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Abstract

We consider the problem of classifying irreducible Specht modules for the Iwahori–Hecke
algebra of type B with parameters Q, q. We solve this problem completely in the case where q is
not a root of unity, and in the case q = −1 we reduce the problem to the corresponding problem in
type A.
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1 Introduction

Let F be a field, and q a non-zero element of F. Let An denote the Iwahori–Hecke algebra of
type An−1 over F with parameter q. This algebra arises in various mathematical contexts, and its
representation theory closely resembles the modular representation theory of the symmetric group
Sn. For every partition λ of n, there is a module Sλ forAn called the Specht module. Specht modules
are important because they arise as cell modules for a particular choice of cellular basis for An. In
the case where An is semisimple, the Specht modules are precisely the irreducible An-modules; in
general, the irreducibleAn-modules arise as the cosocles of certain Specht modules. It is an interesting
question to ask which Specht modules are irreducible, and this question has been answered in almost
all cases in a series of papers [JM1, JM2, L1, F1, F2, JLM, L2]. In particular, the question of which
ordinary irreducible representations of the symmetric group remain irreducible in prime characteristic
is solved. For the remaining case in the classification of irreducible Specht modules, some progress
has been made in [FL1, F5, FL2].

In the present paper we begin the study of irreducible Specht modules in type B. Let Q be an
element of F, and let Bn denote the Iwahori–Hecke algebra of type Bn over F with parameters Q, q.
For this algebra there is a cellular basis and a Specht module theory, but with Specht modules indexed
by bipartitions of n. Again, we consider the problem of classifying the irreducible Specht modules.
We solve this problem in the fairly easy case where q is not a root of unity in F. Then we consider the
case where q = −1; we show how to reduce the main problem in this case to the (still unsolved) type
A problem.

In a future paper we hope to consider the remaining cases, where q is an eth root of unity for
e > 2. We also hope to address a generalisation to higher levels. Specifically, we hope to consider
irreducible Specht modules for the cyclotomic Hecke algebra or Ariki–Koike algebra, which has the same
definition as the Hecke algebra of type B, but with the quadratic relation for the generator T0 replaced
by an arbitrary polynomial relation. The representation theory of this algebra admits a very similar
combinatorial framework to Bn, but with bipartitions replaced by multipartitions (with the number
of components being the degree of the relation for T0). To each such multipartition is associated a
Specht module, and one can ask which Specht modules are irreducible. Some of the results in this
paper will generalise fairly easily; the main obstruction is that we do not have an explicit formula for
decomposition numbers in the case where q is not a root of unity.

In the next section, we give a brief account of the background results we need. In Section 3, we
address the case e = ∞, and in Section 4 we look at the case e = 2.

2 Background and basic results

In this section we briefly treat some background on the representation theory of Iwahori–Hecke
algebras. An excellent reference for Hecke algebras of type A is the book by Mathas [M2]. For type
B, the paper of Dipper and James [DJ] gives a useful introduction.

2.1 Iwahori–Hecke algebras of types A and B

Throughout this paper, F denotes a field, and q,Q are elements of F with q , 0, 1. For a positive
integer n, the Iwahori–Hecke algebra Bn is the unital associative F-algebra with generators T0, . . . ,Tn−1
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and relations

(T0 −Q)(T0 + 1) = 0
(Ti − q)(Ti + 1) = 0 (1 6 i 6 n − 1)

T0T1T0T1 = T1T0T1T0

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2)
TiT j = T jTi (0 6 i 6 j − 2 6 n − 3).

We denote byAn the subalgebra generated by T1, . . . ,Tn−1; this is the Iwahori–Hecke algebra of type
An−1.

We denote by e ∈ {2, 3, . . . } ∪ {∞} the multiplicative order of q in F.

2.2 Partitions and bipartitions

Recall that a partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . . ) of non-negative integers
with |λ| := λ1 + λ2 + · · · = n. When we write a partition, we usually omit trailing zeroes and group
together equal parts with a superscript. We write ∅ for the unique partition of 0.

A bipartition of n is an ordered pair (λ, µ) of partitions with |λ|+ |µ| = n. We refer to λ and µ as the
first and second components of (λ, µ).

Young diagrams

The Young diagram [λ] of a partition λ is the set{
(i, j)

∣∣∣ j 6 λi

}
⊂ N2.

We refer to elements of N2 as nodes, and to elements of [λ] as nodes of λ. A node n of λ is removable if
[λ] \ {n} is the Young diagram of a partition, while a node not in [λ] is an addable node of λ if [λ] ∪ {n}
is the Young diagram of a partition. We use the English convention for drawing Young diagrams,
in which i increases down the page and j increases from left to right. For example, the following
illustrates the Young diagram of the partition (42, 2), with removable nodes marked − and addable
nodes marked +.

+
−

− +
+

The Young diagram [λ, µ] of a bipartition (λ, µ) is the subset{
(i, j)1

∣∣∣ j 6 λi

}
∪

{
(i, j)2

∣∣∣ j 6 µi

}
of N2

× {1, 2}; we use the terms node, addable node and removable node as for partitions.
Given q,Q as in the definition of Bn, we define the residue of a node (i, j)k to be−Qq j−i (k = 1)

q j−i (k = 2).

For x ∈ F, a node of residue x will be called an x-node.



4 Matthew Fayers

The dominance order

The dominance order on partitions is a partial order Q defined by saying that λ Q ξ if for every
i > 1 we have λ1 + · · · + λi > ξ1 + · · · + ξi. The dominance order on bipartitions (also denoted Q) is
defined by (λ, µ) Q (ξ, ν) if λ Q ξ and |λ| + µ1 + · · · + µi > |ξ| + ν1 + · · · + νi for every i > 1.

Beta-sets

A beta-set (also referred to as a one-runner abacus) is a subset B of Z such that for N � 0 we have
−N ∈ B = N. Given a partition λ and an integer i, one may define a beta-set Bi(λ) by

Bi(λ) =
{
λ j + i − j

∣∣∣ j > 1
}
.

Conversely, any beta-set B defines a unique partition: writing the elements of B as b1 > b2 > . . . , there
is a unique integer i such that bN = i −N for N � 0; then B = Bi(λ), where λ j = b j + j − i for each j.

