.4, let B0 and C0 be the blocks of
H0

n andH0
n−1 respectively corresponding to B and C.

The modular branching rules [2] imply that there is an e-regular partition µ̂ in C such that Dµ
F,q↓C

is an indecomposable module with simple socle Dµ̂
F,q, while Dµ

C,ζ
↓C is an indecomposable module with

simple socle Dµ̂
C,ζ

. Moreover, we have [Dλ
C,ζ
↓C: Dµ̂

C,ζ
] = 0; for Dλ

C,ζ
↓C0 is either simple or zero, and if it

is simple then the modular branching rules show that it is a simple module other than Dµ̂
C,ζ

.
Let T be the ‘simple branching matrix’ from B to C, with rows indexed by e-regular partitions in

B and columns by e-regular partitions in C, and with the (ν, ξ)-entry being the composition multiplicity
[Dν
F,q↓C: Dξ

F,q]. Let T 0 be the simple branching matrix from B0 to C0, defined analogously. Using the
fact that restriction is an exact functor together with the fact that James’s Conjecture holds for C shows
that T 0 = AT , where A is the adjustment matrix for B. Comparing the (λ, µ̂)-entries of both sides, we
have

0 = [Dλ
C,ζ↓C0 : Dµ̂

C,ζ
] =
∑
ν

adjλν[D
ν
F,q↓C: Dµ̂

F,q]

= adjλµ[Dµ
F,q↓C: Dµ̂

F,q] +
∑
ν,µ

adjλν[D
ν
F,q↓C: Dµ̂

F,q];

since every term on the right-hand side is non-negative and [Dµ
F,q↓C: Dµ̂

F,q] > 0, we have adjλµ = 0. �

If λ and µ are e-regular partitions lying in B as above, and satisfying the hypotheses of Proposition
2.17 for some C, then we say that the pair (λ, µ) is lowerable.

Note that the condition that Dλ↓C (or Dλ ↑C) is zero or simple is very mild. We know that an abacus
for C may be obtained from an abacus for B by moving a bead between two adjacent runners, say i − 1
and i. Using the modular branching rules, we find that Dλ↓C (or Dλ ↑C) is reducible if and only if there
are equal numbers of beads on these two runners (so that C has weight 3) and λ is the partition 〈i22〉.

The condition for Dµ↓C (or Dµ ↑C) to be non-zero can be checked from the abacus display for µ using
the modular branching rule; in Appendix A we illustrate all possible configurations of runners i − 1 and
i in the abacus display which give Dµ ↓C (or Dµ ↑C) non-zero. Specifically, we have the following
statement.

• Suppose C is a block ofHn−1, and an abacus for C is obtained from an abacus for B by moving a
bead from runner i to runner i − 1. If µ is an e-regular partition in B, then Dµ↓C, 0 if and only if
the configuration of runners i − 1 and i in the abacus display for µ appears in A.1 or A.2.

• Suppose C is a block ofHn+1, and an abacus for C is obtained from an abacus for B by moving a
bead from runner i − 1 to runner i. If µ is an e-regular partition in B, then Dµ ↑C, 0 if and only if
the configuration of runners i − 1 and i in the abacus display for µ appears in A.1 or A.3.
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2.10 [4 : κ]-pairs

Scopes [18] pioneered the study of the relationship between different blocks of the same weight, in
the symmetric group context; her work was generalised to Iwahori–Hecke algebras by Jost [12]. We use
the framework developed by Scopes in this paper, and we summarise the important points here.

Suppose B is a block of Hn of weight w, and suppose that in some abacus display for B there are
κ more beads on runner i than on runner i − 1. Let A be the weight w block of Hn−κ whose abacus is
obtained by moving κ beads from runner i to runner i − 1. We say that A forms a [w : κ]-pair with B.
We abuse notation by including the case i = 0 here: in this case we actually need κ + 1 more beads on
runner 0 than on runner e − 1. Equivalently, two weight w blocks A and B form a [w : κ]-pair if the core
of A is obtained from the core of B by removing all the removable nodes of a given residue, and there
are exactly κ such nodes.

Blocks forming [w : κ]-pairs have very similar representation theories. There is a bijection Φ be-
tween the set of e-regular partitions in A and the set of e-regular partitions in B, with the property that
for any e-regular µ in A, Dµ ↑B is semi-simple if and only if DΦ(µ)↓A is, and in this case we have

Dµ ↑B� (DΦ(µ))⊕κ!, DΦ(µ)↓A� (Dµ)⊕κ!.

We say that Dµ and DΦ(µ) (or µ and Φ(µ)) are non-exceptional for the [w : κ]-pair (A, B) if this happens.
If w 6 κ, then in fact every µ is non-exceptional, and we say that A and B are Scopes equivalent; this
implies in particular that they are Morita equivalent.

Whether an e-regular partition in A or B is exceptional can be deduced from the modular branching
rule; we provide a description of such partitions in Appendix A. Specifically, suppose A and B form a
[4 : κ]-pair, with an abacus for A obtained from an abacus for B by moving κ beads from runner i to
runner i − 1. Then:

• if µ is an e-regular partition in A, then µ is exceptional for the [4 : κ]-pair (A, B) if and only if
κ 6 3 and the configuration of runners i − 1 and i in the abacus display for µ appears in A.2;

• if µ is an e-regular partition in B, then µ is exceptional for the [4 : κ]-pair (A, B) if and only if
κ 6 3 and the configuration of runners i − 1 and i in the abacus display for µ appears in A.3.

The map Φ on non-exceptional e-regular partitions is also an instance of the modular branching rule,
and we give an explicit description for the case w = 4. Suppose µ is a non-exceptional e-regular partition
in A.

• Suppose every bead on runner i of the abacus display for µ has a bead immediately to its left on
runner i − 1. Then Φ(µ) is obtained simply by interchanging runners i − 1 and i.

• Otherwise, κ 6 3 and the configurations of runners i − 1 and i in the abacus displays for µ and
Φ(µ) form one of the pairs listed in A.4.

The importance for us of non-exceptional partitions is the following.

Proposition 2.18. Suppose A and B are weight 4 blocks forming a [4 : κ]-pair as above, and that λ, µ
are e-regular partitions in A.

1. If µ is exceptional, then both pairs (λ, µ) and (Φ(λ),Φ(µ)) are lowerable.

2. If λ is non-exceptional, then adjλµ = adjΦ(λ)Φ(µ).



James’s Conjecture holds for weight four blocks of Iwahori–Hecke algebras 11

Proof.
1. Let C be the block ofHn−1 of weight 3 − κ whose abacus is obtained from that for B by moving a

bead from runner i to runner i − 1. The fact that µ appears in Appendix A.2 means that Dµ↓C, 0
(see the discussion in §2.9 above). Dλ↓C is either zero or irreducible (again, by the discussion in
§2.9), and so the pair (λ, µ) is lowerable. A similar argument applies to (Φ(λ),Φ(µ)).

2. If µ is exceptional, then adjλµ = 0 = adjΦ(λ)Φ(µ) by (1) and Proposition 2.17; if µ is non-
exceptional, then we may copy the proof of [4, Lemma 4.3(2)].

�

We now set up some notation to help us use this result. Take a weight 4 block A ofHn and i ∈ Z/eZ,
and suppose that the core of A has κ > 1 addable nodes of residue i. Let B be the weight 4 block whose
core is obtained from the core of A by adding all the addable nodes of residue i. Then A and B form a
[4 : κ]-pair. We define a partial function fi on the set of e-regular partitions in A, by putting fi(ξ) = µ if
ξ is non-exceptional for this [4 : κ]-pair and Φ(ξ) = µ, and leaving fi(ξ) undefined if ξ is exceptional.
Doing this for every weight 4 block A, we obtain a partial function fi on the set of e-regular partitions of
weight 4 (if the core of a partition ξ has no addable nodes of residue i, then we leave fi(ξ) undefined).
We have the following corollary of Proposition 2.18.

Proposition 2.19. Suppose λ and µ are e-regular partitions of weight 4 lying in the same block of Hn.
Suppose i1, . . . , ir ∈ Z/eZ, and let f be the partial function fi1 . . . fir . If f(λ) and f(µ) are both defined,
then adjλµ = adjf(λ)f(µ). If f(λ) is defined but f(µ) is not, then adjλµ = 0.

Example. Suppose e = 7, and

λ = 〈1, 312 , 6 | 43, 52, 42〉, µ = 〈0, 32, 5 | 43, 52, 42〉.

Let f = f0f6f5. Then we have

f(λ) = 〈02, 312 | 42, 53, 4, 3〉, f(µ) = 〈32, 5, 6 | 42, 53, 4, 3〉,

as we see from the following abacus diagrams:

λ =

u u u u u u uu u u u u u uu u u u u u uu u u uu u u uu f5
7−→

u u u u u u uu u u u u u uu u u u u u uu u u uu u uu u f6
7−→

u u u u u u uu u u u u u uu u u u u u uu u u uu u uu u f0
7−→

u u u u u u uu u u u u u uu u u u u u uu u u uu u uu u = f(λ),

µ =

u u u u u u uu u u u u u uu u u u u u uu u u u uu u uu
f5
7−→

u u u u u u uu u u u u u uu u u u u uu u u u u uu u uu
f6
7−→

u u u u u u uu u u u u u uu u u u u uu u u u u uu u uu
f0
7−→

u u u u u u uu u u u u u uu u u u u uu u u u u uu u uu = f(µ).

We deduce that adjλµ = adjf(λ)f(µ), and in fact this equals 0, since the pair (f(λ), f(µ)) is lowerable.
Examples of this type will be used extensively in Sections 5–8.
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We may also use this formalism without making the function f explicit. Given e-regular weight 4
partitions λ1, . . . , λt lying in a block B and λ

1
, . . . , λ

t
lying in a block C, we may write (λ1, . . . , λt) ∼

(λ
1
, . . . , λ

t
) to indicate that there exist i1, . . . , ir ∈ Z/eZ such that fi1 . . . fir (λ

i) is defined and equals λ
i
,

for i = 1, . . . , t. Where we use this notation, we hope that it will not be hard for the reader to construct
an appropriate sequence i1, . . . , ir.

2.11 The Mullineux map

Let T1, . . . ,Tn−1 be the standard generators ofHn. Let ] : Hn → Hn be the involutory automorphism
sending Ti to q−1−Ti. Given a module M forHn, define M] to be the module with the same underlying
vector space and with action

h · m = h]m.