It is conventional to depict a beta-set with an abacus diagram, which consists of an abacus with
one infinite horizontal runner; this runner has positions marked with the integers increasing from left
to right, and has a bead at the position corresponding to each element of the beta-set. For example,
the following diagram depicts the beta-set B1(λ), where λ is the partition (42, 2) in the example above.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

Row removal and conjugate partitions

For any partition λ, we denote by λ the partition (λ2, λ3, . . . ) obtained by removing the first part
from λ. We denote by λ′ the conjugate partition to λ, given by

λ′i =
∣∣∣∣{ j

∣∣∣ i 6 λ j

}∣∣∣∣ .
2.3 Specht modules

For every partition λ of n, there is anAn-module Sλ called a Specht module. In the case whereAn
is semisimple, the Specht modules are irreducible and afford all irreducible representations ofAn. In
general, the irreducible representations ofAn can be obtained as quotients of certain Specht modules.
A similar situation applies for the algebra Bn, except that here the Specht modules are indexed by
bipartitions of n. The definition of Specht modules is given in §2.6.

Although not all Specht modules are irreducible, some are, and this paper is a contribution towards
the classification of irreducible Specht modules. ForAn, this question has been studied in a series of
papers, and answered in all cases except where q = −1. In the present paper, we begin the study of
irreducible Specht modules for Bn.

2.4 Simple modules and regular bipartitions

We now briefly address the classification of simple modules for An and Bn. There are various
conventions for (bi)partitions and Specht modules, which reflect established conventions in the
representation theory of algebraic groups, quantum groups, and symmetric groups. In practice it is
very easy to translate between different conventions, but for clarity we set out here which convention
we use. This is the regular convention: we say that a partition is e-regular if either e = ∞ or e < ∞ and
there is no i such that λi = λi+e−1 > 0. Then for every e-regular partition λ, the Specht module Sλ for
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An has an irreducible cosocle Dλ, and the modules Dλ give all the irreducible representations ofAn.
Moreover, the composition multiplicity [Sλ : Dµ] equals 1 for λ = µ, and is zero unless µ Q λ.

ForBn, the simple modules are labelled by a certain class of bipartitions called regular bipartitions
in [BK2] (or conjugate Kleshchev bipartitions in [F4]). The Specht module S(λ,µ) has an irreducible
quotient D(λ,µ) for each regular (λ, µ), and these modules afford all the irreducible representations
of Bn. The composition multiplicity [S(λ,µ) : D(ν,ξ)] is zero unless (ν, ξ) Q (λ, µ), and equals 1 if
(ν, ξ) = (λ, µ).

The definition of regular bipartitions is quite complicated in general, and depends on q and Q; the
original recursive definition [AM1] derives from the theory of crystals. In the case e = ∞, it is easy to
derive a non-recursive definition.

Proposition 2.1. Suppose e = ∞, and (λ, µ) is a bipartition. Then (λ, µ) is regular if and only if one of
the following holds:

• −Q is not a power of q;

• −Q = qr for some r > 0, and λi > µi − r for all i > 1;

• −Q = qr for some r 6 0, and λi > µi+r for all i > 1.

Proof. This is a simple exercise using the crystal-theoretic definition of a regular bipartition. It also
follows from Theorem 3.1 below. �

A simple description of regular bipartitions is also easy to obtain in the case e = 2 [M1, Proposition
4.11]. For the cases where 2 < e < ∞, a quick (though still recursive) characterisation of regular
bipartitions has been found by Ariki, Kreiman and Tsuchioka [AKT].

We remark that the problem of classifying the irreducible Specht modules labelled by regular
bipartitions (that is, Specht modules S(λ,µ) = D(λ,µ)) has been solved by James and Mathas, using their
higher-level version of the Jantzen sum formula [JM3, Theorem 4.7(iii)].

2.5 Conjugation and duality

The anti-automorphism of Bn which fixes each of the generators T0, . . . ,Tn−1 allows one to define
a duality M 7→ M∗ on Bn-modules in the natural way. In order to understand the effect of this map
on Specht modules, we need also to consider the automorphism θ of Bn given by

T0 7−→ −QT−1
0 , Ti 7−→ −qT−1

i (i = 1, . . . ,n − 1).

By twisting the action of Bn by θ, we obtain a self-equivalence M 7→ Mθ on the category of Bn-
modules. The composition of this map with the duality M 7→M∗ will be denoted M 7→M~. All these
functors are self-inverse.

Now we have the following result; recall that λ′ denotes the conjugate of a partition λ.

Theorem 2.2. Suppose (λ, µ) is a bipartition.

1. (S(λ,µ))~ � S(µ′,λ′).

2. If (λ, µ) is regular, then (D(λ,µ))∗ � D(λ,µ).
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Proof.
1. This is essentially the result of [M3, Corollary 5.7]; see [F4, Proposition 3.1] for more details.

2. This follows from the theory of cellular bases: the anti-automorphism Ti 7→ Ti is the automor-
phism implicit in the definition of cellular bases, under which simple modules are self-dual
[M2, Exercise 2.7(iii)]. �

As a consequence, we get the following result, which is relevant to the present paper.

Corollary 2.3. Suppose (λ, µ) is a bipartition. Then S(λ,µ) is reducible if and only if S(µ′,λ′) is.

Almost identical results hold in the simpler case ofAn; defining all the functors in the same way
(ignoring the generator T0), one gets (Sλ)~ � Sλ

′

for any partition λ, and (Dλ)∗ � Dλ if λ is e-regular.

2.6 The Murphy basis

Here we give the definition of Specht modules for An and Bn; this is based on the Murphy basis,
given in [DJM], though we modify the definition in accordance with the conventions outlined in §2.4.

Let t1, . . . , tn−1 be the Coxeter generators of the symmetric group Sn. Given w ∈ Sn, let ti1 . . . til be
any reduced expression for w, and define Tw = Ti1 . . .Til ; By Matsumoto’s Theorem and the defining
relations forAn, this definition does not depend on the choice of reduced expression.

Define Sλ′ to be the Young subgroup of Sn corresponding to λ′; that is, the naturally embedded
subgroup Sλ′1 ×Sλ′2 × · · · . Now define

xλ =
∑

w∈Sλ′

Tw.

Let N
λ

be the two-sided ideal of An generated by
{
xµ

∣∣∣ µ C λ
}
, and let Mλ be the left ideal of An

generated by xλ. Then the Specht module is

Sλ :=
Mλ

Mλ ∩N
λ
.

Now we consider bipartitions. Given 0 6 a 6 n, define

ua =

a∏
i=1

(
qi−1 + Ti−1Ti−2 . . .T1T0T1 . . .Ti−1

)
.

Given a bipartition (λ, µ), define S(µ′,λ′) to be the Young subgroup Sµ′ ×Sλ′ of Sn, and set

x(λ,µ) = u|µ|
∑

w∈S(µ′ ,λ′)

Tw.

As in type A, define N
(λ,µ)

to be the two-sided ideal of Bn generated by
{
x(ν,ξ)

∣∣∣ (ν, ξ) C (λ, µ)
}
, and

define M(λ,µ) to be the left ideal generated by x(λ,µ). Now the Specht module is

S(λ,µ) :=
M(λ,µ)

Mλ ∩N
(λ,µ)

.

We use this definition of the Specht modules to prove the following statement; this does not seem
to appear in this form in the literature, but it admits a simple interpretation in terms of modules for
the affine Hecke algebra of type A.
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Proposition 2.4. Suppose λ is a partition of n. Then the Specht module S(λ,∅) (or S(∅,λ)) for Bn is
irreducible if and only if the Specht module Sλ forAn is irreducible.

Proof. We consider the Specht module S(λ,∅); the result for S(∅,λ) will then follow from the results in
§2.5. We use the notation relating to the Murphy basis from the previous section.

Let N be the two-sided ideal of Bn generated by u1 = 1 + T0. Then Bn/N is naturally isomorphic
toAn; in particular, Bn/N � An as leftAn-modules. Under this isomorphism, any x(ξ,µ) with |µ| > 0
maps to zero, since it contains u1 as a factor. On the other hand, x(ξ,∅) maps to xξ for any ξ. Hence
M(λ,∅) maps to Mλ, and NC(λ,∅) maps to NCλ. As a consequence, we see that S(λ,∅) � Sλ as An-
modules. Clearly, T0 acts as the scalar −1 on Bn/N, and so S(λ,∅) and Sλ have identical submodule
structures. �

2.7 Morita equivalence

We now cite a result of Dipper and James which will allow us to reduce the classification of
irreducible Specht modules to the type A question given certain assumptions about our parameters
q,Q.

Theorem 2.5. [DJ, Theorem 4.17] Suppose −Q is not a power of q. Then Bn is Morita equivalent to

n⊕
m=0

Am ⊗An−m.

The Morita equivalence in Theorem 2.5 is constructed in such a way that the Specht module S(λ,µ)

corresponds to the product Sλ ⊗ Sµ of Specht modules for Hecke algebras of type A. Hence we have
the following result.

Corollary 2.6. Suppose −Q is not a power of q in F, and (λ, µ) is a bipartition of n. Then the Specht
module S(λ,µ) is irreducible if and only if the Specht modules Sλ and Sµ in type A are both irreducible.

In fact, Theorem 2.5 has been generalised to higher levels by Dipper and Mathas [DM], so Corollary
2.6 can be generalised to Ariki–Koike algebras. In view of Corollary 2.6, we shall feel free to assume
from now on that Q = −qr for r ∈ Z.

2.8 Decomposition maps

In this section, we explain briefly some decomposition maps which will allow us to compare dif-
ferent Iwahori–Hecke algebras. The framework for decomposition maps for Iwahori–Hecke algebras
is explained in the article by Geck [G]. Briefly, the idea is that one defines the Hecke algebra over
an integral domain A rather than a field. By extending scalars to the field of fractions K of A, one
obtains the Hecke algebra HK over that field. On the other hand, given a prime ideal p in A, one can
extend scalars to the local ring Ap, and then quotient by p to obtain the Hecke algebra Hk algebra
over the field k = A/p. By defining Specht modules over Ap, one obtains a decomposition map, which
is a homomorphism between the Grothendieck groups of HK and Hk, sending the class of a Specht
module for HK to the class of the corresponding Specht module for Hk.

Decomposition maps are very useful from our point of view, since (the class of) a simple module
is mapped to a non-zero sum of simple modules (which essentially reflects how the simple module
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decomposes modulo p). Hence if a Specht module for HK is reducible, the corresponding Specht
module for Hk must be reducible.

There are two particular decomposition maps we shall use in this paper. To explain these, we
expand our notation, writing Bn(F,Q, q) for the Iwahori–Hecke algebra over F with parameters Q, q.

1. Let q̂ be an indeterminate over F, and set A = F[q̂]. Let p be the ideal of A generated by q̂ + 1;
then there is a decomposition map between the Grothendieck groups of

Bn
(
F(q̂),−q̂r, q̂

)
and Bn

(
F, (−1)r+1,−1

)
.

Note that the algebra on the left has e = ∞, while that on the right has e = 2.

2. Let Q̂ be an indeterminate over F, and set A = F[Q̂]. For r ∈ {0, 1}, let p be the ideal generated
by Q̂ + (−1)r; then there is a decomposition map between the Grothendieck groups of

Bn
(
F(Q̂), Q̂,−1

)
and Bn

(
F, (−1)r+1,−1

)
.

Now both algebras have e = 2, but in the algebra on the left we have Q̂ , ±1, so we may apply
the results in §2.7.

2.9 Blocks, induction and restriction

For n > 1, the algebra Bn−1 is naturally a subalgebra of Bn. Here we briefly consider induction
and restriction functors between the module categories of these algebras.

First we need to address the block structure of Bn. Since the Specht modules are the cell modules
for a cellular structure on Bn, it follows from [GL, Theorem 3.7] that the composition factors of any
Specht module all lie in the same block ofBn. So in order to describe the block structure, we just need
to say when two Specht modules lie in the same block. To do this, recall the definition of the residues
of nodes of the Young diagram of a bipartition.

Theorem 2.7. [LyMa, Theorem 2.11] Suppose (λ, µ) and (ν, ξ) are bipartitions of n. Then S(λ,µ) and
S(ν,ξ) lie in the same block of Bn if and only if (λ, µ) and (ν, ξ) have the same number of nodes of
residue x, for each x ∈ F.

As a result of this theorem, we may label a block ofBn by a multiset of n elements of F. Assuming
for the rest of this subsection that Q = −qr for r ∈ Z, all these elements of F are powers of q.