Then the functor M 7→ M] is a self-equivalence of the category ofHn-modules. In the symmetric group
case q = 1, M] is simply M ⊗ sgn, where sgn is the 1-dimensional signature representation.

The fact that M 7→ M] defines a category equivalence means that it gives a map on the blocks ofHn.
That is, if B is a block of Hn, then there is another block B] such that a module M lies in B if and only
if M] lies in B]. We call B] the conjugate block to B; it is easy to show that if B has weight w and core
γ, then B] has weight w and core γ′.

If λ is an e-regular partition of n, then (Dλ)] must be a simple module, and we write λ� for the e-
regular partition such that (Dλ)] � Dλ� . Then λ 7→ λ� is an involutory bijection from the set of e-regular
partitions of n to itself. This bijection is given combinatorially by Mullineux’s algorithm [15], which we
shall use extensively. We note that given an e-regular partition λ, the partition λ� depends only on λ and
e, not on F and q.

The fact that M 7→ M] is a category equivalence, combined with the fact that the map λ 7→ λ� does
not depend on the underlying characteristic, yields the following.

Proposition 2.20. [4, Lemma 4.2] If λ and µ are e-regular partitions of n, then adjλµ = adjλ�µ� .

We also examine the relationship between conjugate blocks and Scopes pairs. If A and B are blocks
forming a [w : κ]-pair, then A] and B] also form a [w : κ]-pair, and if λ is an e-regular partition lying in
B, then λ is exceptional for the pair (A, B) if and only if λ� is exceptional for the pair (A], B]).

2.12 Rouquier blocks

A certain class of blocks of Hecke algebras singled out by Rouquier has attracted a great deal of
attention in recent years. Suppose B is a weight w block of Hn which may be represented with the
〈b0, . . . , be−1〉 abacus notation. We say that B is Rouquier if for every 0 6 i < j 6 e−1 either bi−b j > w
or b j − bi > w − 1. The Rouquier blocks form a single class under the Scopes equivalence, and are very
well understood in many ways. For our purposes, the most important result is the following.

Theorem 2.21. [9, Corollary 3.15] James’s Conjecture holds for Rouquier blocks. That is, if B is a
Rouquier block ofHn of weight w < char(F), then adjλµ = δλµ for all pairs (λ, µ) of e-regular partitions
in B.

Suppose B is any weight w block of Hn, and that λ is an e-regular partition in B. We say that
λ induces semi-simply to a Rouquier block if we have λ ∼ λ̄, where λ̄ is an e-regular partition lying
in some Rouquier block, and the relation ∼ is as in §2.10. The following is a direct consequence of
Proposition 2.19 and Theorem 2.21.
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Proposition 2.22. Suppose λ and µ are e-regular partitions lying in a weight 4 block B of Hn, and that
λ induces semi-simply to a Rouquier block. Then adjλµ = δλµ.

We shall frequently make use of this result later, by noting that certain partitions induce semi-simply
to Rouquier blocks. To justify these statements, we shall give the partition λ̄ lying in the weight 4
Rouquier block with 〈4, 7, . . . , 3e + 1〉 notation, and invite the reader to verify that λ ∼ λ̄ in each case.

2.13 Outline of the proof of James’s Conjecture for weight 4 blocks

In this section, we outline the proof of Theorem 2.6. From now on, we assume that the characteristic
of F is at least 5. The proof of Theorem 2.6 is by induction on n, with the initial case being the unique
weight 4 block ofH4e. This is dealt with in Section 4.

For the inductive step, we use [4 : κ]-pairs. If B is a weight 4 block of Hn and n > 4e, then there is
at least one block A forming a [4 : κ]-pair with B. Suppose in fact that there are distinct weight 4 blocks
A1, . . . , Ar such that A j and B form a [4 : κ j]-pair, for each j.

If λ is an e-regular partition in B which is non-exceptional for the pair (A j, B), then by Proposition
2.18 and by induction we have adjλµ = δλµ for all e-regular partitions µ in B. So we may assume
that λ is exceptional for each of the pairs (A j, B). Take an abacus display for B and suppose that an
abacus display for A j is obtained by moving κ j beads from runner i j to runner i j − 1, for each j. Then
i1, . . . , ir are distinct, and we see from the displays in A.3 that |λ(i j)| > κ j + 1 for each j. So we have
(κ1 + 1) + · · · + (κr + 1) 6 |λ(i1)| + · · · + |λ(ir)| 6 4, which implies that either r = 1 and κ1 6 3, or r = 2
and κ1 = κ2 = 1. The blocks B satisfying these conditions are dealt with in the remaining sections of the
paper.

3 A special case

In this section, we deal with a special case which will arise in three later sections. Suppose that
2 6 a 6 e− 2, and let B be the weight 4 block with core ((4a)e−a−2, (3a− 2)e−a, (2a− 2)e−a, (a− 2)e−a+2),
for which we use the 〈4a−2, 52, 72, 8e−a−2〉 notation. We fix

λ1 = 〈a−22, a2〉,

λ2 = 〈a−14〉,

λ3 = 〈a−24〉,

µ = 〈a2, a+12〉.

Our goal is to show the following.

Proposition 3.1. With λ1, λ2, λ3, µ as above, we have

adjλ1µ = adjλ2µ = adjλ3µ = 0.

We begin by calculating the relevant part of the canonical basis element G(µ); that is, we compute the
v-decomposition numbers d(e)

νµ (v) for those partitions ν which dominate λ1, λ2 or λ3. Note that by using
the runner removal theorems it suffices to perform this computation in the case a = e − a = 2. Using the
LLT algorithm for this case and then applying the runner removal theorems yields the following.
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Lemma 3.2. Let µ be as above, and suppose ν is a partition dominating λ1, λ2 or λ3. Then we have

d(e)
νµ =



1 (ν = 〈a2, a+12〉)

v (ν = 〈a+122〉, 〈a12 , a+12〉, 〈a2, a+112〉, 〈a−1, a2, a+1〉 or 〈a−24〉)

v2 (ν = 〈a+12,12〉, 〈a2,1, a+1〉 or 〈a−1, a2,1〉)

v + v3 (ν = 〈a22〉)

0 (otherwise).

Lemma 3.3. Define
ν1 = 〈a+12,12〉, ν2 = 〈a2,1, a+1〉.

Then
adjν1µ = adjν2µ = 0.

Proof. We have ν1
1 = µ1 = 5a + 2, so we may apply Corollary 2.14 to get adjν1µ = 0. For ν2, we can

simply check that
ν2 ∼ 〈a3,1 | 5, 8, 11, . . . , 3e + 2〉,

so ν2 induces semi-simply to a Rouquier block; so we have adjν2µ = 0 by Proposition 2.22. �

Lemma 3.4. Define
ν3 = 〈a−22, a, a+1〉, ν4 = 〈a−2, a+113〉.

Then
adjν3µ = adjν4µ = 0.

Proof. We induce µ, ν3, ν4 to the block with the 〈4a−2, 52, 7, 10, 11e−a−2〉 notation. We find that

(ν3, ν4, µ) ∼ (ν̄3, ν̄4, µ̄),

where

ν̄3 = 〈a−22, a2 | 4a−2, 52, 7, 10, 11e−a−2〉,

ν̄4 = 〈a−22, a, a+1 | 4a−2, 52, 7, 10, 11e−a−2〉,

µ̄ = 〈a4 | 4a−2, 52, 7, 10, 11e−a−2〉.

We have µ̄ S ν̄4, so that adjν̄4µ̄ = 0 by Corollary 2.8. To show adjν̄3µ̄ = 0, we use the Jantzen–Schaper
formula and Proposition 2.10 to show that [S ν̄3

: Dµ̄] = 1 independently of the underlying characteristic.
The table of Jantzen–Schaper coefficients J(ξ, π) for those partitions ξ, π with µ̄ Q ξ B π Q ν̄3 is as
follows.

〈a
4〉

〈a
−

1,
a 3
〉

〈a
−

2,
a 3
〉

〈a
−

1 2
,a

2〉

〈a
−

2 2
,a

2〉

[S ξ : Dµ̄]
〈a4〉 · · · · · 1

〈a−1, a3〉 1 · · · · 1
〈a−2, a3〉 −1 1 · · · 0
〈a−12, a2〉 −1 1 · · · 0
〈a−22, a2〉 1 0 1 1 · 1
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(Recall that we are using the Jantzen–Schaper dominance order here; this means that the partition 〈a3,1〉

does not appear, for example.)
We deduce adjνiµ = adjν̄iµ̄ = 0 for i = 3, 4. �

Lemma 3.5. Define
ν5 = 〈a22〉, ν6 = 〈a−1, a2,1〉.

Then
adjν5µ = adjν6µ = 0.

Proof. Writing â = e − a and applying the Mullineux map, we have

(ν5)� = 〈â−22, â, â+1 | 4â−2, 52, 72, 8e−â〉,

(ν6)� = 〈â−2, â+113 | 4â−2, 52, 72, 8e−â〉,

µ� = 〈â2, â+12 | 4â−2, 52, 72, 8e−â〉.

By Lemma 3.4 (replacing a with â) we have adjµ�(ν5)� = adjµ�(ν6)� = 0, and applying Proposition 2.20
gives the result. �

Now we can deduce Proposition 3.1.

Proof of Proposition 3.1. We prove that adjνµ = 0 for all µ B ν Q λ3 inductively. For those ν for which
d(e)
νµ (v) equals 0 or v, we may appeal to Corollary 2.12. The remaining partitions are ν1, ν2 of Lemma 3.3

and ν5, ν6 of Lemma 3.5. �

4 The principal block ofH4e

In this section, we show that James’s Conjecture holds for the weight 4 block B with empty core,
which we display on an abacus with the 〈4e〉 notation. First we observe the following.

Lemma 4.1. If µ is an e-regular partition in B, then there is some block C ofHn−1 of weight less than 4
such that Dµ↓C is non-zero.

Proof. SinceH4e−1 is a unital subalgebra ofH4e, we have Dµ↓H4e−1, 0; in particular, Dµ↓C, 0 for some
block C ofH4e−1. Every block ofH4e−1 has weight less than 4, and the result follows. �

Now suppose λ and µ are e-regular partitions in B. In proving that adjλµ = δλµ, we may assume
by Proposition 2.17 that the pair (λ, µ) is not lowerable. Given Lemma 4.1, this is a very restrictive
assumption: by the discussion in §2.9, there must be some i ∈ {1, . . . , e − 1} such that λ = 〈i22〉, and
Dµ↓D= 0 for every block D ofHn−1 other than the weight 3 block C with the 〈4i−1, 5, 3, 4e−1−i〉 notation
(i.e. the block C for which Dλ↓C is reducible).