Now we consider the natural functors Ind and Res of induction and restriction between Bn−k and
Bn. Given a block B of Bn−k and a block C of Bn, we have functors IndC and ResB which act on
modules lying in these blocks: IndC is simply induction followed by projection onto C, and ResB is
defined similarly. In the case where the multiset corresponding to C is obtained from the multiset
corresponding to B by adding k copies of qi for some i, it is known that for any M in B, IndC(M) is a
direct sum of k! isomorphic modules; we write f (k)

i (M) for the isomorphism type of these modules.

We write e(k)
i (M) for the B-module obtained in the same way from M in C. Extending additively, e(k)

i

and f (k)
i are defined on all Bn-modules, for all n.

The behaviour of these functors on Specht modules is quite well understood, via the following
theorem.

Theorem 2.8. The Branching Rule Suppose (λ, µ) is a bipartition.
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• [M4, Main Theorem] Let (λ, µ)+1, . . . , (λ, µ)+s be the bipartitions which can be obtained by
adding k nodes of residue qi to (λ, µ). Then f (k)

i (S(λ,µ)) has a filtration in which the factors are
S(λ,µ)+1

, . . . ,S(λ,µ)+s
.

• [AM1, Proposition 1.9] Let (λ, µ)−1, . . . , (λ, µ)−t be the bipartitions which can be obtained by
removing k nodes of residue qi from (λ, µ). Then e(k)

i (S(λ,µ)) has a filtration in which the factors
are S(λ,µ)−1

, . . . ,S(λ,µ)−t
.

In the context of irreducible Specht modules, this result sometimes allows us to reduce a bipartition
to a smaller one.

Proposition 2.9. Suppose (λ, µ) is a bipartition, Q = −qr for r ∈ Z and i ∈ Z is such that (λ, µ) has no
addable qi-nodes. Let (λ, µ)−i be the bipartition obtained by removing all the removable qi-nodes of
(λ, µ). Then S(λ,µ) is irreducible if and only if S(λ,µ)−i is.

Proof. This is a straightforward consequence of the Branching Rule. The reader who requires more
detail should look at the proof of [F2, Lemma 3.3]. �

For example, suppose q = Q = −1 and (λ, µ) =
(
(4, 32, 1), (2, 1)

)
. The Young diagram [λ, µ], with

the residues of all addables and removable nodes marked, is as follows.

−1 +1 −1 +1
+1 −1 +1

+1 +1
−1 +1
+1

We see that there are no addable nodes of residue −1, and so S(λ,µ) is irreducible if and only if S(λ,µ)−
−1

is, where (λ, µ)−
−1 is the bipartition

(
(33), (1)

)
obtained by removing the removable nodes of residue

−1.

We shall also need to consider the effect of the functor e(k)
i on simple modules, which is described

by the modular branching rules. The first versions of these rules were proved for the symmetric groups
by Kleshchev, and generalised to Hecke algebras of type A by Brundan. The generalisation to higher
levels that we use here was proved by Ariki [A2, Theorem 6.1], building on the work of Grojnowski
and Vazirani [GV, G]. We shall use only the following result, which combines a special case of the
modular branching rules with the block classification.

Proposition 2.10. Suppose Q = −qr for r ∈ Z. Suppose (ν, ξ) , (π, ρ) are regular bipartitions of n.
Suppose i ∈ Z, and let k be maximal such that e(k)

i (D(ν,ξ)) , 0. Then:

1. e(k)
i (D(ν,ξ)) is simple, and the regular bipartition labelling this simple module does not depend

on the characteristic of F;

2. if e = ∞, the composition multiplicity
[
e(k)

i (D(π,ρ)) : e(k)
i (D(ν,ξ))

]
is zero.

Sketch proof. Part (1) is a central part of the modular branching rules.
For part (2), we may assume k > 0. We may also assume D(ν,ξ) and D(π,ρ) lie in the same block ofBn,

since otherwise e(k)
i (D(π,ρ)) and e(k)

i (D(ν,ξ)) lie in distinct blocks ofBn−k. The block classification implies
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that for two bipartitions labelling simple modules in the same block, the number of removable qi-
nodes minus the number of addable qi-nodes is the same; this proved in [F3, Proposition 3.2], and is a
consequence of the relationship between the block classification and the weight space decomposition
for a highest-weight module for a certain Kac–Moody algebra. The assumption e = ∞means that the
total number of addable and removable qi-nodes of a bipartition is at most 2 (since there can be at
most one in each component). Since k is at most the number of removable qi-nodes of (ν, ξ), we have
k 6 2.

If k = 2, then (ν, ξ) must have two removable and no addable qi-nodes, and hence the same is
true of (π, ρ). Hence by the modular branching rules e(2)

i (D(π,ρ)) is a simple module different from
e(2)

i (D(ν,ξ)).
If k = 1, then the numbers of addable and removable qi-nodes of (π, ρ) can be any of (0, 0), (1, 1)

or (0, 1). Now the modular branching rules imply that ei(D(π,ρ)) is either zero or a simple module
different from ei(D(ν,ξ)). �

Remark. We remark that it is vital in part (2) of the above proposition that e = ∞ and that we
are working in type B (rather than with an Ariki–Koike algebra of higher level). If either of these
assumptions is dropped, then it is possible to have k > 3, and the argument in the above proof fails
to work.

3 The case e = ∞

In this section, we give the classification of irreducible Specht modules for Bn in the case where q
is not a root of unity. This will be fairly straightforward, because the decomposition numbers can be
given explicitly in this case. In fact, this is not particularly new, but we give a detailed account below
in order to make this paper reasonably self-contained and to express the main result in a combinatorial
way which is suitable for our purposes.

When char(F) = ∞, Ariki’s Theorem [A1] implies that the decomposition numbers for Bn are
given by specialising the coefficients in canonical basis elements for a certain highest-weight Uv(sl∞)-
module V; these coefficients are computed explicitly in [LeMi]. To complete the description of
the decomposition numbers, it suffices to show that they are unchanged when the assumption on
characteristic is dropped. We give a proof of this fact below using the results of §2.9, though results
in the literature yield a proof which essentially boils down to the same argument: as observed by
Brundan [B, Lemma 3.19], all the strings in the crystal of V have length at most 2, and this implies that
each canonical basis element can be written in the form fi1 . . . firuΛ, where uΛ is a highest-weight vector
in V [LeMi, Proposition 4]; as observed by Ariki and Mathas [AM2, Corollary 3.7], this guarantees
that the decomposition numbers are independent of characteristic. This result is also obtained in
[BS2, §9].