We may also assume, in view of Corollaries 2.8 and 2.14, that µ Q λ and µ1 > λ1. The possibilities
for µ are now as follows:
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• 〈i4〉;

• 〈i3, i+1〉 (if i 6 e − 2);

• 〈0, i3〉;

• 〈i2, i+12〉 (if i 6 e − 2).

Given Proposition 2.20, we may also assume that µ� Q λ� and µ�1 > λ�1; to exploit this assumption,
we compute λ� and µ� for each of the possible µ above. Writing ı̂ = e − i, we have

λ� = 〈ı̂22〉,

while the possibilities for µ� are given in Table 4.1.

µ conditions µ�

〈i4〉 i 6 e − 4 〈0, 1, 2, ı̂〉
〈i4〉 2 6 i = e − 3 〈0, 1, ı̂, ı̂+1〉
〈i4〉 1 = i = e − 3 〈02, 1, ı̂〉
〈i4〉 3 6 i = e − 2 〈0, ı̂, ı̂+1, ı̂+2〉
〈i4〉 2 = i = e − 2 〈02, ı̂, ı̂+1〉
〈i4〉 1 = i = e − 2 〈02, ı̂2〉

〈i4〉 4 6 i = e − 1 〈ı̂, ı̂+1, ı̂+2, ı̂+3〉
〈i4〉 3 = i = e − 1 〈ı̂2, ı̂+1, ı̂+2〉
〈i4〉 2 = i = e − 1 〈ı̂2, ı̂+12〉

〈i4〉 1 = i = e − 1 〈ı̂4〉

〈i3, i+1〉 2 6 i 〈0, ı̂12 , ı̂+1〉
〈i3, i+1〉 1 = i 〈02, ı̂12〉

〈0, i3〉 i 6 e − 2 〈0, 1, ı̂2〉
〈0, i3〉 2 6 i = e − 1 〈0, ı̂2, ı̂+1〉
〈0, i3〉 1 = i = e − 1 〈0, ı̂3〉
〈i2, i+12〉 2 6 i 6 e − 4 〈0, 1, ı̂, ı̂+1〉
〈i2, i+12〉 1 = i 6 e − 4 〈02, 1, ı̂〉
〈i2, i+12〉 3 6 i = e − 3 〈0, ı̂, ı̂+1, ı̂+2〉
〈i2, i+12〉 2 = i = e − 3 〈02, ı̂, ı̂+1〉
〈i2, i+12〉 1 = i = e − 3 〈02, ı̂2〉

〈i2, i+12〉 4 6 i = e − 2 〈ı̂, ı̂+1, ı̂+2, ı̂+3〉
〈i2, i+12〉 3 = i = e − 2 〈ı̂2, ı̂+1, ı̂+2〉
〈i2, i+12〉 2 = i = e − 2 〈ı̂2, ı̂+12〉

〈i2, i+12〉 1 = i = e − 2 〈ı̂4〉

Table 4.1

We now find that there are only five cases satisfying all of our assumptions:

1. e = 2, i = 1, µ = 〈14〉;

2. e = 2, i = 1, µ = 〈0, 13〉;

3. e = 3, i = 2, µ = 〈24〉;

4. e = 3, i = 1, µ = 〈12, 22〉;

5. e = 4, i = 2, µ = 〈22, 32〉.

We deal with these using the LLT algorithm. In each case, we know that adjνµ = δνµ whenever
ν , λ, so by Corollary 2.12 it suffices to show that the v-decomposition number d(e)

λµ (v) is either 0 or v.
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Applying the LLT algorithm, we find that in cases 1 and 3 we have d(e)
λµ (v) = 0, while in cases 2 and 5

we have d(e)
λµ (v) = v. This just leaves case 4; in this case, we have

λ� = 〈222〉, µ� = 〈24〉.

From case 3 we have adjλ�µ� = 0, and so adjλµ = 0 by Proposition 2.20.

5 Blocks forming a [4 : 1]-pair

Our purpose in this section is to prove the following result.

Proposition 5.1. Suppose A and B are weight 4 blocks of Hn−1 and Hn respectively, forming a [4 : 1]-
pair. Suppose that there is no block other than A forming a [4 : κ]-pair with B, for any κ. If James’s
Conjecture holds for A, then it holds for B.

The condition on B means that the core of B has the form (ab−a) for some 0 < a < b 6 e. We use
the 〈4a, 5b−a, 4e−b〉 notation for partitions in B. The conjugate block B] has core (âb−â), where â = b− a,
and we employ the 〈4â, 5b−â, 4e−b〉 notation for B]. The block A] forms a [4 : 1]-pair with B], and
by Proposition 2.20 and our hypothesis on A, James’s Conjecture holds for A]. So the hypotheses of
Proposition 5.1 apply also to A] and B]; since James’s Conjecture holds for B if and only if it holds for
B], we will often be able to interchange B and B] in the proof that follows.

Suppose that λ and µ are e-regular partitions lying in B. If λ is non-exceptional for the [4 : 1]-pair
(A, B), then we have adjλµ = δλµ by Proposition 2.18 and our hypothesis on A. So we can assume that λ
is exceptional; that is, λ is one of the following partitions:

〈a3,1〉;

〈a22〉;

〈a2,1, i〉 (0 6 i 6 e − 1, i < {a − 1, a});

〈a13 , i〉 (1 6 i 6 a − 1);

〈a12 , i2〉 (0 6 i 6 e − 1, i < {a − 1, a});

〈a12 , i12〉 (a + 1 6 i 6 e − 1);

〈a12 , i, j〉 (0 6 i < j 6 e − 1, i, j < {a − 1, a}).

Appealing to Corollaries 2.8 and 2.14, we assume that µ Q λ and µ1 > λ1. Note that one of the
exceptional partitions is lower than all the others in the dominance order, namely

λ0 =


〈1, a13〉 (a > 2)

〈a12 , b12〉 (a = 1, b < e)

〈a12 , a+112〉 (a = 1, a + 1 6 b = e)

〈a22〉 (e = 2).

(Actually, since we are using the Jantzen–Schaper dominance order, this is not strictly true when e = 2,
since then 〈a3,1〉 dominates 〈a22〉 in the usual dominance order but not the Jantzen–Schaper dominance
order. But this technicality makes no practical difference to the arguments that follow.) So our assump-
tions µ Q λ and µ1 > λ1 imply that µ Q λ0 and µ1 > λ

0
1.

This restricts the range of possibilities for µ; using Proposition 2.17 we assume additionally that the
pair (λ, µ) is not lowerable, and we deduce that µ must be one of the partitions shown in Table 5.1. We
now consider two separate cases.
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partition conditions partition conditions
1 〈a4〉 — 11 〈a, a+1, b2〉 b − a = 2, e − b > 1
2 〈a3, a+1〉 b − a > 2 12 〈a, a+1, b, b+1〉 b − a > 2, e − b > 2
3 〈a2, a+12〉 b − a > 2 13 〈a, b2, b+1〉 b − a = 1, e − b > 2
4 〈a2, a+1, a+2〉 b − a > 3 14 〈0, a2, b〉 a > 2, e − b > 1
5 〈a, a+1, a+2, a+3〉 b − a > 4 15 〈0, a, a+1, b〉 a > 2, b − a > 2, e − b > 1
6 〈a3, b〉 e − b > 1 16 〈0, a, b2〉 a > 2, b − a = 1, e − b > 1
7 〈a2, a+1, b〉 b − a > 2, e − b > 1 17 〈02, a2〉 a > 2, e − b = 0
8 〈a, a+1, a+2, b〉 b − a > 3, e − b > 1 18 〈02, a, a+1〉 a > 2, b − a > 2, e − b = 0
9 〈a2, b2〉 b − a = 1, e − b > 1 19 〈03, a〉 a > 2, b − a = 1, e − b = 0

10 〈a2, b, b+1〉 e − b > 2

Table 5.1

5.1 The case e − b > 0

For the case b < e, we begin by defining two partial functions (compare the example following
Proposition 2.19).

1. Define a = f2a−b−1 . . . fa−b+1fa−b. We find that the pair (a(λ), a(µ)) is defined and lowerable unless
one of the following happens:

• a(λ) is undefined, i.e. a > 2 and λ = 〈i2, a12〉 for some 0 6 i 6 a − 2;

• λ = 〈a22〉; or

• µ is in case 8, 9 or 11 with e − b = 1, or in case 12 or 13 with e − b = 2.

2. Define b = f2a−b+1 . . . fa−1fa. The pair (b(λ), b(µ)) is defined and lowerable unless one of the
following occurs:

• b(λ) is undefined, i.e. b − a > 2 and λ = 〈a12 , b2〉 or 〈a12 , i, b〉 for some a + 2 6 i 6 b − 1;

• λ = 〈a12 , b12〉; or

• µ is in one of cases 1–5.

If either of the pairs (a(λ), a(µ)) or (b(λ), b(µ)) is defined and lowerable, then we have adjλµ = 0 by
Proposition 2.19 and Proposition 2.17. So we assume otherwise, and examine four cases.

(i) Suppose that b(λ) is not defined. Then we may assume that µ is in case 8 or 11 (with e− b = 1) or
12 (with e − b = 2). We get λ1 > µ1, contradicting our earlier assumption.

(ii) Suppose that a(λ) is not defined. Applying the Mullineux map, we find that λ� has the form
〈i2, â12〉 for 0 6 i 6 â − 2, so we may replace (B, λ, µ) with (B], λ�, µ�) and appeal to case (i).

(iii) Suppose that λ = 〈a12 , b12〉, and that µ is in case 8, 9 or 11 (with e − b = 1) or case 12 or 13 (with
e − b = 2). We will show that adjλ�µ� = 0, and hence adjλµ = 0 by Proposition 2.20. Applying the
Mullineux map, we find

λ� = 〈â22〉,
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µ� =


〈â, â+1, â+2, â+3〉 (a > 4)

〈â2, â+1, â+2〉 (a = 3)

〈â2, â+12〉 (a = 2)

〈â4〉 (a = 1);

recall that â = b − a, and we use the 〈4â, 5a, 4e−b〉 notation for partitions in B]. Note that if a > 3,
then we have µ�1 6 λ�1, and hence adjλ�µ� = 0 by Corollary 2.14 of Corollary 2.8. So we may
assume that a 6 2. Now we compute the v-decomposition number d(e)

λ�µ�(v); using the runner
removal theorems and the fact that a 6 2, we need to perform only a few computations with the
LLT algorithm. We find that d(e)

λ�µ�(v) equals 0 if a = 1, or v if a = e − b = 2. Since we know that
adjνµ� = δνµ� by earlier arguments for all ν other than λ�, we have adjλ�µ� = 0 by Corollary 2.12
in these cases.