In order to give the formula for decomposition numbers, we have to set up some combinatorics.
This is all taken from [LeMi, §2], but modified to suit our needs and our conventions (bearing in mind
§2.4). Closely related combinatorics (in the form of cup and cap diagrams) is introduced in [BS1, §2].

3.1 ±-sequences

We define a ±-sequence to be a finite string s1 . . . sn of signs ±. When writing a ±-sequence, we
may group together consecutive equal terms with a superscript. We say that a ±-sequence s1 . . . sn is
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dominant if either

• every initial segment s1 . . . sm contains at least as many − signs as + signs, or

• every final segment sm . . . sn contains at least as many + signs as − signs.

Note that the first condition can only hold if there are at least as many − signs as + signs in the
whole sequence, and the second condition can only hold if there are at least as many + signs as −
signs altogether. If there are the same number of + signs and − signs (we say that the sequence is
balanced in this case), the two conditions are equivalent.

In this paper, we define an involution of {1, . . . ,n} to be a permutation ι of {1, . . . ,n} such that ι2

is the identity. If s = s1 . . . sn is a dominant ±-sequence, then it is easy to see that there is a unique
involution ιs of {1, . . . ,n}with the following properties:

• if i and j are fixed by ιs, then si = s j;

• if ιs(i) > i, then si = − and sι(i) = +;

• there do not exist i < j < k such that ιs(i) = k, ιs( j) = j;

• there do not exist i < j < k < l such that ιs(i) = k, ιs( j) = l.

We define an involution ι of {1, . . . ,n} to be compatible with s if for each i we have ι(i) ∈ {i, ιs(i)}. Given
an involution ι of {1, . . . ,n}, we write sι for the ±-sequence sι(1) . . . sι(n).

(Note that the involution ιs corresponds roughly to the functionψ in [LeMi, §2.5], and the sequences
sι for compatible ι correspond to elements of the set C(S).)

3.2 Decomposition numbers in the case e = ∞

Now we can describe the decomposition numbers forBn when e = ∞. Following §2.7, we assume
Q = −qr for r ∈ Z. Suppose (ν, ξ) is a bipartition. Choose any i ∈ Z, and construct the beta-sets
B1 = Br+i(ν), B2 = Bi(ξ). (These are infinite versions of the sets β, γ used in [LeMi].) Let B be the
symmetric difference

B = B1 4B2 := (B1 ∪ B2) \ (B1 ∩ B2) .

Note that B is finite, being the symmetric difference of two beta-sets. We write the elements of B as
b1 < · · · < bn, and define the r-signature of (ν, ξ) to be the ±-sequence s = s1 . . . sn, where

si =

+ (bi ∈ B1)
− (bi ∈ B2).

Note that this sequence is independent of the choice of i.
Given any involution ι of {1, . . . ,n}, define

Bι1 = (B1 ∩ B2) ∪
{
bι(i)

∣∣∣ bi ∈ B1 \ B2

}
,

Bι2 = (B1 ∩ B2) ∪
{
bι(i)

∣∣∣ bi ∈ B2 \ B1

}
.

Bι1 and Bι2 are both beta-sets, and so define a pair of partitions; we denote the corresponding bipartition
(ν, ξ)ι.

Now we have the following result.
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Theorem 3.1. Suppose e = ∞ and (ν, ξ) is a bipartition, and define the set B and the sequence s = s1 . . . sn

as above. Then (ν, ξ) is a regular bipartition if and only if s is dominant. If this is the case, then D(ν,ξ)

occurs once as a composition factor of S(ν,ξ)ι for every involution ι of {1, . . . ,n} compatible with s, and
does not occur as a composition factor of any other Specht module.

Proof. By Ariki’s Theorem [A1, Theorem 4.4], the decomposition numbers forBn in the case where F
has infinite characteristic can be obtained by specialising at v = 1 the canonical basis coefficients for the
irreducible highest-weight module V(Λr +Λ0) for the quantum algebra Uv(sl∞). These canonical basis
coefficients are given explicitly in [LeMi, Theorem 3], so the result follows from a simple translation
of notation.

To complete the proof, it remains to show that the decomposition numbers forBn are independent
of the underlying characteristic when e = ∞. We prove this by induction on n. Consider the
decomposition number [S(λ,µ) : D(ν,ξ)], where (λ, µ) and (ν, ξ) are bipartitions of n with (ν, ξ) e-regular.
This decomposition number is zero if S(λ,µ) and D(ν,ξ) are not in the same block ofBn (and the condition
for them to lie in the same block is independent of the characteristic), so we assume they do lie in the
same block.

The restriction of D(ν,ξ) to Bn−1 is non-zero, so there must be some i ∈ Z such that ei(D(ν,ξ)) , 0.
Choose such an i, and let k be maximal such that e(k)

i (D(ν,ξ)) , 0. By the Branching Rule and by
induction, the composition factors of e(k)

i (S(λ,µ)) are independent of the underlying characteristic. If
D(π,ρ) is a composition factor of S(λ,µ) other than D(ν,ξ), then by Proposition 2.10(2) the composition
multiplicity

[
e(k)

i (D(π,ρ)) : e(k)
i (D(ν,ξ))

]
is zero. Hence, since e(k)

i is an exact functor, the decomposition

number [S(λ,µ) : D(ν,ξ)] equals the multiplicity
[
e(k)

i (S(λ,µ)) : e(k)
i (D(ν,ξ))

]
, and so by induction and

Proposition 2.10(1) is independent of the characteristic. �

Example. Suppose r = 1 and (ν, ξ) =
(
(42, 33), (42, 1)

)
. Then

B1(ν) = {. . . ,−7,−6,−5,−1, 0, 1, 3, 4},

B0(ξ) = {. . . ,−7,−6,−5,−4,−2, 2, 3},

so that B = {−4,−2,−1, 0, 1, 2, 4} and s = −−+++−+. This is easily seen from the following diagram, in
which we give the abacus diagram for B1(ν) above that for B0(ξ); each bead directly above an empty
position contributes a + to s, and each bead below an empty position contributes a −.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

− − + + + − +

s is a dominant sequence, so (ν, ξ) is a regular bipartition. The involution ιs is (1, 4)(2, 3)(6, 7). Hence

there are eight Specht modules containing the simple module D(ν,ξ); the labelling partitions with the
corresponding abacus diagrams are given below.(

(42, 33), (42, 1)
)
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(
(42, 3, 2), (42, 3, 2)

)
(
(42, 32, 2), (42, 2)

)
(
(42, 3, 1), (42, 32)

)
(
(35), (52, 1)

)
(
(33, 2), (52, 3, 2)

)
(
(34, 2), (52, 2)

)
(
(33, 1), (52, 32)

)

We shall use Theorem 3.1 to classify the irreducible Specht modules. Given a bipartition (λ, µ),
the Specht module S(λ,µ) is irreducible if and only if there is a unique regular bipartition (ν, ξ) such
that (λ, µ) occurs as (ν, ξ)ι for a compatible involution ι. It turns out that this condition is quite easy
to express in terms of the r-signature of (λ, µ).

Given a dominant ±-sequence s and a compatible involution ι for s, we will say that the pair (s, ι)
is suitable for the sequence sι.

Proposition 3.2. Suppose t is a ±-sequence of the form +a
−

b+c or −a+b
−

c, with a + c 6 b. Then there
is exactly one pair (s, ι) suitable for t.

Proof. We assume t has the form +a
−

b+c; the proof in the other case is similar. The pair (−a+a
−

b−a+c, κ),
where

κ : i 7−→

2a + 1 − i (i 6 2a)

i (i > 2a)

is certainly suitable for t. Now suppose (s, ι) is suitable for t. Then we must have sa+b+1 = · · · =

sa+b+c = +, and ι must fix all the points a + b + 1, . . . , a + b + c. Since t contains at least as many − signs
as + signs, s does too, and so since s is dominant we must have s1 = −. In fact, we claim that si = − for
all 1 6 i 6 a. If not, let i be minimal such that si = +. Then since si−1 = −, we must have ιs(i) = i − 1,
and so ti−1, ti equal +,− in some order, which is not the case.

So s1 = · · · = sa = −, and this means that 1, . . . , a are all moved by ι. If we write ji = ι(i) for
i = 1, . . . , a, then from the definition of ιs we have a + 1 6 ja < ja−1 < · · · < j1 6 a + b. Now we find
that s ja = + and s ja−1 = −, and this implies that ιs( ja) = ja − 1. But we have ιs( ja) = ι( ja) = a, so that
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ja = a + 1. And we claim that ji = 2a + 1 − i for all i: if not, let i be maximal such that ji > 2a + 1 − i;
then we have s ji = + and s ji−1 = −, so that ιs( ji) = ji − 1. But this contradicts the fact that ι(i j) = j.

And now we have s = −a+a
−

b−a+c, and ι = κ. �

We want to prove a converse to Proposition 3.2. For the inductive step, we shall need the following
lemma.

Lemma 3.3. Suppose s = s1 . . . sn is a dominant ±-sequence, and 1 6 i < n is such that si = −, si+1 = +.
Define ŝ = s1 . . . si−1si+2 . . . sn, and for any j ∈ {1, . . . ,n − 2}write

j′′ =

 j ( j < i)

j + 2 ( j > i).

Then:

1. ŝ is a dominant sequence;

2. if ι̂ is a compatible involution for ŝ, then the involutions ι1, ι2 of {1, . . . ,n} defined by

ι1( j) =



ι̂( j)′′ ( j < i)

i ( j = i)

i + 1 ( j = i + 1)

ι̂( j − 2)′′ ( j > i + 1)

ι2( j) =



ι̂( j)′′ ( j < i)

i + 1 ( j = i)

i ( j = i + 1)

ι̂( j − 2)′′ ( j > i + 1)

are compatible with s.

Proof. It is immediate from the definition of a dominant sequence that ŝ is dominant. Moreover, it is
easy to compare the involutions ιs and ιŝ: ιs is given by

j 7−→



ιŝ( j)′′ ( j < i)

i + 1 ( j = i)

i ( j = i + 1)

ιŝ( j − 2)′′ ( j > i + 1).

Now the lemma follows. �

Corollary 3.4. Suppose t = t1 . . . tn is a ±-sequence with ti , ti+1, and (u, κ) is a suitable pair for
t̂ = t1 . . . ti−1ti+2 . . . tn. Then there is a suitable pair (s, ι) for t such that s j = u j for j 6 i − 1 and s j = u j−2

for j > i + 2.

Proof. Define s by

s j =



u j ( j 6 i − 1)

− ( j = i)

+ ( j = i + 1)

u j−2 ( j > i + 2).

Then apply Lemma 3.3 to s, taking ι = ι1 if ti = −, and ι = ι2 if ti = +. �
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Proposition 3.5. Suppose t is a ±-sequence which is not of the form −a+b
−

c or +a
−

b+c with a, b, c
non-negative integers and a + c 6 b. Then there are at least two pairs (s, ι) suitable for t.

Proof. Take any i such that ti , ti+1, and let t̂ = t1 . . . ti−1ti+2 . . . tn. If t̂ does not have the form −a+b
−

c or
+a
−

b+c with a + c 6 b then by induction on n the sequence t̂ has at least two suitable pairs. Applying
Corollary 3.4, we find that there are at least two pairs suitable for t. So we may assume that for every i
such that ti , ti+1 the sequence t̂ has the form −a+b

−
c or +a

−
b+c with a + c 6 b. This leaves only a few

possibilities for t.

• Suppose t has the form +a
−+c with a, c > 0. Then the pair (t, identity) is suitable for t, as is the

pair
(
+a−1
−+c+1, (a, a + 1)

)
. A similar argument applies in the case where t = −a+−c with a, c > 0.

• Suppose t has the form +a
−+−d, where a, d > 0. If a 6 d, then we have two suitable pairs(

−
a+1+a+1

−
d−a, ι

)
and

(
−

a+−+a
−

d−a, κ
)
, where

ι : j 7−→

2a + 3 − j ( j 6 a or a + 3 6 j 6 2a + 2)

j (otherwise),

κ : j 7−→



2a + 3 − j ( j < a or a + 3 < j 6 2a + 2)

j + 1 ( j = a or a + 2)

j − 1 ( j = a + 1 or a + 3)

j (otherwise).