This leaves only the case where a = 2 and e − b = 1. In this case, we induce λ� and µ� up to the
block with the 〈4e−4, 52, 72〉 notation, and we find

(λ�, µ�) ∼ (λ, µ),

where

λ = 〈e−34 | 4e−4, 52, 72〉,

µ = 〈e−22, e−12 | 4e−4, 52, 72〉.

We have adjλµ = 0 by Proposition 3.1, and hence adjλ�µ� = 0.

(iv) Finally, suppose λ = 〈a22〉. We have
λ� = 〈â12 , b12〉,

and so we may appeal to case (iii) and Proposition 2.20.

5.2 The case e − b = 0

The case where b = e is harder to deal with, even though many of the cases in Table 5.1 are not
relevant. We begin with two partial functions.

1. Define a = f2a−1 . . . fa+1fa. If µ is in case 1 (with e − a > 2), 2, 3 (with e − a > 3) or 4 (with
e − a > 4), then (a(λ), a(µ)) is defined and lowerable. Hence adjλµ = 0 in these cases.

2. Define b = f2a+1 . . . fa−1fa. If µ is in one of cases 17–19 then (b(λ), b(µ)) is defined and lowerable,
so that adjλµ = 0.

We are left with one possible partition µ, namely

µ =


〈a, a+1, a+2, a+3〉 (e − a > 4)

〈a2, a+1, a+2〉 (e − a = 3)

〈a2, a+12〉 (e − a = 2)

〈a4〉 (e − a = 1).
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Appealing to Proposition 2.20, we now assume that µ� Q λ� and µ�1 > λ�1. In order to exploit this, we
calculate µ� and λ� for each of the possible λ that remain. First we compute µ�; applying the Mullineux
map, we find

µ� =


〈â, â+1, â+2, â+3〉 (a > 4)

〈â2, â+1, â+2〉 (a = 3)

〈â2, â+12〉 (a = 2)

〈â4〉 (a = 1).

(Recall that we use the 〈4â, 5a〉 notation for B].) Now we calculate λ� for each of the exceptional
partitions λ such that µ Q λ and µ1 > λ1. This is quite a tedious undertaking, and gives the possibilities
listed in Table 5.2; we write ı̂ = e − i, for any i ∈ {1, . . . , e − 1}.

Given this information, we can can list the possible partitions λ meeting all our assumptions. There
are between three and five of these, depending on the values of a and â. We label these as follows
(leaving λ4 and λ5 undefined if e − a = 1, and leaving λ3 and λ5 undefined if a = 1):

λ1 =


〈a12 , a+1, a+2〉 (e − a > 3)

〈a2,1, a+1〉 (e − a = 2)

〈a3,1〉 (e − a = 1);

λ2 =

〈a12 , a+112〉 (e − a > 2)

〈a22〉 (e − a = 1);

λ3 =

〈a−2, a12 , a+1〉 (a > 2, e − a > 2)

〈a−2, a2,1〉 (a > 2, e − a = 1);

λ4 =

〈a12 , a+212〉 (e − a > 3)

〈a22〉 (e − a = 2);

λ5 =

〈a−2, a12 , a+2〉 (a > 2, e − a > 3)

〈a−2, a2,1〉 (a > 2, e − a = 2).

We address each of these possibilities. First we note that

λ1 ∼ 〈a3,1 | 4, 7, 10, . . . , 3e + 1〉,

λ2 ∼ 〈a22 | 4, 7, 10, . . . , 3e + 1〉,

i.e both λ1 and λ2 induce semi-simply to a Rouquier block, so by Proposition 2.22 we have adjλµ = 0 if
λ = λ1 or λ2.

Next we deal with λ3. We induce both λ3 and µ up to the block with the 〈4a, 5, 8e−a−1〉 notation, and
we find that

(λ3, µ) ∼ (λ̄3, µ̄),

where

λ̄3 = 〈a−2, a2,1 | 4a, 5, 8e−a−1〉,

µ̄ = 〈a4 | 4a, 5, 8e−a−1〉.
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λ conditions λ�

〈a3,1〉 a > 3, e − a = 1 〈â12 , â+1, â+2〉
〈a3,1〉 a = 2, e − a = 1 〈â2,1, â+1〉
〈a3,1〉 a = 1, e − a = 1 〈â3,1〉

〈a22〉 a > 2, e − a = 2 〈0, â12 , â+1〉
〈a22〉 a > 2, e − a = 1 〈â12 , â+112〉

〈a22〉 a = 1, e − a = 2 〈0, â2,1〉

〈a22〉 a = 1, e − a = 1 〈â22〉

〈i, a2,1〉 a > i + 2 > 3, e − a = 2 〈0, â12 , ı̂〉

〈i, a2,1〉 a > i + 2 > 3, e − a = 1 〈â12 , ı̂12〉

〈0, a2,1〉 a > 2, e − a = 2 〈0, â2,1〉

〈0, a2,1〉 a > 2, e − a = 1 〈â22〉

〈a2,1, a+1〉 a > 3, e − a = 2 〈â12 , â+1, â+2〉
〈a2,1, a+1〉 a = 2, e − a = 2 〈â2,1, â+1〉
〈a2,1, a+1〉 a = 1, e − a = 2 〈â3,1〉

〈i, a13〉 a > i + 1 > 2 〈â12 , ı̂2〉

〈02, a12〉 a > 3 〈â2,1, â+1〉
〈02, a12〉 a = 2 〈â3,1〉

〈i2, a12〉 a > i + 3 > 4 〈â12 , â+1, ı̂〉
〈a−22, a12〉 a > 4 〈â12 , â+2, â+3〉
〈12, a12〉 a = 3 〈â2,1, â+2〉
〈a12 , a+212〉 a > 2, e − a > 3 〈â−2, â12 , â+1〉
〈a12 , a+212〉 a = 1, e − a > 3 〈â−2, â2,1〉

〈a12 , a+112〉 a > 2, e − a > 2 〈â12 , â+112〉

〈a12 , a+112〉 a = 1, e − a > 2 〈â22〉

〈i, j, a12〉 a > j + 2 > i + 4 > 5 〈â12 , ̂, ı̂〉

〈0, i, a12〉 a > i + 2 > 4 〈â2,1, ı̂〉

〈i, i+1, a12〉 a > i + 3 > 5 〈â12 , ı̂, ı̂+1〉
〈1, 2, a12〉 a > 4 〈â2,1, e−1〉
〈0, 1, a12〉 a > 3 〈â3,1〉

〈i, a12 , a+2〉 a > i + 2 > 3, e − a > 3 〈â−2, â12 , ı̂〉

〈0, a12 , a+2〉 a > 2, e − a > 3 〈â−2, â2,1〉

〈i, a12 , a+1〉 a > i + 2 > 3, e − a > 2 〈â12 , ı̂12〉

〈0, a12 , a+1〉 a > 2, e − a > 2 〈â22〉

〈a12 , a+1, a+2〉 a > 3, e − a > 3 〈â12 , â+1, â+2〉
〈a12 , a+1, a+2〉 a = 2, e − a > 3 〈â2,1, â+1〉
〈a12 , a+1, a+2〉 a = 1, e − a > 3 〈â3,1〉

Table 5.2
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We use the Jantzen–Schaper formula to show that [S λ̄3
: Dµ̄] = 1 irrespective of the underlying charac-

teristic, so that adjλ̄3µ̄ = 0, and hence adjλ3µ = 0. The table of Jantzen–Schaper coefficients J(ν, ξ) for
partitions ν, ξ with µ̄ Q ν B ξ Q λ̄3 is as follows, and yields the result.

〈a
4〉

〈a
−

1,
a 3
〉

〈a
−

2,
a 3
〉

〈a
−

1 4
〉

〈a
−

2 4
〉

〈a
−

1 2
,a

2〉

〈a
−

2 2
,a

2〉

〈a
−

1,
a 2
,1
〉

〈a
−

2,
a 2
,1
〉

[S ν : Dµ̄]
〈a4〉 · · · · · · · · · 1

〈a−1, a3〉 1 · · · · · · · · 1
〈a−2, a3〉 −1 1 · · · · · · · 0
〈a−14〉 −1 1 · · · · · · · 0
〈a−24〉 1 0 1 1 · · · · · 1
〈a−12, a2〉 1 −1 · 1 · · · · · 0
〈a−22, a2〉 −1 0 −1 0 1 1 · · · 0
〈a−1, a2,1〉 0 0 · 1 · 1 · · · 0
〈a−2, a2,1〉 0 0 0 0 1 0 1 1 · 1

Next we deal with λ4. From Table 5.2, we see that (λ4)� is a partition of the form λ3 in B], so we
may appeal to the case just studied.

Finally, we have to contend with λ5. We induce both λ5 and µ up to the block with the 〈4a−2, 52, 72, 8e−a−2〉

notation. We have

(λ5, µ) ∼ (λ̄5, µ̄),

where

λ̄5 = 〈a−22, a2 | 4a−2, 52, 72, 8e−a−2〉,

µ̄ = 〈a2, a+12 | 4a−2, 52, 72, 8e−a−2〉.

By Proposition 3.1 we have adjλ̄5µ̄ = 0, and hence adjλ5µ = 0.

6 Blocks forming a [4 : 2]-pair

In this section, we prove the following result.

Proposition 6.1. Suppose A and B are weight 4 blocks of Hn−2 and Hn respectively, forming a [4 : 2]-
pair. Suppose that there is no block other than A forming a [4 : κ]-pair with B, for any κ. If James’s
Conjecture holds for A, then it holds for B.

In this situation, the core of B has the form ((2a + e − c)b−a, ac−a) for some 0 < a < b 6 c 6 e; we
use the 〈4a, 6b−a, 5c−b, 4e−c〉 notation for B. As in §5, we often replace B with the conjugate block B],
for which we use the 〈4b−a, 6a, 5e−c, 4c−b〉 notation.

Suppose λ and µ are e-regular partitions in B. Using the inductive hypothesis and Proposition 2.18,
we may assume that λ is one of the exceptional partitions for the pair (A, B). These are the partitions
〈i, a13〉 for all i , a, a − 1, together with the partition 〈a2,12〉. Note that these are totally ordered by the
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partition conditions partition conditions
1 〈a4〉 — 22 〈a, a+1, b, b+1〉 b − a > 2, c − b > 2
2 〈a3,1〉 — 23 〈a, b2,1〉 b − a = 1, c − b > 1
3 〈a22〉 e > 3 24 〈a, b2, b+1〉 b − a = 1, c − b > 2
4 〈a3, a+1〉 b − a > 2 25 〈a3, c〉 e − c > 1
5 〈a2,1, a+1〉 b − a > 2 26 〈a2,1, c〉 e − c > 1
6 〈a2, a+12〉 b − a > 2 27 〈a2, a+1, c〉 b − a > 2, e − c > 1
7 〈a12 , a+112〉 b − a > 2, a − b + e > 2 28 〈a12 , a+1, c〉 b − a > 2, e − c > 1
8 〈a2, a+1, a+2〉 b − a > 3 29 〈a, a+1, a+2, c〉 b − a > 3, e − c > 1
9 〈a12 , a+1, a+2〉 b − a > 3 30 〈a2, b, c〉 c − b > 1, e − c > 1
10 〈a, a+1, a+2, a+3〉 b − a > 4 31 〈a, a+1, b, c〉 b − a > 2, c − b > 1, e − c > 1
11 〈a3, b〉 c − b > 1 32 〈a, b2, c〉 b − a = 1, c − b > 1, e − c > 1
12 〈a2,1, b〉 c − b > 1 33 〈a2, c2〉 c − b = 0, e − c > 1
13 〈a2, a+1, b〉 b − a > 2, c − b > 1 34 〈a2, c, c+1〉 e − c > 2
14 〈a12 , a+1, b〉 b − a > 2, c − b > 1 35 〈a, a+1, c2〉 b − a > 2, c − b = 0, e − c > 1
15 〈a, a+1, a+2, b〉 b − a > 3, c − b > 1 36 〈a, a+1, c, c+1〉 b − a > 2, e − c > 2
16 〈a2, b2〉 b − a = 1, c − b > 1 37 〈a, c3〉 b − a = 1, c − b = 0, e − c > 1
17 〈a2, b12〉 c − b > 1 38 〈0, a2, c〉 a > 2, e − c > 1
18 〈a2, b, b+1〉 c − b > 2 39 〈0, a, a+1, c〉 a > 2, b − a > 2, e − c > 1
19 〈a12 , b2〉 b − a = 1, c − b > 1 40 〈02, a2〉 a > 2, e − c = 0
20 〈a, a+1, b2〉 b − a = 2, c − b > 1 41 〈02, a, a+1〉 a > 2, b − a > 2, e − c = 0
21 〈a, a+1, b12〉 b − a > 2, c − b > 1

Table 6.1

dominance order, with the least dominant being

λ0 =



〈0, a13〉 (a > 2)

〈a13 , c〉 (a = 1, c < e)

〈a13 , b〉 (a = 1, b < c = e)

〈a13 , a+1〉 (a = 1, a + 1 < b = e)

〈a2,12〉 (e = 2).

As before, we also assume that µ Q λ and µ1 > λ1, and this implies µ Q λ0 and µ1 > λ0
1. We can

also assume that the pair (λ, µ) is not lowerable. Given all these assumptions, we find that µ must be one
of the partitions listed in Table 6.1.

6.1 The case c − b > 0, e − c > 0

The situation where b < c < e is straightforward to deal with.

1. Define a = f3a−b−c−1 . . . f2a−b+1f2a−b. If µ is in any of cases 1–10, 25–32, 34, 36, 38 or 39, then
(a(λ), a(µ)) is defined and lowerable, so that adjλµ = 0.
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2. Define b = f3a−b−c+1 . . . f2a−c−1f2a−cf3a−b−c−1f3a−b−c−2 . . . f2a−b−c. If µ is in any of cases 11–24,
then (b(λ), b(µ)) is defined and lowerable, and so we have adjλµ = 0.

This deals with all possible µ.

6.2 The case c − b > 0, e − c = 0

For the situation where b < c = e, we begin with two partial functions.

1. Let a = f3a−b−1 . . . f2a−b+1f2a−b. If µ is in one of cases 1–14, 17–19, 40 or 41, then (a(λ), a(µ))
is defined and lowerable, so that adjλµ = 0. The same applies in cases 15, 16 and 20 provided
e − b > 2, and in cases 22 and 24 as long as e − b > 3.

2. Define b = f3a−b+1 . . . f2a−1f2a. If µ is in case 21 or 23 (b(λ), b(µ)) is defined and lowerable.

Assuming that µ is not one of the partitions dealt with in 1 or 2, we must have e − b 6 2, and

µ =



〈a, a+1, b, b+1〉 (e − b = 2, b − a > 2)

〈a, b2, b+1〉 (e − b = 2, b − a = 1)

〈a, a+1, a+2, b〉 (e − b = 1, b − a > 3)

〈a, a+1, b2〉 (e − b = 1, b − a = 2)

〈a2, b2〉 (e − b = 1, b − a = 1).

Now we add the assumptions that µ� Q λ� and µ�1 > λ
�
1. To make use of these conditions, we compute

µ� =


〈ǎ, ǎ+1, ǎ+2, ǎ+3〉 (a > 4)

〈ǎ2, ǎ+1, ǎ+2〉 (a = 3)

〈ǎ2, ǎ+12〉 (a = 2)

〈ǎ4〉 (a = 1),

where the partitions on the right are written in the 〈4b−a, 6a, 4e−b〉 notation, and we write ǎ = b − a. We
also compute λ� for each exceptional λ; the possibilities are listed in Table 6.2.

λ conditions λ�

〈a2,12〉 b − a > 2 〈0, ǎ13〉

〈a2,12〉 b − a = 1 〈ǎ13 , b〉
〈a13 , a+1〉 b − a > 2 〈ǎ13 , b〉
〈a13 , i〉 a + 2 6 i 6 b − 1 〈ǎ13 , b−i〉
〈a13 , b〉 a > 2 〈ǎ13 , ǎ+1〉
〈a13 , b〉 a = 1 〈ǎ2,12〉

〈a13 , e−1〉 e − b = 2 〈ǎ13 , e−1〉
〈0, a13〉 a > 2 〈ǎ2,12〉

〈i, a13〉 1 6 i 6 a − 2 〈ǎ13 , b−i〉

Table 6.2
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Armed with this, we can calculate all possible λ satisfying our assumptions. There are between two
and four of these, depending on the values of a and b, and we label them as follows.

λ1 = 〈a13 , a+1〉 (if e − b = 1 and b − a > 2),

λ2 = 〈a13 , b〉,

λ3 = 〈a−2, a13〉 (if a > 2),

λ4 = 〈a13 , b+1〉 (if e − b = 2).

First we note that

λ1 ∼ 〈a12 , a+12 | 4, 7, 10, . . . , 3e + 1〉,

λ2 ∼ 〈a2,1, a+e−b | 4, 7, 10, . . . , 3e + 1〉,

i.e. λ1 (if it is defined) and λ2 induce semi-simply to a Rouquier block, so we have adjλµ = 0 if λ = λ1

or λ2.
To deal with λ3, we induce both λ3 and µ up to the block with the 〈4a, 5, 8e−a−1〉 notation. We find

that
(λ3, µ) ∼ (λ̄3, µ̄),

where

λ̄3 = 〈a−2, a12 , a+e−b | 4a, 5, 8e−a−1〉,

µ̄ = 〈a4 | 4a, 5, 8e−a−1〉.

We have µ̄ S λ̄3, so that adjλ̄3µ̄ = 0, and hence adjλ3µ = 0.
We are left only with λ4, if e− b = 2. We induce both λ4 and µ up to the block with the 〈4a, 52, 6b−a〉

notation. We have
(λ4, µ) ∼ (λ̄4, µ̄),

where

λ̄4 = 〈a12 , a+12 | 4a, 52, 6b−a〉,

µ̄ = 〈a2, a+12 | 4a, 52, 6b−a〉.

We have λ̄4
1 = µ̄1, and so by Corollary 2.14 we have adjλ4µ = adjλ̄4µ̄ = 0.

6.3 The case c − b = 0, e − c > 0

In the case where b = c < e, we know by the results of §6.2 that Proposition 6.1 holds for the
conjugate block B]. So we may apply Proposition 2.20, and we find that Proposition 6.1 holds for B.

6.4 The case c − b = 0, e − c = 0

Now we consider the case where b = c = e.

1. Suppose e − a > 2, and let a = f3a−1 . . . f2a+1f2a. If µ is in one of cases 1–4, then (a(λ), a(µ)) is
defined and lowerable, so that adjλµ = 0. The same applies in cases 5 and 6 if e − a > 3, and case
8 if e − a > 4.
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2. Now suppose a > 2, and define b = f3a+1 . . . f2a−1f2a. If µ is in case 40 or 41 we find that
(b(λ), b(µ)) is defined and lowerable, so that adjλµ = 0.

Assuming that µ does not fall into any of these cases, we are left with three possibilities for µ, which we
label µ1, µ2, µ3 as follows:

µ1 =


〈a, a+1, a+2, a+3〉 (e − a > 4)

〈a2, a+1, a+2〉 (e − a = 3)

〈a2, a+12〉 (e − a = 2)

〈a4〉 (e − a = 1);

µ2 =


〈a12 , a+1, a+2〉 (e − a > 3)

〈a2,1, a+1〉 (e − a = 2)

〈a3,1〉 (e − a = 1);

µ3 =

〈a12 , a+112〉 (e − a > 2)

〈a22〉 (e − a = 1).

Using the Mullineux map, we find

µ1� =


〈â, â+1, â+2, â+3〉 (a > 4)

〈â2, â+1, â+2〉 (a = 3)

〈â2, â+12〉 (a = 2)

〈â4〉 (a = 1),

µ2� =


〈â12 , â+1, â+2〉 (a > 3)

〈â2,1, â+1〉 (a = 2)

〈â3,1〉 (a = 1),

µ3� =

〈â12 , â+112〉 (a > 2)

〈â22〉 (a = 1),

where the partitions on the right are written with the 〈4e−a, 6a〉 notation, and we put â = e − a. We also
calculate λ� for each of the exceptional partitions λ, listing the various cases in Table 6.3. Now for each
µ can calculate all possible λ for which µ Q λ, µ� Q λ�, µ1 > λ1 and µ�1 > λ

�
1.