A similar argument applies when a > d.

• Suppose t has the form −
a+−+d with a, d > 0. Then (t, identity) is a suitable pair, as is(

−
a+1+d+1, (a + b, a + b + 1)

)
. �

Combining Propositions 3.2 and 3.5 with Theorem 3.1 yields the main result of this section.

Corollary 3.6. Suppose Q = −qr and (λ, µ) is a bipartition, and let t be the r-signature of (λ, µ). Then
the Specht module S(λ,µ) for Bn is irreducible if and only if t has the form −a+b

−
c or +a

−
b+c with a, b, c

non-negative integers and a + c 6 b.

Remark. In the case where char(F) = ∞, this result appears in [BK1, Theorem 8.25] in the context of
representations of shifted Yangians; the combinatorial criterion on the signature first appears in [LZ,
Lemma 3.8].

We shall define some terminology for use in Section 4; let us say that a bipartition (λ, µ) is
(∞, r)-irreducible if it satisfies the conditions of Corollary 3.6, and (∞, r)-reducible otherwise.

4 The case e = 2

4.1 The main result

In this section, we consider the case where e = 2; that is, q = −1. In this case we still do not have
a classification of irreducible Specht modules for Iwahori–Hecke algebras of type A. But our main
result here is that the type B problem can be reduced to the type A problem.
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To be precise, recall the definition of residues of nodes of Young diagrams. Following the discus-
sion in §2.7, we assume that Q = (−1)r+1 for some integer r. In fact, we assume that r ∈ {0, 1}. Recall
that Proposition 2.9 sometimes allows us to reduce a bipartition to a smaller one. If i = ±1, let us
say that a bipartition (λ, µ) is i-restrictable if (λ, µ) has at least one removable i-node and no addable
i-nodes; say that (λ, µ) is restrictable if it is either 1-restrictable or −1-restrictable. Our main result in
this section is the following.

Theorem 4.1. Suppose q = −1, Q = ±1 and (λ, µ) is a bipartition which is not restrictable and which
has λ , ∅ , µ. Then S(λ,µ) is reducible.

Combining this with Proposition 2.9 and Proposition 2.4, we obtain the following corollary. Let us
say that a partition ν is 2-irreducible if the Specht module Sν forAn is irreducible. (Note that whether
ν is 2-irreducible depends on the characteristic of F; but the field F is fixed throughout this section.)

Corollary 4.2. Suppose q = −1 and Q = (−1)r+1, and (λ, µ) is a bipartition. Then S(λ,µ) is irreducible if
and only if there is i = ±1 and a sequence (λ, µ) = (λ0, µ0), . . . , (λs, µs) of bipartitions such that:

• for even j, (λ j, µ j) is i-restrictable with (λ j, µ j)−i = (λ j+1, µ j+1);

• for odd j, (λ j, µ j) is (−i)-restrictable with (λ j, µ j)−−i = (λ j+1, µ j+1);

• (λs, µs) has the form (ν,∅) or (∅, ν) for ν a 2-irreducible partition.

Example. Suppose as in the example in §2.9 that Q = −1 and (λ, µ) =
(
(4, 32, 1), (2, 1)

)
. Then in

Corollary 4.2 we take i = −1 and

(λ0, µ0) =
(
(4, 32, 1), (2, 1)

)
,

(λ1, µ1) =
(
(33), (1)

)
,

(λ2, µ2) =
(
(32, 2),∅

)
.

The partition (32, 2) is known to be 2-irreducible (since the characteristic of F is not 2) and so S(λ,µ) is
irreducible.

4.2 Decomposition maps

Our main tool in proving Theorem 4.1 will be to use decomposition maps and our results for the
case e = ∞. Following the discussion in §2.8 and using the first decomposition map given in that
section, we find that when q = −1 and Q = (−1)r+1, the Specht module S(λ,µ) for Bn is irreducible only
if (λ, µ) is (∞, t)-irreducible for every t of the same parity as r.

With this in mind, we examine the condition for a bipartition to be (∞, t)-irreducible in more detail.
Recall that if λ is a partition then λ denotes the partition obtained by removing the first part from λ.

Lemma 4.3. Suppose t ∈ Z and (λ, µ) is a bipartition, and let s be the t-signature of (λ, µ). Then the
t-signature of (λ, µ) either equals s or is obtained from s by deleting the last + and the last −.

Proof. Recall that s may be constructed from the symmetric difference Bt(λ)4B0(µ). On the other
hand, the t-signature of (λ, µ) may be constructed from Bt−1(λ)4B−1(µ). The set Bt−1(λ) is obtained
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from Bt(λ) by removing the largest element b, while B−1(µ) is obtained from B0(µ) by removing the
largest element c.

If b = c, then clearly Bt(λ)4B0(µ) = Bt−1(λ)4B−1(µ), so the t-signatures are the same. If c ,
b ∈ B0(µ), then the t-signature of (λ, µ) equals s: to obtain the t-signature of (λ, µ) from s, the last
symbol (the − corresponding to c) is removed, and a − corresponding to b is inserted; but since
b = max(Bt(λ)), this insertion happens after the last + in s, so the end result is that the t-signature is
unchanged. Similarly, if b , c ∈ Bt(λ), then s is the t-signature of (λ, µ).

The remaining possibility is that b < B0(µ) and c < Bt(λ). In this case, the t-signature of (λ, µ) is
obtained from s by removing the last + (corresponding to b) and the last − (corresponding to c). �

As a consequence, we get the following.

Lemma 4.4. Suppose t ∈ Z and (λ, µ) is a bipartition which is (∞, t)-irreducible. Then (λ, µ) is (∞, t)-
irreducible.

Proof. Recall that (λ, µ) is (∞, t)-irreducible if and only if the t-signature of (λ, µ) has the form +a
−

b+c

or −a+b
−

c and with a, c > 0 and b > a + c. If this is the case, then the same is true of the same sequence
with the last + and the last − removed. �

Now we come to the main part of the proof of Theorem 4.1.

Proposition 4.5. Suppose q = −1, Q = 1 and (λ, µ) is a bipartition which is (∞, t)-irreducible for all
odd t. Then either

• λ or µ equals ∅, or

• (λ, µ) is restrictable.