If µ = µ1, there are at most three such λ, which we label as follows:

λ1 =

〈a13 , a+1〉 (e − a > 2)

〈a2,12〉 (e − a = 1);

λ2 = 〈a−2, a13〉 (a > 2);

λ3 =

〈a13 , a+2〉 (e − a > 3)

〈a2,12〉 (e − a = 2).

(We leave λ2 undefined if a = 1, and we leave λ3 undefined if e − a = 1.)
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λ conditions λ�

〈a2,12〉 a 6 e − 2 〈0, â13〉

〈a2,12〉 2 6 a = e − 1 〈â13 , â+1〉
〈a2,12〉 e = 2 〈â2,12〉

〈a13 , i〉 a + 2 6 i 6 e − 1 〈â13 , e−i〉
〈a13 , a+1〉 2 6 a 6 e − 2 〈â13 , â+1〉
〈a13 , a+1〉 1 = a 6 e − 2 〈â2,12〉

〈i, a13〉 1 6 i 6 a − 2 〈â13 , e−i〉
〈0, a13〉 2 6 a 〈â2,12〉

Table 6.3

We have
λ1 ∼ 〈a2,12 | 4, 7, 10, . . . , 3e + 1〉,

i.e. λ1 induces semi-simply to a Rouquier block, so adjλµ = 0 if λ = λ1, by Proposition 2.22.
Now assume a > 2 and consider λ2. We induce both λ2 and µ1 up to the block with the 〈4a, 6, 9e−a−1〉

notation. We find that
(λ2, µ1) ∼ (λ̄2, µ̄1),

where

λ̄2 = 〈a−2, a13 | 4a, 6, 9e−a−1〉,

µ̄1 = 〈a4 | 4a, 6, 9e−a−1〉.

We use the Jantzen–Schaper formula and Proposition 2.10 to show that [S λ̄2
: Dµ̄1

] = 0, independently
of characteristic, which implies that adjλ2µ1 = 0. The table of Jantzen–Schaper coefficients for those
partitions ν, ξ with µ̄1 Q ν B ξ Q λ̄2 is as follows.

〈a
4〉

〈a
−

1,
a 3
〉

〈a
−

2,
a 3
〉

〈a
−

1 2
,a

2〉

〈a
−

2 2
,a

2〉

〈a
−

1 4
〉

〈a
−

2 4
〉

〈a
−

1 3
,a
〉

〈a
−

2 3
,a
〉

〈a
−

1 2
,a

12
〉

〈a
−

2 2
,a

12
〉

〈a
−

1,
a 1

3
〉

〈a
−

2,
a 1

3
〉

[S ν : Dµ̄]
〈a4〉 · · · · · · · · · · · · · 1

〈a−1, a3〉 1 · · · · · · · · · · · · 1
〈a−2, a3〉 −1 1 · · · · · · · · · · · 0
〈a−12, a2〉 −1 1 · · · · · · · · · · · 0
〈a−22, a2〉 1 0 1 1 · · · · · · · · · 1
〈a−14〉 1 −1 · 1 · · · · · · · · · 0
〈a−24〉 −1 0 −1 0 1 1 · · · · · · · 0
〈a−13, a〉 −1 1 · −1 · 1 · · · · · · · 0
〈a−23, a〉 1 0 1 0 −1 0 1 1 · · · · · 0
〈a−12, a12〉 0 0 · 0 · 1 · 1 · · · · · 0
〈a−22, a12〉 0 0 0 0 0 0 1 0 1 1 · · · 0
〈a−1, a13〉 0 0 · 0 · 1 · 1 · 1 · · · 0
〈a−2, a13〉 0 0 0 0 0 0 1 0 1 0 1 1 · 0
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We deduce that adjλ̄2µ̄1 = 0, and hence adjλµ = 0 when λ = λ2 and µ = µ1.
We are left with λ3, if e − a > 2. From Table 6.3 we have

(λ3)� = 〈â−2, â13 | 4â, 6e−â〉,

so that (λ3)� is the partition of the form λ2 in the conjugate block B]. So using the above result for λ2,
we deduce adjλ�µ� = 0, and hence adjλµ = 0 when λ = λ3 and µ = µ1.

Now we look at the case µ = µ2. Here, the only exceptional partition λ satisfying µ Q λ, µ� Q λ�,
µ1 > λ1 and µ�1 > λ�1 is the partition λ1 given above. But as we have seen, λ1 induces semi-simply to a
Rouquier block, and so adjλµ = 0 when λ = λ1 and µ = µ2.

Finally, we look at the case µ = µ3. Here the situation is even simpler; there are no exceptional λ
satisfying the given conditions.

7 Blocks forming two [4 : 1]-pairs I

In this section and the next, we prove the following proposition.

Proposition 7.1. Suppose that A1 and A2 are weight 4 blocks ofHn−1, and B is a weight 4 block ofHn.
Suppose that both A1 and A2 form [4 : 1]-pairs with B, and that there is no block other than A1 or A2

forming a [4 : κ]-pair with B, for any κ. If James’s Conjecture holds for A1 and A2, then it holds for B.

The conditions give two distinct types of block B. In this section we suppose that the core of B has
the form ((a − b + c)d−c, ab−a), where 0 < a < b < c < d 6 e. B may be displayed on an abacus with the
〈4a, 5b−a, 4c−b, 5d−c, 4d−e〉 notation.

Suppose λ and µ are e-regular partitions in B. By Proposition 2.18 and the hypothesis on A1 and A2,
we know that adjλµ = δλµ unless λ is the ‘doubly exceptional’ partition 〈a12 , c12〉. So we assume that
this is the case. We also assume as usual that µ Q λ, µ1 > λ1 and the pair (λ, µ) is not lowerable. The
remaining possibilities for µ are listed in Table 7.1.

7.1 The case e − d > 0

In the case where e > d, we can show that adjλµ = 0 by using three different partial functions.

1. Consider a = fa−b+2c−d−1 . . . fa+c−d+1fa+c−d. In cases 20–29 we find that (a(λ), a(µ)) is defined and
lowerable, and so we have adjλµ = 0 by Proposition 2.19.

2. Now define b = f2a−b+c−d−1 . . . fa−b+c−d+1fa−b+c−d. We find that in cases 1–19, 30–33 and 41
(b(λ), b(µ)) is defined and lowerable, and so adjλµ = 0.

3. Finally, let c = fa−b+2c−d+1 . . . fa−b+c−1fa−b+c. We find that in cases 34–40 and 42–48 (c(λ), c(µ)) is
defined and lowerable, so that adjλµ = 0.

This deals with every possible µ.
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partition conditions partition conditions
1 〈a4〉 — 25 〈c4〉 —
2 〈a3, a+1〉 b − a > 2 26 〈c3, c+1〉 d − c > 2
3 〈a2, a+12〉 b − a > 2 27 〈c2, c+12〉 d − c > 2
4 〈a2, a+1, a+2〉 b − a > 3 28 〈c2, c+1, c+2〉 d − c > 3
5 〈a3, b〉 — 29 〈c, c+1, c+2, c+3〉 d − c > 4
6 〈a2, a+1, b〉 b − a > 2 30 〈a3, d〉 e − d > 1
7 〈a2, b2〉 b − a = 1 31 〈a2, a+1, d〉 b − a > 2, e − d > 1
8 〈a3, c〉 — 32 〈a2, b, d〉 e − d > 1
9 〈a2, a+1, c〉 b − a > 2 33 〈a2, c, d〉 e − d > 1
10 〈a2, b, c〉 — 34 〈a, c2, d〉 e − d > 1
11 〈a2, c2〉 — 35 〈a, c, c+1, d〉 d − c > 2, e − d > 1
12 〈a2, c, c+1〉 d − c > 2 36 〈b, c2, d〉 e − d > 1
13 〈a, a+1, c2〉 b − a > 2 37 〈b, c, c+1, d〉 d − c > 2, e − d > 1
14 〈a, a+1, c, c+1〉 b − a > 2, d − c > 2 38 〈c3, d〉 e − d > 1
15 〈a, b, c2〉 — 39 〈c2, c+1, d〉 d − c > 2, e − d > 1
16 〈a, b, c, c+1〉 d − c > 2 40 〈c, c+1, c+2, d〉 d − c > 3, e − d > 1
17 〈a, c3〉 — 41 〈a2, d, d+1〉 e − d > 2
18 〈a, c2, c+1〉 d − c > 2 42 〈a, c, d2〉 d − c = 1, e − d > 1
19 〈a, c, c+1, c+2〉 d − c > 3 43 〈b, c, d2〉 d − c = 1, e − d > 1
20 〈b, c3〉 — 44 〈c2, d2〉 d − c = 1, e − d > 1
21 〈b, c2,1〉 c − b = 1 45 〈c2, d, d+1〉 e − d > 2
22 〈b, c2, c+1〉 d − c > 2 46 〈c, c+1, d2〉 d − c = 2, e − d > 1
23 〈b, c12 , c+1〉 c − b = 1, d − c > 2 47 〈c, c+1, d, d+1〉 d − c > 2, e − d > 2
24 〈b, c, c+1, c+2〉 d − c > 3 48 〈c, d2, d+1〉 d − c = 1, e − d > 2

Table 7.1

7.2 The case e − d = 0

The case where d = e is rather more complicated.

1. As above, we let a = fa+2c−b−e−1 . . . fa+c−e+1fa+c−e. In cases 10, 13, 15–18 and 20–29 we find that
(a(λ), a(µ)) is defined and lowerable, and so we have adjλµ = 0. This also applies in cases 9 and
14 if b − a > 3, and in cases 11, 12 and 19 if b − a > 2.

2. We let b = f2a+c−b−e−1 . . . fa+c−b−e+1fa+c−b−e. This deals with cases 1–8. It also deals with cases 9
and 11 if e − c > 2, and with case 12 if e − c > 3.

Now assume that µ does not fall into one of the cases dealt with above. Then we must have b−a 6 2
and

µ =



〈a, c, c+1, c+2〉 (b − a = 1, e − c > 3)

〈a2, c, c+1〉 (b − a = 1, e − c = 2)

〈a2, c2〉 (b − a = 1, e − c = 1)

〈a, a+1, c, c+1〉 (b − a = 2, e − c > 2)

〈a2, a+1, c〉 (b − a = 2, e − c = 1).
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Now the conjugate block B] may be displayed on an abacus with the 〈4e−c, 5c−b, 4b−a, 5a〉 notation.
If c − b > 3, then we have adjνξ = 0 for all ξ, ν in B], by the above arguments. Hence, using Proposition
2.20, we may assume that c−b 6 2. We also assume (replacing B with B] if necessary) that c−b > b−a.

Suppose that b − a = 1, and induce λ and µ to the block with the 〈4c−1, 6, 9e−c〉 notation. We get

(λ, µ) ∼ (λ̄, µ̄),

where

λ̄ = 〈a4 | 4c−1, 6, 9e−c〉,

µ̄ = 〈c−14 | 4c−1, 6, 9e−c〉.

To show that adjλ̄µ̄ = 0 (and hence that adjλµ = 0), we apply the Jantzen–Schaper formula to
determine that [S λ̄ : Dµ̄] = 0, independently of the underlying characteristic. There are two tables of
Jantzen-Schaper coefficients, according to the value of c − b. If c − b = 2, we have

〈c
−

1 4
〉

〈a
+

1,
c−

1 3
〉

〈a
,c
−

1 3
〉

〈a
+

1 2
,c
−

1 2
〉

〈a
2,

c−
1 2
〉

〈a
+

1 4
〉

〈a
4〉

[S ν : Dµ̄]
〈c−14〉 · · · · · · · 1

〈a+1, c−13〉 1 · · · · · · 1
〈a, c−13〉 −1 1 · · · · · 0
〈a+12, c−12〉 −1 1 · · · · · 0
〈a2, c−12〉 1 0 1 1 · · · 1
〈a+14〉 1 −1 · 1 · · · 0
〈a4〉 −1 0 −1 0 1 1 · 0

,

while if c − b = 1, we have

〈c
−

1 4
〉

〈a
,c
−

1 3
〉

〈a
2,

c−
1 2
〉

〈a
4〉

[S ν : Dµ̄]
〈c−14〉 · · · · 1
〈a, c−13〉 1 · · · 1
〈a2, c−12〉 −1 1 · · 0
〈a4〉 1 −1 1 · 0

.

Next we suppose that b − a = 2 (and hence, by our assumptions, that c − b = 2). We induce to the
block with the 〈4a, 52, 72, 8e−c〉 notation, and we find that

(λ, µ) ∼ (λ̄, µ̄),

where

λ̄ = 〈a4 | 4a, 52, 72, 8e−c〉,

µ̄ = 〈a+22, a+32 | 4a, 52, 72, 8e−c〉.

We have adjλ̄µ̄ = 0 by Proposition 3.1, and hence adjλµ = 0.
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8 Blocks forming two [4 : 1]-pairs II

In this section, we complete the proof of Proposition 7.1, by considering a weight 4 block B whose
core has the form ((a + b − d + e)c−b, ad−a) for some 0 < a < b < c 6 d 6 e. B may be displayed on an
abacus with the 〈4a, 5b−a, 6c−b, 5d−c, 4e−d〉 notation.

Taking e-regular partitions λ and µ in B, we know that adjλµ = δλµ unless λ is exceptional for both
the [4 : 1]-pairs formed by B. So we assume that b−a > 2 and that λ is the ‘doubly exceptional’ partition
〈a12 , b12〉.

As usual, we also assume that µ Q λ, µ1 > λ1 and that (λ, µ) is not lowerable. The remaining
possibilities for µ are listed in Table 8.1.

partition conditions partition conditions
1 〈a4〉 — 22 〈a, b, c2〉 c − b = 1, d − c > 1
2 〈a3, a+1〉 — 23 〈b2, c2〉 c − b = 1, d − c > 1
3 〈a3, b〉 — 24 〈b2, c12〉 d − c > 1
4 〈a2, b2〉 — 25 〈b2, c, c+1〉 d − c > 2
5 〈a2, b, b+1〉 c − b > 2 26 〈b, b+1, c2〉 c − b = 2, d − c > 1
6 〈a, a+1, b2〉 — 27 〈b, b+1, c12〉 c − b > 2, d − c > 1
7 〈a, a+1, b, b+1〉 c − b > 2 28 〈b, b+1, c, c+1〉 c − b > 2, d − c > 2
8 〈a, b3〉 — 29 〈b, c2,1〉 c − b = 1, d − c > 1
9 〈a, b2, b+1〉 c − b > 2 30 〈b, c2, c+1〉 c − b = 1, d − c > 2
10 〈a, b, b+1, b+2〉 c − b > 3 31 〈a3, d〉 e − d > 1
11 〈b4〉 — 32 〈a, b2, d〉 e − d > 1
12 〈b3, b+1〉 c − b > 2 33 〈a, b, b+1, d〉 c − b > 2, e − d > 1
13 〈b2, b+12〉 c − b > 2 34 〈b3, d〉 e − d > 1
14 〈b2, b+1, b+2〉 c − b > 3 35 〈b2, b+1, d〉 c − b > 2, e − d > 1
15 〈b, b+1, b+2, b+3〉 c − b > 4 36 〈b, b+1, b+2, d〉 c − b > 3, e − d > 1
16 〈a3, c〉 d − c > 1 37 〈b2, c, d〉 d − c > 1, e − d > 1
17 〈a, b2, c〉 d − c > 1 38 〈b, b+1, c, d〉 c − b > 2, d − c > 1, e − d > 1
18 〈a, b, b+1, c〉 c − b > 2, d − c > 1 39 〈b, c2, d〉 c − b = 1, d − c > 1, e − d > 1
19 〈b3, c〉 d − c > 1 40 〈b2, d2〉 d − c = 0, e − d > 1
20 〈b2, b+1, c〉 c − b > 2, d − c > 1 41 〈b, b+1, d2〉 c − b > 2, d − c = 0, e − d > 1
21 〈b, b+1, b+2, c〉 c − b > 3, d − c > 1 42 〈b, d3〉 c − b = 1, d − c = 0, e − d > 1

Table 8.1

8.1 The case d − c > 0, e − d > 0

The case where c < d < e can be dealt with using three partial functions.

1. Define a = f2a+b−c−d−1 . . . fa+b−c−d+1fa+b−c−d. In cases 1–10, 16–18 and 31 the pair (a(λ), a(µ)) is
defined and lowerable, and so adjλµ = 0.

2. Define b = fa+2b−c−d−1 . . . fa+b−c+1fa+b−c. In cases 11–15 and 32–39 we find that (b(λ), b(µ)) is
defined and lowerable.
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3. Finally, let c = fa+2b−c−d+1 . . . fa+b−d−1fa+b−d. We find in cases 19–30 that (c(λ), c(µ)) is defined
and lowerable, and so adjλµ = 0.

8.2 The case d − c = 0, e − d > 0

Now we consider the case where c = d < e. As usual, we begin by trying to induce Dλ and Dµ to
get a lowerable pair.

1. Define a = f2a+b−2d−1 . . . fa+b−2d+1fa+b−2d. In cases 1–10 (a(λ), a(µ)) is defined and lowerable, so
that adjλµ = 0.

2. Now suppose d − b > 2 and define b = fa+2b−2d−1 . . . fa+b−d+1fa+b−d. We find that (b(λ), b(µ)) is
defined and lowerable in cases 11, 12, 13 (provided d − b > 3) and 14 (provided d − b > 4); so
adjλµ = 0 in these cases.

3. Next, define c = fa+2b−2d+1 . . . fa+b−d−1fa+b−d. In cases 40–42 (c(λ), c(µ)) is defined and lowerable,
so that adjλµ = 0.

4. Finally, define d = f2a+b−2d+1 . . . fa+b−d−1fa+b−d. In cases 31–36 (d(λ), d(µ)) is defined and lower-
able.

We are left with just one partition, namely

µ =


〈b, b+1, b+2, b+3〉 (d − b > 4)

〈b2, b+1, b+2〉 (d − b = 3)

〈b2, b+12〉 (d − b = 2)

〈b4〉 (d − b = 1).

Using the Mullineux map we find that

µ� =


〈b̌, b̌+1, b̌+2, b̌+3〉 (b − a > 4)

〈b̌, b̌+1, b̌+2, d〉 (b − a = 3)

〈b̌, b̌+1, d, d+1〉 (b − a = 2, e − d > 2)

〈b̌2, b̌+1, d〉 (b − a = 2, e − d = 1),

where the partitions on the right are written with the 〈4d−b, 5b−a, 6a, 5e−d〉 notation, and b̌ = d − b. We
also find

λ� = 〈b̌12 , (d−a)12〉.

So µ� S λ�, which implies that adjλµ = 0 by Corollary 2.8 and Proposition 2.20.

8.3 The case d − c > 0, e − d = 0

In the case where c < d = e, we examine the conjugate block B]. This block has the 〈4c−b, 5b−a, 6a, 4e−c〉

notation, and so by the results of Section 8.2 we know that James’s Conjecture holds for B]. Hence it
holds for B.
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8.4 The case d − c = 0, e − d = 0

Now we consider the case where c = d = e.

1. Define a = f2a+b−1 . . . fa+b+1fa+b. In cases 1 and 2, and also case 3 if e − b > 2, (a(λ), a(µ)) is
defined and lowerable, so that adjλµ = 0.

2. If e − b > 2, define b = fa+2b−1 . . . fa+b+1fa+b. In cases 4, 6, 8, 9 (if e − b > 3), 11, 12, 13 (if
e − b > 3) and 14 (if e − b > 4) (b(λ), b(µ)) is defined and lowerable.

Assuming that µ does not fit into one of these cases, there are four or five possible possibilities for
µ, which we label as follows (leaving µ1 undefined if e − b > 1):

µ1 = 〈a2, b2〉 (e − b = 1);

µ2 =


〈b, b+1, b+2, b+3〉 (e − b > 4)

〈b2, b+1, b+2〉 (e − b = 3)

〈b2, b+12〉 (e − b = 2)

〈b4〉 (e − b = 1);

µ3 =


〈a, b, b+1, b+2〉 (e − b > 3)

〈a, b2, b+1〉 (e − b = 2)

〈a, b3〉 (e − b = 1);

µ4 =

〈a2, b, b+1〉 (e − b > 2)

〈a3, b〉 (e − b = 1);

µ5 =

〈a, a+1, b, b+1〉 (e − b > 2)

〈a, a+1, b2〉 (e − b = 1).

We eliminate some of these cases by making our usual assumption that µ�1 > λ
�
1. We calculate

λ� = 〈b̂12 , â12〉,

(µ1)� = 〈02, 12〉,

(µ2)� =


〈b̂, b̂+1, b̂+2, b̂+3〉 (b − a > 4)

〈b̂2, b̂+1, b̂+2〉 (b − a = 3)

〈b̂2, b̂+12〉 (b − a = 2),

(µ3)� =

〈b̂, b̂+1, b̂+2, â〉 (b − a > 3)

〈b̂, b̂+1, â12〉 (b − a = 2),

where all the partitions on the right are written with the 〈4e−b, 5b−a, 6a〉 notation, and we put â = e − a,
b̂ = e − b. We see that (µi)�1 6 λ

�
1 for i = 1, 2, 3, so we cannot have µ = µ1, µ2 or µ3.