Proof. First we note that (λ, µ) is (∞, t)-irreducible if and only if (µ, λ) is (∞,−t)-irreducible; this
follows immediately from the definitions. Also, (λ, µ) is (∞, t)-irreducible if and only if (µ′, λ′) is
(this can be seen by comparing signatures, or directly from Corollary 2.3). Hence, since (λ, µ) is
(∞, t)-irreducible for every odd value of t, the same is true of (µ, λ), (µ′, λ′) and (λ′, µ′); so we can
interchange λ and µ, or replace them both with their conjugates, when it is convenient.

We shall suppose neither of the two conclusions is true, and derive a contradiction. First suppose
µ = (1). Since (λ, µ) is not restrictable, λ has an addable node (a, b) with b − a odd. But now we claim
that (λ, µ) is (∞, a − b)-reducible. We have B0(µ) = {. . . ,−4,−3,−2, 0}, while Ba−b(λ) contains −1 but
not 0. Moreover, since λ , ∅, there is either a positive integer in Ba−b(λ), or an integer less than −1
not in Ba−b(λ). Hence the a − b-signature has the form −x+−+y with at least one of x and y strictly
positive. So (λ, µ) is not (∞, a − b)-irreducible.

So we can assume |µ| > 1. Symmetrically, we can assume |λ| > 1. Now we claim that (λ, µ) is
(∞, λ′1 − µ1 − 1)-reducible. The set B1−µ1(µ) has 0 as its largest element, and (since µ , ∅) does not
contain every negative integer. On the other hand, the set Bλ

′

1(λ) contains every negative integer,
does not contain 0 and (since λ , ∅) contains some positive integer. So the (λ′1 −µ1 − 1)-signature has
the form +x

−+y, for some x, y > 0, and (λ, µ) is (∞, λ′1 − µ1 − 1)-reducible.



18 Matthew Fayers

Since (λ, µ) is (∞, t)-reducible for every odd t, we deduce that λ′1−µ1 must be odd. Symmetrically,
µ′1 − λ1 must be odd. This implies that (λ, µ) is not restrictable. To see this, suppose (λ, µ) has a
removable node of residue i = ±1. Then (λ, µ) has a removable node of residue −i. Since (λ, µ) is
not restrictable, this means that (λ, µ) has an addable node of residue −i. Furthermore, this addable
node can be chosen not to be (1, λ1 + 1)1 or (1, µ1 + 1)2, because (1, λ1 + 1)1 has the same residue as the
addable node (µ′1 + 1, 1)2, while (1, µ1 + 1)2 has the same residue as (λ′1 + 1, 1)1. Hence (λ, µ) has an
addable node of residue i, as required.

By induction, this implies that one of λ, µ equals ∅, i.e. λ or µ has only one non-empty row.
Symmetrically, either λ or µ has only one non-empty column. Since neither λ nor µ equals (1), this
means that (without loss of generality) (λ, µ) = ((1m), (n)) for some positive integers m,n. The fact
that µ′1 − λ1 and λ′1 − µ1 are odd means that m and n are both even. But now one can check that the
(m + n − 1)-signature of (λ, µ) is +n

−+m, so (λ, µ) is (∞,m + n − 1)-reducible. �

The corresponding result for even values of t is more complicated.

Proposition 4.6. Suppose (λ, µ) is a bipartition which is (∞, t)-irreducible for all even t. Then one of
the following is true:

• λ or µ equals ∅;

• (λ, µ) is restrictable;

• (λ, µ) =
(
(2m), (12n)

)
or

(
(12n), (2m)

)
for some m,n.

Proof. We follow the proof of Proposition 4.5. As in that proof, we may interchange λ and µ or
replace them with their conjugates if necessary. We begin by eliminating the case where λ = (1); this
follows exactly as before, replacing ‘odd’ with ‘even’.

So we can assume |λ|, |µ| > 1. We can also copy the proof of Proposition 4.5 to show that we must
have µ′1 − λ1 and λ′1 − µ1 both even. And as before this shows that (λ, µ) is not restrictable. Now by
induction we find that either one of λ, µ equals ∅ or (λ, µ) has the form

(
(2m), (12n)

)
or

(
(12n), (2m)

)
.

A similar statement applies when we remove the first columns of λ and µ. Together with what we
have proved so far, the only remaining possibility is that (λ, µ) =

(
(k), (1l)

)
or

(
(1l), (k)

)
, where k and l

have the same parity. If k and l are both odd, then (λ, µ) is restrictable, so k and l are even. �

4.3 Proof of Theorem 4.1

To complete the proof of Theorem 4.1, we shall need the following result.

Proposition 4.7. Suppose e = 2, and (λ, µ) is a bipartition. Then the Specht modules S(λ,µ) and S(λ′,µ)

have exactly the same composition factors, with multiplicity.

Proof. First consider the Specht modules Sλ, Sλ
′

for An, and consider the functor M 7→ Mθ in §2.5.
When e = 2, it is quite easy to show that (Sλ)θ � Sλ (and hence (Dλ)θ � Dλ if λ is 2-regular). Hence by
the type A version of Theorem 2.2 the Specht modules Sλ and Sλ

′

have the same composition factors.
Now consider Specht modules for Bn. If −Q is not a power of q, then by the previous paragraph

and the results in §2.7 the Specht modules S(λ,µ) and S(λ′,µ) have the same composition factors. In
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particular, this applies when Q is an indeterminate. Now consider applying the second decomposition
map in §2.8 to specialise Q: since a decomposition map is a function between Grothendieck groups
which sends Specht modules to Specht modules, the result holds in general. �

Proof of Theorem 4.1. Supposeλ , ∅ , µ and S(λ,µ) is irreducible. Then (λ, µ) is (∞, t)-irreducible for
every t of the same parity as r. By Propositions 4.5 and 4.6, this means that either (λ, µ) is restrictable,
or r = 0 and (λ, µ) has the form

(
(2m), (12n)

)
or

(
(12n), (2m)

)
for some m,n > 0. But by Proposition

4.7, S((2m),(12n)) has exactly the same composition factors as S((12m),(12n)), and the latter Specht module is
reducible, since the bipartition

(
(12m), (12n)

)
is (∞, 2m)-reducible. A similar argument applies for the

bipartition
(
(12n), (2m)

)
. �
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