We are left to consider the cases µ = µ4 and µ = µ5. To deal with these, we induce to the block with
the 〈4a, 5b−a, 8, 9e−b−1〉 notation. We have

(λ, µ4, µ5) ∼ (λ̄, µ̄4, µ̄5),
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where

λ̄ = 〈a2,1, b | 4a, 5b−a, 8, 9e−b−1〉,

µ̄4 = 〈a4 | 4a, 5b−a, 8, 9e−b−1〉,

µ̄5 = 〈a, a+1, b2 | 4a, 5b−a, 8, 9e−b−1〉.

We have µ̄4 S λ̄, so adjλµ4 = adjλ̄µ̄4 = 0. To show that adjλ̄µ̄5 = 0, we use the Jantzen–Schaper formula
to show that [S λ̄ : Dµ̄5

] = 1, independently of the underlying characteristic. First we need the following
lemma.

Lemma 8.1. Define µ̄5 as above, and

ν = 〈a+12,1, b | 4a, 5b−a, 8, 9e−b−1〉.

Then [S ν : Dµ̄5
] 6 1.

Proof. We have

µ̄5 = (a + 5b + 2, (a + 4b + 2)e−b−1, (a + 3b + 1)e−b−1, (a + 2b)e−b, (a + b)e−b, (2a + 2)2, (a + 2)e−a−2),

ν = ((a + 4b + 1)e−b, (a + 3b + 1)e−b−1, (a + 2b)e−b, 2a + b + 2, (a + b + 1)e−b, (a + 1)e−a, 1e−a−2).

Hence
µ̄5

1 + · · · + µ̄5
4(e−b) = (4a + 10b + 4)(e − b) + a − 2b + 1 = ν1 + · · · + ν4(e−b).

So we may apply Theorem 2.13, and we find that [S ν : Dµ̄] is a product of decomposition numbers for
blocks of weight 1 or 2, and so is at most 1 by Theorem 2.5. �

Now we may perform the calculation with the Jantzen–Schaper formula. The table of Jantzen–
Schaper coefficients for partitions ν such that µ̄5 Q ν Q λ̄ is as follows, and the Jantzen–Schaper
formula together with Proposition 2.10 and Lemma 8.1 gives [S λ̄ : Dµ̄5

] = 1, so that adjλµ5 = adjλ̄µ̄5 = 0.

〈a
,a

+
1,

b 2
〉

〈a
+

1 1
2
,b

2〉

〈a
12
,b

2〉

〈a
,a

+
1 2
,b
〉

〈a
+

1 2
,1
,b
〉

〈a
2,

a+
1,

b〉

〈a
2,

1,
b〉

[S ν : Dµ̄5
]

〈a, a+1, b2〉 · · · · · · · 1
〈a+112 , b2〉 1 · · · · · · 1
〈a12 , b2〉 −1 1 · · · · · 0
〈a, a+12, b〉 1 · · · · · · 1
〈a+12,1, b〉 0 1 · 1 · · · 1
〈a2, a+1, b〉 −1 · · 1 · · · 0
〈a2,1, b〉 0 0 1 0 1 1 · 1

9 Blocks forming a [4 : 3]-pair

In this section, we complete the proof of Theorem 2.6 by proving the following result.
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Proposition 9.1. Suppose A and B are weight 4 blocks of Hn−3 and Hn respectively, forming a [4 : 3]-
pair. Suppose that there is no block other than A forming a [4 : κ]-pair with B, for any κ. If James’s
Conjecture holds for A, then it holds for B.

The conditions of the proposition imply that the core of B has the form ((3a − c − d + 2e)b−a, (2a −
d + e)c−a, ad−a) for some 0 < a < b 6 c 6 d 6 e. B can be displayed on an abacus with the
〈4a, 7b−a, 6c−b, 5d−c, 4e−d〉 notation.

If λ and µ are e-regular partitions in B, then we have adjλµ = δλµ by Proposition 2.18 except when λ
is the unique exceptional partition for the [4 : 3]-pair (A, B), namely λ = 〈a14〉. But in this case we can
check that λ always induces semi-simply to a Rouquier block; in fact we have

λ ∼



〈a14 | 4, 7, 10, . . . , 3e + 1〉 (b = e)

〈a13 , a+e−b | 4, 7, 10, . . . , 3e + 1〉 (b < c = e)

〈a12 , a+e−c12 | 4, 7, 10, . . . , 3e + 1〉 (b = c < d = e)

〈a, a+e−d13 | 4, 7, 10, . . . , 3e + 1〉 (b = d < e)

〈a12 , a+e−c, a+e−b | 4, 7, 10, . . . , 3e + 1〉 (b < c < d = e)

〈a, a+e−d12 , a+e−b | 4, 7, 10, . . . , 3e + 1〉 (b < c = d < e)

〈a, a+e−d, a+e−c12 | 4, 7, 10, . . . , 3e + 1〉 (b = c < d < e)

〈a, a+e−d, a+e−c, a+e−b | 4, 7, 10, . . . , 3e + 1〉 (b < c < d < e).

Hence adjλµ = δλµ by Proposition 2.22.
Given the discussion in §2.13 and the results of Sections 4–9, the proof of Theorem 2.6 is now

complete.

A Induction and restriction of simple modules

A.1 Induction and restriction to blocks of weight 3

(See §2.9 for an explanation.)

i−1 ippp pppu uu uu uu u
i−1 ippp pppu uu uu uu u

i−1 ippp pppu uu uuu uu
i−1 ippp pppu uu uu uu

u

i−1 ippp pppu uu uuu uu

i−1 ippp pppu uuu uu uu
i−1 ippp pppu uu uu uu u

i−1 ippp pppu uu uu uu u
i−1 ippp pppu uu uu uu

u
i−1 ippp pppu uu uuu u

u

i−1 ippp pppu uu uuu uu

i−1 ippp pppu uuu uu uu

i−1 ippp pppuu uu uu uu
i−1 ippp pppu uu uu uu u

i−1 ippp pppu uu uu uu u

i−1 ippp pppu uuu uuu u
i−1 ippp pppu uu uuuu u

i−1 ippp pppu uu uu uuu
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A.2 Restriction to blocks of weight less than 3, and exceptional partitions for [4 : κ]-
pairs

(See §2.9 and §2.10 for an explanation.)

κ = 1

i−1 ippp pppu uu uuu u
i−1 ippp pppu uu uuu u

i−1 ippp pppu uuu uu u
i−1 ippp pppu uu uuu

u

i−1 ippp pppu uuu uu u

i−1 ippp pppu uuuu uu
i−1 ippp pppuu uu uu u

i−1 ippp pppu uu uuu u
κ = 2

i−1 ippp pppu uuuu u
i−1 ippp pppu uuuu u

i−1 ippp pppuu uuu u κ = 3

i−1 ippp pppuuuu u

A.3 Induction to blocks of weight less than 3, and exceptional partitions for [4 : κ]-pairs

(See §2.9 and §2.10 for an explanation.)

κ = 1

i−1 ippp pppu uu uu uu
i−1 ippp pppu uuu uuu

i−1 ippp pppu uu uu uu

i−1 ippp pppuu uu uuu
i−1 ippp pppu uuu uuu

i−1 ippp pppu uu uu uu

i−1 ippp pppu uu uu u
u

i−1 ippp pppu uu uu uu

κ = 2

i−1 ippp pppu uu uuu
i−1 ippp pppuu uuuu

i−1 ippp pppu uu uuu
κ = 3

i−1 ippp pppu uuuu

A.4 Induction and restriction of non-exceptional simple modules in a [4 : κ]-pair

(See §2.10 for an explanation.)



James’s Conjecture holds for weight four blocks of Iwahori–Hecke algebras 37

κ = 1

µppp pppu uu uu uu ↔

Φ(µ)ppp pppu uu uuuu
µppp pppu uu uu uu
↔

Φ(µ)ppp pppu uu uuuu

µppp pppu uuu uuu ↔

Φ(µ)ppp pppu uuu uuu
µppp pppu uu uu u
u
↔

Φ(µ)ppp pppu uu uuu
u

µppp pppu uu uu uu
↔

Φ(µ)ppp pppu uu uuuu

µppp pppu uuu uuu
↔

Φ(µ)ppp pppu uuu uuu

µppp pppu uu uu uu ↔

Φ(µ)ppp pppu uuuu uu
µppp pppuu uu uuu ↔

Φ(µ)ppp pppuu uu uuu
µppp pppu uu uuuu ↔

Φ(µ)ppp pppu uu uuu u
µppp pppu uu uuuu
↔

Φ(µ)ppp pppu uu uuu u

µppp pppu uuu uuu ↔

Φ(µ)ppp pppu uuu uu u
µppp pppu uu uuu
u
↔

Φ(µ)ppp pppu uu uuu
u

µppp pppu uu uuuu
↔

Φ(µ)ppp pppu uu uuu u

µppp pppu uuu uuu
↔

Φ(µ)ppp pppu uuu uu u
µppp pppu uuuu uu ↔

Φ(µ)ppp pppu uuuu uu
µppp pppuu uu uuu ↔

Φ(µ)ppp pppuu uu uu u

κ = 2

µppp pppu uuu uu
↔

Φ(µ)ppp pppu uuuuu
µppp pppu uuu uu
↔

Φ(µ)ppp pppu uuuuu

µppp pppuu uu uu
↔

Φ(µ)ppp pppuu uuuu
µppp pppu uu uuu
↔

Φ(µ)ppp pppu uuuu u
µppp pppu uu uuu
↔

Φ(µ)ppp pppu uuuu u

µppp pppuu uuuu
↔

Φ(µ)ppp pppuu uuu u
µppp pppu uuuuu
↔

Φ(µ)ppp pppu uuu uu
µppp pppu uuuuu
↔

Φ(µ)ppp pppu uuu uu

µppp pppuu uuuu
↔

Φ(µ)ppp pppuu uu uu

κ = 3

µppp pppuuu uu
↔

Φ(µ)ppp pppuuuuu
µppp pppuu uuu
↔

Φ(µ)ppp pppuuuu u
µppp pppu uuuu
↔

Φ(µ)ppp pppuuu uu
µppp pppuuuuu
↔

Φ(µ)ppp pppuu uuu
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